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Abstract

This article describes applications of scalar expectancy theory (SET), learning-to-time theory (LeT), and Packet theory to data from a peak
procedure. Twelve rats were trained in a multiple cued-interval procedure with two fixed intervals (60 and 120 s) signaled by houselight and white
noise. Twenty-five percent of the cycles were nonfood cycles, which were 360 s long and had no reinforcement. Mean and individual response
rates on nonfood cycles were fitted with explicit solutions of SET, LeT and Packet theory. Applications of the three timing theories were compared

in terms of goodness of fit and complexity.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Two mathematical theories of timing behavior, scalar
expectancy theory (SET; Gibbon et al., 1984) and learning-to-
time theory (LeT; Machado, 1997) use different approaches to
explain the behavior of animals on timing procedures. A more
recent account, Packet theory (Kirkpatrick, 2002) integrates the
two approaches with the inclusion of multiple variance sources
(asin SET) and vector memories (as in LeT). Although these the-
ories were constructed in different ways, each of them includes
three common components: a representation of physical time, a
storage mechanism that contains information about when rein-
forcers are delivered, and a response rule to generate predictions
(Church, 1999).

SET (Gibbon et al., 1984) is a cognitive account in terms of
perception, memory and decision. The number of pulses gener-
ated by a pacemaker represents physical time since a time signal,
which is recorded in an accumulator. The number of pulses at
the time of reinforcement, multiplied by a memory coefficient,
is stored in a distribution memory. A new number from the accu-
mulator will be compared to a remembered value and, when they
are “close enough,” operant responses occur. This theory empha-
sizes multiple variance sources and that variability in timing is
proportional to the mean of the interval being timed, which is
known as the scalar property of timing.
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An alternative theory, LeT (Machado, 1997), derived orig-
inally from BeT (Killeen and Fetterman, 1988), assumes that
the temporal regulation of operant behavior is derived from a
sequence of behavioral states that is the representation of phys-
ical time. Information about when reinforcers are delivered is
encoded by an associative component. Operant response rate
depends on both activation of behavioral states and their asso-
ciative strength. One major success of LeT is that it generates
accurate predictions for acquisition of timing behavior, and these
predictions converge to an appropriate description of steady-
state behavior (Machado, 1997; Machado and Cevik, 1998).

Packet theory was first proposed by Kirkpatrick and Church
in 2002 and 2003, and has been modified somewhat since then
(Guilhardi et al., 2005, in press). The name comes from the
observation of bouts of responses which result from packets of
responses issued by the theory (Kirkpatrick and Church, 2003).
A current version of Packet theory (Guilhardi et al., in press) has
a storage mechanism that consists of two separate memories,
pattern memory and strength memory, dealing with response
pattern and response rate, respectively. The two memories are
combined with an operant level to initiate packets. Packet the-
ory combines SET’s multiple variance sources and LeT’s vector
memories, which allows this theory to account not only for scalar
properties of steady-state responding, but also for acquisition
and extinction (Guilhardi et al., in press).

The peak procedure is commonly used to study temporal
generalization (Catania, 1970; Roberts, 1981). In a simple peak
procedure, fixed-interval (FI) cycles and nonfood cycles are pre-
sented in a random order. A nonfood cycle is much longer than
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an FI cycle and has no reinforcement. The data analyses usually
focus on the behavior on nonfood cycles. Studies show that data
from peak procedures can be well fitted by the explicit solu-
tions of SET (e.g., Gibbon et al., 1984) and LeT (e.g., Machado,
1997). The explicit solution of Packet theory was recently devel-
oped (Yi, 2006) and has not previously been applied to the
peak procedure. In the present analysis, steady-state data from
a peak procedure with multiple cued intervals were fitted with
the explicit solutions of the three theories.

2. Materials and methods
2.1. Animals

Twelve experimentally naive male Sprague-Dawley rats
(Taconic Laboratories, Germantown, NY) were used. Each ani-
mal received 5 g of Dustless Precision Pellets (Bio-Serv, Rodent
Grain-Base Formula, Frenchtown, NJ) that were delivered as
reinforcers during the experiment and an additional 15 g of For-
muLab 5008 food in its home cage every day after its testing
session.

2.2. Apparatus

Each of the 12 chambers (25cm x 30cm x 30cm) was
equipped with a pellet dispenser, a left lever, a right lever, and
a water bottle. The pellet dispenser (Model ENV-203) deliv-
ered 45-mg pellets into the food cup that was located midway
between the left lever and the right lever. The two levers (Model
ENV-112) were located 12 cm apart, placed 7 cm above the floor
grid, and measured 4.5 cm wide, 1 mm thick, 2 cm expanded
into the box, and required a force of 18 g to operate. On the wall
opposite to the levers and the food cup, one water bottle was
mounted outside of the box with a tube that protruded through
a hole in the wall. An audio amplifier (Model ANL-926) was
located outside of the wall with the water bottle, which was
used to produce 70-dB white noise. A houselight (Model ENV-
227M) was located near the ceiling of the box and was used
to produce 200 Lux light. Each chamber was located inside a
ventilated box (74 cm x 38 cm x 60 cm) that was used for noise
attenuation. Four Gateway Pentium®III/500 computers running
Med-PC Medstate Notation Version 2.0, controlled experimen-
tal events and recorded the time at which each event and response
occurred with 2-ms precision.

2.3. Procedure

Phase 1. Two fixed intervals (60 and 120s) were signaled
by two stimuli, white noise and houselight, counterbalanced
across rats. Only one lever, either the left or right lever, was
used for responding (the assignment of levers was counterbal-
anced across rats). A cycle started with the onset of the stimulus
(or stimuli). If the two stimuli were presented individually, the
cycle type was referred to as FI 60s or FI 120s, in which the
first press 60 s after the onset of the short stimulus, or the first
press 120 s after the onset of the long stimulus, was reinforced
with a food pellet and terminated the stimulus. If the two stim-

uli were presented together, the cycle type was referred to as
the compound condition, in which the first press 60 s after the
onset of the short stimulus was reinforced with a food pellet and
terminated the short stimulus, and the first press 120 s after the
onset of the long stimulus was reinforced with one more pellet
and terminated the long stimulus. After 20 s without stimuli, a
new cycle started. A session ended with 14 cycles of FI 60s,
14 cycles of FI 120's, and 28 cycles of the compound condition.
The three cycle types were mixed and presented in a random
order. Rats were trained for 100 sessions (Session 1-100).

Phase 2. After Phase 1 the same rats were exposed to the
peak procedure. Twenty-five percent of the cycles were non-
food cycles. The remaining were food cycles as the same as in
Phase 1. Food cycles and nonfood cycles were randomly pre-
sented. On the nonfood cycles of FI 60s and 120s (i.e., Peak
60 and 120 s), the stimulus lasted 360 s and no food was deliv-
ered. On the nonfood cycles of the compound condition, the two
stimuli terminated simultaneously 360 s after the cycle start and
no food was delivered for either of them. Rats were trained for
another 100 sessions (Session 101-200). The compound condi-
tion in Phase 1 and 2 was designed for simultaneous timing of
multiple intervals and the data were not included in the present
analysis.

2.4. Data analyses

The data from all nonfood cycles of F1 60 and 120 s (i.e., Peak
60 and 120s) were used for the analyses. Mean and individ-
ual response rate were fitted with the explicit solutions of SET,
LeT and Packet theory (see Appendix A for details). Parame-
ters were estimated by the “NLINFIT” function in MatLab 7.0
(R14) (MathWorks, Natick, MA) with the Gaussian—-Newton
algorithm.

3. Results

The mean response rate on nonfood cycles as a function of
time since stimulus onset is shown in the left panels of Fig. 1
(filled and open circles). The response rate increased gradually
when the stimulus began and, after a maximum that was close
to the time of reinforcement, the gradient declined gradually in
a slightly asymmetric fashion. After the response rate declined,
the rats continued responding with a low steady rate. The mean
relative response rate (normalized by maximum) as a function
of relative time (normalized by peak time) on Peak 60 and 120 s
approximately superposed (not shown). A similar response pat-
tern has been observed in many peak studies (e.g., Roberts, 1981;
Roberts et al., 1989; Church et al., 1994). This suggested that
the compound condition did not have a substantial effect on the
responding during Peak 60 and 120 cycles.

The solid lines near the filled and empty circles in the left
panels of Fig. 1 are the fits of the three theories to the mean data.
Table 1 provides the corresponding parameters and the goodness
of fits as measured by w? (the proportion of variance explained).
The residuals, defined as the difference between the mean data
and the predicted values, are shown as a function of time since
stimulus onset in the right panels of Fig. 1. The residuals from
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Fig. 1. Mean response rate on nonfood cycles on Peak 60 s (filled circles on left panels) and 120's (open circles on left panels), predictions of three theories (solid

lines across circles on left panels) and the corresponding residuals (right panels).

fits of the models to the individual data were very similar to the
residuals from their fits to the mean (not shown).

3.1. Scalar expectancy theory (SET)

SET (Gibbon et al., 1984) assumes that a pacemaker gener-
ates pulses that are stored in an accumulator. The accumulated
number of pulses since a time signal, denoted by m(?), is the rep-
resentation of current elapsed time. When reinforcement occurs,
the accumulated number is transferred into reference memory.
A distribution memory for the time of reinforcement is built up
with many cycles of training. my, indicates a random sample
from this distribution memory.

The comparison rule of SET (Gibbon et al., 1984) is

<b ey

my — m(t)
Mm

where b is a threshold. Let E denote the event that the inequality
in Eq. (1) is satisfied and E denote the event that it is not (i.e.,
|mm — m(t)|/mm > b). Then the probability of response, P[R(?)],
is

P[R(1)] = P[R(|ETP(E) + P[R(1)|E]P(E) (@)

The original account of SET (Gibbon et al., 1984) assumed
that the probability of response was 1 when Eq. (1) was true
(i.e., P[R(H)|E]=1) and that the probability of response was 0
when Eq. (1) was false (i.e., P[R(¥)|E] = 0). As such, it can-
not account for the low, steady rate of responding observed in
the latter portion of peak cycles. In this analysis, the theory was
slightly modified: When Eq. (1) was not satisfied, responses still
occurred with a low probability Pg, (i.e., P[R(#)|E] = Pg,).
Because P(E) + P(E) = 1, Eq. (2) can be rewritten as

P[R()] = (1 — Pry) P(E) + Pg, 3
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Table 1
Parameters used by the three theories
Equation® Peak 60 Peak 120
SET
A Mean pacemaker rate (A1) 5.000  5.000
Va Coefficient of variation of (A2) .020 .020
pacemaker rate
To Mean switch delay (A1) 0 0
00 Standard deviation of switch (A2) 7.316 8.616
delay
Kn  Mean memory multiplier (A3) 1.000 .950
Yk Coefficient of variation of (A4) 312 123
memory multiplier
B Mean threshold (AS) 158 345
Vb Coefficient of variation of (A6) 713 815
threshold
A Scale parameter (A8) 154.616 52.649
Pg, Probability of response at low (AB) .030 .041
state
w*  Proportion of variance accounted .996 992
for
LeT
A Spreading rate of activation of (A9) .288 .106
behavioral states
y Learning parameter (A11) .035 .017
A Scale parameter (A12) 119.75 94.734
Ry Operant level (A12) 3.858 3.072
?  Proportion of variance accounted 991 986
for
Packet theory
K Mean memory coefficient (A13) 1.100 .960
Yk Coefficient of variation of (A13) 11 .083
memory coefficient
D Mean threshold percentage (A15) 31.590 41.634
Vb Coefficient of variation of (A15) .884 .565
threshold
A Scale parameter (A18) 64.964 37.277
Ry Operant level (A18) 4.946 5.557
?  Proportion of variance accounted 998 997
for

2 The equations in Appendix A.

In this analysis, Pg, was viewed as a parameter. To fit the
response gradient, a scale factor A with units s~! was required
to translate the probability of response P[R(#)] into response rate
R():

R(t) = AP[R(1)] 4

This modified SET fit the mean response rate gradient very
well (w? =.996 for Peak 60 s and w? =.992 for Peak 120's). The
residuals between the mean response rate and the prediction of
SET were small but slightly systematic (top right panel of Fig. 1).
The mean w? of individual fits was .960 (S.D.=.019) for Peak
60s and .937 (S.D.=.032) for Peak 120s.

3.2. Learning-to-time theory (LeT)

Machado’s (1997) LeT consists of three components: a series
of behavioral states, the operant response, and the association
between the behavioral states and the operant response. At time 7,
the activation of behavioral state j is X(z,j), and the strength of its

association with the operant response is W(z,j). The rate of oper-
ant response R(#) depends on the activation and the associative
strength of all behavioral states:

R(t) =AY _X(t, hW(, j) 5)

j=1

where A is the scale parameter with units s~!. Because this
response rule also cannot account for responses during the low
state of responding, it was modified by the inclusion of an oper-
ant level Ry:

R(t) =AY _X(t, hW(t, j)+ Ro (6)
j=1

Because the peak of prediction of LeT was consistently later than
the time of reinforcement when probability of reinforcement is
high (see Machado, 1997, for details), the representation for the
time of reinforcement (or target time) was set earlier than the
actual target time. For example, to fit the mean data, the target
time was 57 s for Peak 60 s and 102 s for Peak 120s.

The fit of LeT to the mean response rate gradient was
w?=.991 for Peak 60 s and w? =.986 for Peak 120s. The resid-
uals between the mean response rate and the prediction of LeT
oscillated around zero, and the oscillation frequency on Peak
60 s was approximately twice the frequency on Peak 120 s (right
middle panel of Fig. 1). The mean w? of individual fits was .940
(S.D.=.027) for Peak 60 s and.935 (S.D.=.035) for Peak 120s.

3.3. Packet theory

In Packet theory, the information about when reinforcers are
delivered is stored in a vector memory denoted by m(f), which
is compared with a threshold b to generate a variable called
response state h(z):

hr) = 1 if|m()] <b 7
0= 0 if|m@)|>b @

The expected value of A(r) (expressed as E[h(7)], see Eq. (A16)
in Appendix A) was calculated based on the combination of two
scalar sources: the remembered time of reinforcement and the
threshold. Steady-state responding was determined by E[A(f)]:

R(r) = AE[h(D)] + Ro ®)

where Ry is the operant level, which is similar to the operant
level that has been added to LeT, and A is the scale parameter
with units s~ 1.

Results showed that Packet theory fit the mean data accu-
rately: w? =.998 for Peak 60 s and w? =.997 for Peak 120s. The
residuals between the mean response rate and the prediction of
Packet theory were small (right bottom panel of Fig. 1). The
mean w? of individual fits was .976 (S.D.=.013) for Peak 60's
and .950 (S.D. =.035) for Peak 120s.

The goodness of fit of the three theories was compared by
entering w” values from fits to individual data into a repeated-
measures ANOVA, followed by pairwise #-tests. For Peak 60 s,
the goodness of fit of the three theories were significantly differ-
ent (F(2,22)=19.958, p <.001), the fit of Packet theory was higher
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than LeT (¢(11)=5.399, p<.001) and SET (11 =3.011, p <.05),
and the fit of SET was higher than LeT (¢(11)=4.035, p<.01).
For Peak 120 s, the difference between the goodness of fit of the
three theories was not significant (F(222)=1.402, p=.267), the
fit of Packet theory was higher than LeT (#11)=3.316, p<.01)
but not different from SET (#(11)=1.240, p=.241), and the fits
of SET and LeT were similar (¢(11)=.140, p=.892).

4. Discussion

A basis for comparison of the three theories (SET, LeT, and
Packet theory) is required to determine which provided the best
account of the data. Although a number of criteria have been
proposed to be important for theory comparison, three are widely
accepted and frequently used: goodness of fit, complexity and
generality.

4.1. Goodness of fit

All three theories described the data very well, accounting for
approximately 99 percent of the variance in the mean response
rate gradients (shown in the left panels of Fig. 1), and over 90%
of the variance in the individual response rate gradients.

The residuals (shown in the right panels of Fig. 1) refer to
the differences between the observed and predicted data. Ran-
dom residuals indicate unexplained variability that may be due
to random fluctuations or measurement errors; systematic resid-
uals indicate unexplained variability and suggest limitations of
the theory. The residuals from a good theory should be small
and randomly distributed about zero. The observed residuals
from the three timing theories were small but systematic. This
suggests modifications of the theories that should be considered.

The systematic residuals in the latter portion of peak cycles
with all three theories may have been due to the assumption that
a constant operant level accounted for the response rate during
the low state of responding that, in fact, increased slowly with
time. The oscillating residuals of LeT may have been due to the
predictions of this theory that produced gradients more skewed
than the data.

4.2. Complexity

In addition to goodness of fit, the complexity of a theory
is an important basis for theory evaluation. An unnecessarily
complex theory will overfit the data and increase the variability
in parameter estimation (Myung, 2000).

In this analysis, SET used 10 parameters, LeT used 4 and
Packet theory used 6 (Table 1). If all parameters were estimated
by free searching, theories with many parameters would prob-
ably obtain variable parameter estimates (discussed later). To
reduce the risk of overfitting data, some parameters were fixed
with empirical values. For example, the operant level (Rg) in
LeT and (A Pg,) in SET were represented by the response rate
at time #=0; the mean pacemaker rate (A) in SET was 5 and
the coefficient of variation (y,) was .02, and the mean switch
delay (7p) was 0; the mean memory multiplier (Ky,) in SET and
the mean memory coefficient (K) in Packet theory were 1 or

Table 2
Comparison of complexity

SET LeT Packet theory
(a) w?s in cross-validation
Peak 60s
Calibration 991 987 996
Validation 972 .969 951
Difference=C -V .019 .018 .045
Peak 120s
Calibration 991 .986 991
Validation .899 .895 .860
Difference=C —V .092 .091 131
A B Vb Yk To o0
(b) Coefficient of variation in parameter estimation
SET
Peak 60's 530 406 499 2172 120 107
Peak 120s 304 230 444 460 3.150 216
A A y
(b) Coefficient of variation in parameter estimation
LeT
Peak 60's 333 120 .509
Peak 120s 510 204 712
A @ Vb Vi Ro
(b) Coefficient of variation in parameter estimation
Packet theory
Peak 60's .166 122 215 257 292
Peak 120's 332 .500 .679 418 456

close to 1. (These parameters are defined in Appendix A.) The
remaining parameters, estimated with free searching, are listed
in Table 2b. SET, LeT and Packet theory used 6, 3, and 5 free
parameters, respectively.

Cross-validation was used to measure overfitting due to
theory complexity. The general approach was as follows: (a)
a data set was divided into a calibration sample (e.g., the data
from odd sessions) and a validation sample (e.g., the data from
even sessions), (b) the values of the parameters that minimized
the sum of squared deviations between the calibration sample
and the predictions of the theory were determined, and then (c)
these parameters were used to fit the validation sample. The
decrement of goodness of fit of validation sample relative to the
calibration sample is a measure of overfitting. Table 2a provides
the mean w?s across individual rats based on the calibration and
validation samples and the difference between them. It shows
that the mean w?s on validation did not decline much for SET
or LeT. But Packet theory had the largest decrement on Peak
60s (4.3%) and Peak 120s (13.2%), which suggests it had a
tendency to overfit the data.

Complexity also affects the variability in parameter esti-
mation. An overly complex theory can successfully fit one
data set regardless of errors in the parameters. When such a
theory is used to fit another sample, the parameter values will
change dramatically to get the excellent fit, but those unstable
parameter values carry very little information. To measure
the variability of parameter estimation, the whole data set in
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this analysis was divided into 10 subsets. (Subset j contains
the (10i+j)th sessions; i=0, 1, 2,...,9; j=1, 2,...,10.) and
the mean response rate gradient of each set was fitted by the
three theories. Table 2b shows the coefficient of variation (the
standard deviation divided by the mean, or CV) of each free
parameter across 10 samples. It shows that most parameters of
LeT and Packet theory are very stable. But some parameters of
SET, such as yj and Ty, are more variable.

4.3. Generality

The generality of a theory should be composed of its input
generality and output generality. Input generality refers to the
range of procedures the theory can explain, and the output gen-
erality refers to the range of measures the theory can fit. The goal
of all theories is to account for a wide range of procedures and
be suitable for a wide range of dependent measures. Because it
is not the major issue of this analysis, the generality of the three
theories is not further discussed.

The comparison of three timing theories reveals that each of
them has particular strengths and weaknesses. SET generated
excellent fits, but was overly complex. LeT was parsimonious
and its fits were good, but there were systematic errors. Packet
theory combined some good features of SET and LeT, which
allowed it to fit data well without using many parameters.
Although this analysis described the applications of the three
theories to only a single dependent variable (the response rate
gradient) of a single procedure (the peak procedure), at asymp-
tote, the successes of these theories suggest that much progress
has been made towards the development of an accurate, general,
and parsimonious account of timing behavior.
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Appendix A. Explicit solutions of three theories

A peak procedure is a mixture of food cycles with a probabil-
ity of p and nonfood cycles with a probability of 1 — p. On food
cycles, the first response after a fixed interval T since the onset
of a stimulus (e.g., houselight) is reinforced with the delivery of
food for a fixed duration d, and it terminates the stimulus. On
nonfood cycles, the stimulus goes off 75 after the stimulus onset
without food. The short delay between the food availability and
its delivery following a response on food cycles is not under the
consideration of this analysis.

A.l. SET
In SET, the probability of response P[R(?)] is largely deter-

mined by the probability of |my — m(f)|/my <b, denoted by
P(E).

The number of pulses in the accumulator, m(f)=At, is a
Poisson distribution. The pacemaker rate A is a normally dis-
tributed random variable with a mean A and standard deviation,
o, =y, A, where y, is the coefficient of variation of A. The
switch is assumed to have some latency (1) to close after the
stimulus turns on and some latency (#2) to open after the stimulus
turns off. The difference between the two latencies, ty = 1| — 2, 1S
normally distributed with a mean 7y and standard deviation oy.
The effective switch closure time, 7, is the difference between
the actual time ¢ and #y: T=7— fy. Then, the expected value of
m(t) is

E[m(1)] = A(t — To) (AD)

and the variance is

Var[m(1)] = (1 + y3)(Aoo)* + At — To) + v A*(t — To)?
(A2)

The number of pulses at the time of reinforcement (t=T1) is mr.
It is stored in memory as my,, multiplied by a variable ky, (i.e.,
Mm = kmmt). km 1S @ normally distributed random variable with
a mean Ky, and standard deviation oy, = YK, where yy is the
coefficient of variation of k. Then, the expected value of my, is

E(mm) = KnA(T1 — To) (A3)

and the variance is

Var(mm) = KZ[(1 + y2)(1 4+ y)(A0c0)* + (1 + yP) A(T) — Tp)
+((1 + yH(1 + P — DAXT — Tp)*] (A4)

The threshold b is a normally distributed random variable with a
mean B and standard deviation y,B, where y}, is the coefficient
of variation of b.

The three variance sources, m(t), my,, and b, can be combined.
Define x;(f) = m(f) — [1+(—1)'b]my, i = 1, 2. The expected value
of x;(1) is

Ela()] = At — To) — [1 + (1Y BIKn ATy — To) (A5
and the variance is
Varlxi()] = o2 + 0 (VpB* +[1 + (=1 B)

+HKm AT — To))y; B (A6)

where o3 = Var[m(t)] and o2, = Var(mm) (Egs. (A2) and
(A4)).

Define Z; = —E[x;(t)]/+/Var[x;(1)],i=1,2.Z; and Z, are the
corresponding z values of zero on the distribution of x; and xp,
respectively. Because the distribution of x;(f) is approximately
normal (see Appendix in Gibbon et al., 1984, for details), the
distribution of Z; is approximately a standard normal distribution
with a mean of zero and standard deviation of one. Then, the
probability of |my, — m(f)|/my <bis

P(E) = &(Z2) — (Z1) (A7)
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where @ is the distribution function of standard normal distri-
bution:

D(x) = J_/ exp< 22>du

The probability of response P[R(?)] is calculated by P[R(?)] =
P(E)P[R()|E]1+ P(E)P[R(t)|E], where P[R(¢)|E] refers to
the probability of response given |my — m(t)|/my<b, and
P[R()|E] refers to the probability of response given
|mm — m(?)|/mm > b. Because P[R(1)|E]=1, P[R(t)|E] = Pg,,
and P(E)+ P(E) =1, the probability of response is rewrit-
ten as P[R(t)] = (1 — PRO)P(E) + Pg,, which is translated to
response rate by a scale parameter A:

R(1) = A[(1 — Pry) P(E) + Pg,] (A8)
A2. LeT
LeT has three components: behavioral states, operant

response, and the association between the behavioral states and
the operant response.
The activation of behavioral state j at time 7 is

. exp(—An(Ar)
X, j) = - (A9)
where X is the parameter that refers to the speed of the activation
spreading across the states.

The associative strength at the beginning of (n + 1)th cycle is

Wi 100, ) = pWu(T1 + d, j) + (1 — p)Wu(T2, j)

food cycle

(A10)

nonfood cycle

W,(T+d,j) is obtained through the reinforcement dynamic pro-
cess (Eq. (6) in Machado, 1997) witht =T +d (i.e., the previous
cycle is food cycle), and W, (7>.j) is obtained through the no-
reinforcement dynamic process (Eq. (5) in Machado, 1997) with
t=T, (i.e., the previous cycle is nonfood cycle). Both of them can
be written as a function of W,,(0,7). Then, Eq. (A10) becomes a
linear difference equation: the left-hand side is W,,4+1(0,j) and the
right-hand side only contains W, (0,j). The solution of W,(0,j)
can be calculated and its steady-state distribution, denoted by
W(j), is
X(Th, J)

X(T1, )+ o' X(x, jdr
+y(1 = p/p) Jy* X(x, j)de

where y =«/Bd. « and S are the learning parameters during rein-

forcement and no-reinforcement, respectively. LeT assumes that

W,(t,j) at steady state does not change appreciably with time on a

single cycle, such that W, (¢,/) =~ W, (0,j). Then, W(j) in Eq. (A11)

is an approximation of the steady-state distribution of W,,(z,j).
The modified response rule is

W(j) ~

(Al1)

R(t)=AY_X(t, h)W(j) + Ro
J=1

(A12)

with a scale parameter A and operant level Ry.

A.3. Packet theory

The explicit solution of Packet theory presented in this
Appendix is a condensed version, with a full account to be
provided elsewhere (Yi, 2006). At steady state, the storage
mechanism contains the remembered time of reinforcement Tl,
reference memory m(?) and strength memory w(z).

Ty is a normally distributed random variable with a mean
KT; (K, the mean of memory coefficient and 77 is the time of
reinforcement) and standard deviation y KT (yy, the coefficient
of variation of memory coefficient). Then the density function
of T1 is

80) = ————exp (‘” Ah )2> (A13)
VK Tiv27 2V (KTh)?
The steady-state reference memory m(f) is
my=Ti—1 O<t<T), mit=my >T)
(Al14)

where my is the initial memory. The steady-state strength mem-
ory w(?) is approximately constant.The threshold b is normally
distributed with a mean B and standard deviation y,B, where y;,
is the coefficient of variation of b. Then the density function of
f(x) =

V.

bis
1 —(x — B)?
ex
» BN 21 P 2)/532
where B is the ¢th percentile of m(f) (for m(¢) > 0). Because
m(?) is a function of T} (Eq. (A14)), B is also a function of 71,
expressed as B(Tl).

The response state /(f) is based on the comparison of |m(7)|
with b: when |m(7)]| is less than b, the high response state h(r)
is true (i.e., h(f)=1), otherwise, it is false (i.e., i(f)=0). The
convolution of 77 and b is calculated to obtain the expected
value of h(t):

h(t dx——

Elhnl = 2nykbeT1/ / L xB(y)
X exp —(x — B(y))* exp —(y — KT1)*
2y2B2(y) 2yH(KT))?

(A16)
The packet initiation rate r(f) depends on the response state
h(?), the strength memory w(¢), and the operant level of packet
initiation rp:

(A15)

r(t) = ah(Hyw(t) +ro (A17)

where a is a scale parameter. To translate packet initiation rate to
response rate, the number of responses per packet u is required:
R(t)=ur(t). Because the mean of u and w(¢) are constant, or

approximately constant, the expected value of response rate is
E[R(1)] = AE[h(D)] + Ro (A18)

where A = auw(t), and R is the operant level of response rate.
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Appendix B. MatLab code

o

$These functions for applications of theories to a peak procedure
Scalar Expectancy Theory: setpeak

Learning-to-time Theory: letpeak

Packet Theory: packetpeak

e oe
oe oe

o\®
o\@

o
o

Scalar Expectancy Theory

function R = setpeak(t,T,parameters)

Inputs

t = a temporal vector (integers)

T = time of reinforcement (an integer)

parameters = a vector that contains 10 parameters
Cutputs

R = model prediction; a vector with the same size of t
e.g. for peak 120

t = 1:260; bin size is 1 s

T = 120;

parameters = [5 0.02 0 8.676 0.95 0.123 0.345 0.8146 52.6489 0.041];

O o° O o o o o° o o
o o o of o o® o\® o\ o

o\
c\@

000000000
565000000

o
o\®

$%%%%%%%%%% parameters
Lammda = parameters (1) ; mean pacemaker rate
gammaLammda = parameters(2); % cv. of pacemaker rate
TO = parameters(3); % mean switch latency

Q

Sigmal0 = parameters(4); % SD. of switch latency
Km = parameters(5); % mean memory multiplier
gammaKm = parameters(6); % cv. of memory multiplier

B = parameters(7); % mean threshold
(

°
%
%

)

gammaB = parameters(8); % cv. of threshold
A = parameters(9); % scale parameter
Pr0 = parameters(10); % Probability of response at low state

$%%3%%5%%%%%% model %%%%%%%5%%%%%%

%$%% accumulator %%%

D=+t - TO; %% effectual switch closure duration

Dt = T - TO0; %% effectual reinforcement time

E Mt = Lammda*D; %% mean of Mt in Eg.Al

Var Mt = (l+gammaLammda’™2).* (Lammda*Sigma0).”*2+Lammda*D+
gammaLammda®™2.* (Lammda*D) . "2; %% variance of Mt in Eq.A2
$%%% memory %%%

E Mm = Km*Lammda*Dt; %% mean of Mm in Eg.A3

Var Mm = Kn™2.* [(l+gammaLammda”™2) . * (l+gammaKm”*2) . * (Lammda*Sigma0) .2 +
(1+gammaKm™2) . *Lammda . *Dt+ ( (1+gammaLammda”™2) . * (1+gammaKm”"2) -
1) .* (Lammda*Dt) ."2]; %% variance of Mm in Eqg.RA4

%$%% decision %%%

%% combination of Mt, Mm and b
Sigmab = B*gammaB; %% SD. of b
Wl = 1-B;
W2 = 1+4B;

E x1 = E Mt - E Mn*Wl; %% Eq.AS
E x2 = E_ Mt - E_Mm*W2; %% Eq.A5
Var x1 = Var Mt+Var Mm#* (Sigmab®2 + W1"2)+(E_Mm*2).* (Sigmab."2) ;%%Eq.A6
Var x2 = Var Mt+Var Mm* (Sigmab”®2 + W2"2)+(E Mm”*2).*(Sigmab."2) ;$%Eq.26

Z1 -E_x1./sqgrt(Var_x1);
Z2 = -E_x2./sqgrt(Var_x2);

3

%%% response %%%
Pr = normcdf (Z2) -normcdf (Z1) ; %% Eqg.A7
R = A*((1-Pr0)*Pr+Pr0); %% response rate in Eqg.AS8
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%% Learning-to-time Theory

function R = letpeak(t,T,parameters)

%% Inputs

%% t = a temporal vector (integers)

%% T = time of reinforcement (an integer)

%% parameters = a vector that contains 4 parameters
%% Outputs

%% R = model prediction; a vector with the same size of t
%% e.g. for peak 120
%$% t = 1:260; bin size is 1 s

%% T = 102; % see results
%% parameters = [0.106 0.017 94.734 3.072];

$%%%%%%%%%%% parameters $%%%%%%%%%
Lammda = parameters(l); % spreading rate of activation
Gamma = parameters(2); % learning rate

A = parameters(3); % scale parameter

RO = parameters(4); % operant level

%%%% procedure F%%%%%%%%%%
the length of nonfood c
the probability of food

)
TT

ycle

= 1:80
% activation of behavioral states, X(t,j), in Eg.A9

jx = jx*j; %% j!, j-factorial

X(t,j) = exp(-Lammda*t) .* (Lammda*t)."j./Jx;

Xt = exp(-Lammda*T) .* (Lammda*T) ."j./jx; %% when t=T, X(T,J)

%% integration 1 in Eg.All: if the last cycle is food cycle
Xrl = 0;
for i = 0:T
Xs= exp(-Lammda*i) .* (Lammda*i) ."j./jx;
Xrl = Xrl + Xs;
end
Xrl = 1*Xrl;

%% integration 2 in Eg.All: if the last cycle is nonfood cycle
Xr2 = 0;
for i = 0:T2
Xs= exp(-Lammda*i) .* (Lammda*i) ."™j./jx;
Xr2 = Xr2 + Xs;
end
Xr2 = 1*Xr2;

%% associative strength in Eg.All
W = Xt/ (Xt + Gamma*Xrl +Gamma* (1-p)/p*Xr2);
r(t,j) = W*X(t,j);

end

%% response rate in Eg.Al2
R = A*sum(r,2)+R0O;
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%% Packet Theory

function R =
Inputs

t = a temporal vector (integers)

T = time of reinforcement (an integer)
parameters =
Outputs

R

e.g.

packetpeak (t, T, parameters)

Y
o0

oP o o\
oC o o\

o0
]

o o\@ o

oe o

for peak 120

t = 1:260; if bin size is 1 s
T = 120;
parameters =

o® o\® o@
o® o o

o\®
o
op
o\®
o0
o
o

%%%%%% parameters %%%%%%%%%
K = parameters(l); %
gammaK = parameters(2); %
Phi =

gammaB = parameters(4); % cv. of threshold
A = parameters(5); % scale parameter

RO = parameters(6); % operant level

Ccv.

000000000000 0000000000000
T0600000C00000 procedure 0060000006000 0

mean memory coefficient
of memory coefficient
parameters (3); % mean threshold percentage

a vector that contains 6 parameters

model prediction; a vector with the same size of t

[0.96 0.083 41.634 0.565 37.277 5.557];

T2 = 360; %% the length of nonfood cycle
$5555%55%%%%% model $%%5%5%35%5%%5%%%
ht(t) = 0; %% initial response state
For® 4. = 1aT2
$% distribution function of T"hat in Eg.Al3
T density =
exp (- (1-K*T) "2/ (2* (gammaK*K*T) *2) ) / (sqrt (2*pi) *gammaK*K*T) ;
%% reference memory in Eg.Al4
Mt = i-t;
%% the mean threshold
B = prctile(Mt (find (Mt>=0)),Phi);
%% distribution function of b in Eqg.Al5
B density = 1 - normcdf (abs(Mt),B,B*gammaB+eps) ;
%% response state, h(t), in Eqg.Alsé
Ph = B density*T density;
ht = ht + Ph;
end

%% response rate in Eg.AlS8
R = [A*ht + RO]';
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