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bstract

This article describes applications of scalar expectancy theory (SET), learning-to-time theory (LeT), and Packet theory to data from a peak

rocedure. Twelve rats were trained in a multiple cued-interval procedure with two fixed intervals (60 and 120 s) signaled by houselight and white
oise. Twenty-five percent of the cycles were nonfood cycles, which were 360 s long and had no reinforcement. Mean and individual response
ates on nonfood cycles were fitted with explicit solutions of SET, LeT and Packet theory. Applications of the three timing theories were compared
n terms of goodness of fit and complexity.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Two mathematical theories of timing behavior, scalar
xpectancy theory (SET; Gibbon et al., 1984) and learning-to-
ime theory (LeT; Machado, 1997) use different approaches to
xplain the behavior of animals on timing procedures. A more
ecent account, Packet theory (Kirkpatrick, 2002) integrates the
wo approaches with the inclusion of multiple variance sources
as in SET) and vector memories (as in LeT). Although these the-
ries were constructed in different ways, each of them includes
hree common components: a representation of physical time, a
torage mechanism that contains information about when rein-
orcers are delivered, and a response rule to generate predictions
Church, 1999).

SET (Gibbon et al., 1984) is a cognitive account in terms of
erception, memory and decision. The number of pulses gener-
ted by a pacemaker represents physical time since a time signal,
hich is recorded in an accumulator. The number of pulses at

he time of reinforcement, multiplied by a memory coefficient,
s stored in a distribution memory. A new number from the accu-

ulator will be compared to a remembered value and, when they
re “close enough,” operant responses occur. This theory empha-

izes multiple variance sources and that variability in timing is
roportional to the mean of the interval being timed, which is
nown as the scalar property of timing.

∗ Tel.: +1 401 863 3979; fax: +1 401 863 1300.
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An alternative theory, LeT (Machado, 1997), derived orig-
nally from BeT (Killeen and Fetterman, 1988), assumes that
he temporal regulation of operant behavior is derived from a
equence of behavioral states that is the representation of phys-
cal time. Information about when reinforcers are delivered is
ncoded by an associative component. Operant response rate
epends on both activation of behavioral states and their asso-
iative strength. One major success of LeT is that it generates
ccurate predictions for acquisition of timing behavior, and these
redictions converge to an appropriate description of steady-
tate behavior (Machado, 1997; Machado and Cevik, 1998).

Packet theory was first proposed by Kirkpatrick and Church
n 2002 and 2003, and has been modified somewhat since then
Guilhardi et al., 2005, in press). The name comes from the
bservation of bouts of responses which result from packets of
esponses issued by the theory (Kirkpatrick and Church, 2003).

current version of Packet theory (Guilhardi et al., in press) has
storage mechanism that consists of two separate memories,

attern memory and strength memory, dealing with response
attern and response rate, respectively. The two memories are
ombined with an operant level to initiate packets. Packet the-
ry combines SET’s multiple variance sources and LeT’s vector
emories, which allows this theory to account not only for scalar

roperties of steady-state responding, but also for acquisition
nd extinction (Guilhardi et al., in press).
The peak procedure is commonly used to study temporal
eneralization (Catania, 1970; Roberts, 1981). In a simple peak
rocedure, fixed-interval (FI) cycles and nonfood cycles are pre-
ented in a random order. A nonfood cycle is much longer than

mailto:Linlin_Yi@Brown.edu
dx.doi.org/10.1016/j.beproc.2007.01.010
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n FI cycle and has no reinforcement. The data analyses usually
ocus on the behavior on nonfood cycles. Studies show that data
rom peak procedures can be well fitted by the explicit solu-
ions of SET (e.g., Gibbon et al., 1984) and LeT (e.g., Machado,
997). The explicit solution of Packet theory was recently devel-
ped (Yi, 2006) and has not previously been applied to the
eak procedure. In the present analysis, steady-state data from
peak procedure with multiple cued intervals were fitted with

he explicit solutions of the three theories.

. Materials and methods

.1. Animals

Twelve experimentally naı̈ve male Sprague–Dawley rats
Taconic Laboratories, Germantown, NY) were used. Each ani-
al received 5 g of Dustless Precision Pellets (Bio-Serv, Rodent
rain-Base Formula, Frenchtown, NJ) that were delivered as

einforcers during the experiment and an additional 15 g of For-
uLab 5008 food in its home cage every day after its testing

ession.

.2. Apparatus

Each of the 12 chambers (25 cm × 30 cm × 30 cm) was
quipped with a pellet dispenser, a left lever, a right lever, and
water bottle. The pellet dispenser (Model ENV-203) deliv-

red 45-mg pellets into the food cup that was located midway
etween the left lever and the right lever. The two levers (Model
NV-112) were located 12 cm apart, placed 7 cm above the floor
rid, and measured 4.5 cm wide, 1 mm thick, 2 cm expanded
nto the box, and required a force of 18 g to operate. On the wall
pposite to the levers and the food cup, one water bottle was
ounted outside of the box with a tube that protruded through
hole in the wall. An audio amplifier (Model ANL-926) was

ocated outside of the wall with the water bottle, which was
sed to produce 70-dB white noise. A houselight (Model ENV-
27M) was located near the ceiling of the box and was used
o produce 200 Lux light. Each chamber was located inside a
entilated box (74 cm × 38 cm × 60 cm) that was used for noise
ttenuation. Four Gateway Pentium®III/500 computers running
ed-PC Medstate Notation Version 2.0, controlled experimen-

al events and recorded the time at which each event and response
ccurred with 2-ms precision.

.3. Procedure

Phase 1. Two fixed intervals (60 and 120 s) were signaled
y two stimuli, white noise and houselight, counterbalanced
cross rats. Only one lever, either the left or right lever, was
sed for responding (the assignment of levers was counterbal-
nced across rats). A cycle started with the onset of the stimulus
or stimuli). If the two stimuli were presented individually, the

ycle type was referred to as FI 60 s or FI 120 s, in which the
rst press 60 s after the onset of the short stimulus, or the first
ress 120 s after the onset of the long stimulus, was reinforced
ith a food pellet and terminated the stimulus. If the two stim-
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li were presented together, the cycle type was referred to as
he compound condition, in which the first press 60 s after the
nset of the short stimulus was reinforced with a food pellet and
erminated the short stimulus, and the first press 120 s after the
nset of the long stimulus was reinforced with one more pellet
nd terminated the long stimulus. After 20 s without stimuli, a
ew cycle started. A session ended with 14 cycles of FI 60 s,
4 cycles of FI 120 s, and 28 cycles of the compound condition.
he three cycle types were mixed and presented in a random
rder. Rats were trained for 100 sessions (Session 1–100).

Phase 2. After Phase 1 the same rats were exposed to the
eak procedure. Twenty-five percent of the cycles were non-
ood cycles. The remaining were food cycles as the same as in
hase 1. Food cycles and nonfood cycles were randomly pre-
ented. On the nonfood cycles of FI 60 s and 120 s (i.e., Peak
0 and 120 s), the stimulus lasted 360 s and no food was deliv-
red. On the nonfood cycles of the compound condition, the two
timuli terminated simultaneously 360 s after the cycle start and
o food was delivered for either of them. Rats were trained for
nother 100 sessions (Session 101–200). The compound condi-
ion in Phase 1 and 2 was designed for simultaneous timing of

ultiple intervals and the data were not included in the present
nalysis.

.4. Data analyses

The data from all nonfood cycles of FI 60 and 120 s (i.e., Peak
0 and 120 s) were used for the analyses. Mean and individ-
al response rate were fitted with the explicit solutions of SET,
eT and Packet theory (see Appendix A for details). Parame-

ers were estimated by the “NLINFIT” function in MatLab 7.0
R14) (MathWorks, Natick, MA) with the Gaussian–Newton
lgorithm.

. Results

The mean response rate on nonfood cycles as a function of
ime since stimulus onset is shown in the left panels of Fig. 1
filled and open circles). The response rate increased gradually
hen the stimulus began and, after a maximum that was close

o the time of reinforcement, the gradient declined gradually in
slightly asymmetric fashion. After the response rate declined,

he rats continued responding with a low steady rate. The mean
elative response rate (normalized by maximum) as a function
f relative time (normalized by peak time) on Peak 60 and 120 s
pproximately superposed (not shown). A similar response pat-
ern has been observed in many peak studies (e.g., Roberts, 1981;
oberts et al., 1989; Church et al., 1994). This suggested that

he compound condition did not have a substantial effect on the
esponding during Peak 60 and 120 s cycles.

The solid lines near the filled and empty circles in the left
anels of Fig. 1 are the fits of the three theories to the mean data.
able 1 provides the corresponding parameters and the goodness

f fits as measured by ω2 (the proportion of variance explained).
he residuals, defined as the difference between the mean data
nd the predicted values, are shown as a function of time since
timulus onset in the right panels of Fig. 1. The residuals from
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ig. 1. Mean response rate on nonfood cycles on Peak 60 s (filled circles on le
ines across circles on left panels) and the corresponding residuals (right panels

ts of the models to the individual data were very similar to the
esiduals from their fits to the mean (not shown).

.1. Scalar expectancy theory (SET)

SET (Gibbon et al., 1984) assumes that a pacemaker gener-
tes pulses that are stored in an accumulator. The accumulated
umber of pulses since a time signal, denoted by m(t), is the rep-
esentation of current elapsed time. When reinforcement occurs,
he accumulated number is transferred into reference memory.

distribution memory for the time of reinforcement is built up
ith many cycles of training. mm indicates a random sample

rom this distribution memory.

The comparison rule of SET (Gibbon et al., 1984) is

mm − m(t)

mm

∣∣∣∣ < b (1)

o
B

P

els) and 120 s (open circles on left panels), predictions of three theories (solid

here b is a threshold. Let E denote the event that the inequality
n Eq. (1) is satisfied and Ē denote the event that it is not (i.e.,
mm − m(t)|/mm ≥ b). Then the probability of response, P[R(t)],
s

[R(t)] = P[R(t)|E]P(E) + P[R(t)|Ē]P(Ē) (2)

he original account of SET (Gibbon et al., 1984) assumed
hat the probability of response was 1 when Eq. (1) was true
i.e., P[R(t)|E] = 1) and that the probability of response was 0
hen Eq. (1) was false (i.e., P[R(t)|Ē] = 0). As such, it can-
ot account for the low, steady rate of responding observed in
he latter portion of peak cycles. In this analysis, the theory was
lightly modified: When Eq. (1) was not satisfied, responses still

ccurred with a low probability PR0 (i.e., P[R(t)|Ē] = PR0 ).
ecause P(E) + P(Ē) = 1, Eq. (2) can be rewritten as

[R(t)] = (1 − PR0 )P(E) + PR0 (3)
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Table 1
Parameters used by the three theories

Equationa Peak 60 Peak 120

SET
Λ Mean pacemaker rate (A1) 5.000 5.000
γλ Coefficient of variation of

pacemaker rate
(A2) .020 .020

T0 Mean switch delay (A1) 0 0
σ0 Standard deviation of switch

delay
(A2) 7.316 8.616

Km Mean memory multiplier (A3) 1.000 .950
γk Coefficient of variation of

memory multiplier
(A4) .312 .123

B Mean threshold (A5) .158 .345
γb Coefficient of variation of

threshold
(A6) .713 .815

A Scale parameter (A8) 154.616 52.649
PR0 Probability of response at low

state
(A8) .030 .041

ω2 Proportion of variance accounted
for

.996 .992

LeT
λ Spreading rate of activation of

behavioral states
(A9) .288 .106

γ Learning parameter (A11) .035 .017
A Scale parameter (A12) 119.75 94.734
R0 Operant level (A12) 3.858 3.072
ω2 Proportion of variance accounted

for
.991 .986

Packet theory
K Mean memory coefficient (A13) 1.100 .960
γk Coefficient of variation of

memory coefficient
(A13) .111 .083

Φ Mean threshold percentage (A15) 31.590 41.634
γb Coefficient of variation of

threshold
(A15) .884 .565

A Scale parameter (A18) 64.964 37.277
R0 Operant level (A18) 4.946 5.557
ω2 Proportion of variance accounted .998 .997
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a The equations in Appendix A.

n this analysis, PR0 was viewed as a parameter. To fit the
esponse gradient, a scale factor A with units s−1 was required
o translate the probability of response P[R(t)] into response rate
(t):

(t) = AP[R(t)] (4)

This modified SET fit the mean response rate gradient very
ell (ω2 = .996 for Peak 60 s and ω2 = .992 for Peak 120 s). The

esiduals between the mean response rate and the prediction of
ET were small but slightly systematic (top right panel of Fig. 1).
he mean ω2 of individual fits was .960 (S.D. = .019) for Peak
0 s and .937 (S.D. = .032) for Peak 120 s.

.2. Learning-to-time theory (LeT)
Machado’s (1997) LeT consists of three components: a series
f behavioral states, the operant response, and the association
etween the behavioral states and the operant response. At time t,
he activation of behavioral state j is X(t,j), and the strength of its

e
m
t
e

s 75 (2007) 188–198 191

ssociation with the operant response is W(t,j). The rate of oper-
nt response R(t) depends on the activation and the associative
trength of all behavioral states:

(t) = A
∑
j=1

X(t, j)W(t, j) (5)

here A is the scale parameter with units s−1. Because this
esponse rule also cannot account for responses during the low
tate of responding, it was modified by the inclusion of an oper-
nt level R0:

(t) = A
∑
j=1

X(t, j)W(t, j) + R0 (6)

ecause the peak of prediction of LeT was consistently later than
he time of reinforcement when probability of reinforcement is
igh (see Machado, 1997, for details), the representation for the
ime of reinforcement (or target time) was set earlier than the
ctual target time. For example, to fit the mean data, the target
ime was 57 s for Peak 60 s and 102 s for Peak 120 s.

The fit of LeT to the mean response rate gradient was
2 = .991 for Peak 60 s and ω2 = .986 for Peak 120 s. The resid-
als between the mean response rate and the prediction of LeT
scillated around zero, and the oscillation frequency on Peak
0 s was approximately twice the frequency on Peak 120 s (right
iddle panel of Fig. 1). The mean ω2 of individual fits was .940

S.D. = .027) for Peak 60 s and.935 (S.D. = .035) for Peak 120 s.

.3. Packet theory

In Packet theory, the information about when reinforcers are
elivered is stored in a vector memory denoted by m(t), which
s compared with a threshold b to generate a variable called
esponse state h(t):

(t) =
{

1 if |m(t)| < b

0 if |m(t)| ≥ b
(7)

he expected value of h(t) (expressed as E[h(t)], see Eq. (A16)
n Appendix A) was calculated based on the combination of two
calar sources: the remembered time of reinforcement and the
hreshold. Steady-state responding was determined by E[h(t)]:

(t) = AE[h(t)] + R0 (8)

here R0 is the operant level, which is similar to the operant
evel that has been added to LeT, and A is the scale parameter
ith units s−1.
Results showed that Packet theory fit the mean data accu-

ately: ω2 = .998 for Peak 60 s and ω2 = .997 for Peak 120 s. The
esiduals between the mean response rate and the prediction of
acket theory were small (right bottom panel of Fig. 1). The
ean ω2 of individual fits was .976 (S.D. = .013) for Peak 60 s

nd .950 (S.D. = .035) for Peak 120 s.
The goodness of fit of the three theories was compared by
ntering ω2 values from fits to individual data into a repeated-
easures ANOVA, followed by pairwise t-tests. For Peak 60 s,

he goodness of fit of the three theories were significantly differ-
nt (F(2,22) = 19.958, p < .001), the fit of Packet theory was higher
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Table 2
Comparison of complexity

SET LeT Packet theory

(a) ω2s in cross-validation
Peak 60 s

Calibration .991 .987 .996
Validation .972 .969 .951
Difference = C − V .019 .018 .045

Peak 120 s
Calibration .991 .986 .991
Validation .899 .895 .860
Difference = C − V .092 .091 .131

A B γb γk T0 σ0

(b) Coefficient of variation in parameter estimation
SET

Peak 60 s .530 .406 .499 2.172 .120 .107
Peak 120 s .304 .230 .444 .460 3.150 .216

A λ γ

(b) Coefficient of variation in parameter estimation
LeT

Peak 60 s .333 .120 .509
Peak 120 s .510 .204 .712

A Φ γb γk R0

(b) Coefficient of variation in parameter estimation
Packet theory
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han LeT (t(11) = 5.399, p < .001) and SET (t(11) = 3.011, p < .05),
nd the fit of SET was higher than LeT (t(11) = 4.035, p < .01).
or Peak 120 s, the difference between the goodness of fit of the

hree theories was not significant (F(2,22) = 1.402, p = .267), the
t of Packet theory was higher than LeT (t(11) = 3.316, p < .01)
ut not different from SET (t(11) = 1.240, p = .241), and the fits
f SET and LeT were similar (t(11) = .140, p = .892).

. Discussion

A basis for comparison of the three theories (SET, LeT, and
acket theory) is required to determine which provided the best
ccount of the data. Although a number of criteria have been
roposed to be important for theory comparison, three are widely
ccepted and frequently used: goodness of fit, complexity and
enerality.

.1. Goodness of fit

All three theories described the data very well, accounting for
pproximately 99 percent of the variance in the mean response
ate gradients (shown in the left panels of Fig. 1), and over 90%
f the variance in the individual response rate gradients.

The residuals (shown in the right panels of Fig. 1) refer to
he differences between the observed and predicted data. Ran-
om residuals indicate unexplained variability that may be due
o random fluctuations or measurement errors; systematic resid-
als indicate unexplained variability and suggest limitations of
he theory. The residuals from a good theory should be small
nd randomly distributed about zero. The observed residuals
rom the three timing theories were small but systematic. This
uggests modifications of the theories that should be considered.

The systematic residuals in the latter portion of peak cycles
ith all three theories may have been due to the assumption that
constant operant level accounted for the response rate during

he low state of responding that, in fact, increased slowly with
ime. The oscillating residuals of LeT may have been due to the
redictions of this theory that produced gradients more skewed
han the data.

.2. Complexity

In addition to goodness of fit, the complexity of a theory
s an important basis for theory evaluation. An unnecessarily
omplex theory will overfit the data and increase the variability
n parameter estimation (Myung, 2000).

In this analysis, SET used 10 parameters, LeT used 4 and
acket theory used 6 (Table 1). If all parameters were estimated
y free searching, theories with many parameters would prob-
bly obtain variable parameter estimates (discussed later). To
educe the risk of overfitting data, some parameters were fixed
ith empirical values. For example, the operant level (R0) in
eT and (APR0 ) in SET were represented by the response rate

t time t = 0; the mean pacemaker rate (Λ) in SET was 5 and
he coefficient of variation (γλ) was .02, and the mean switch
elay (T0) was 0; the mean memory multiplier (Km) in SET and
he mean memory coefficient (K) in Packet theory were 1 or

t
c
p
t

Peak 60 s .166 .122 .215 .257 .292
Peak 120 s .332 .500 .679 .418 .456

lose to 1. (These parameters are defined in Appendix A.) The
emaining parameters, estimated with free searching, are listed
n Table 2b. SET, LeT and Packet theory used 6, 3, and 5 free
arameters, respectively.

Cross-validation was used to measure overfitting due to
heory complexity. The general approach was as follows: (a)
data set was divided into a calibration sample (e.g., the data

rom odd sessions) and a validation sample (e.g., the data from
ven sessions), (b) the values of the parameters that minimized
he sum of squared deviations between the calibration sample
nd the predictions of the theory were determined, and then (c)
hese parameters were used to fit the validation sample. The
ecrement of goodness of fit of validation sample relative to the
alibration sample is a measure of overfitting. Table 2a provides
he mean ω2s across individual rats based on the calibration and
alidation samples and the difference between them. It shows
hat the mean ω2s on validation did not decline much for SET
r LeT. But Packet theory had the largest decrement on Peak
0 s (4.3%) and Peak 120 s (13.2%), which suggests it had a
endency to overfit the data.

Complexity also affects the variability in parameter esti-
ation. An overly complex theory can successfully fit one

ata set regardless of errors in the parameters. When such a

heory is used to fit another sample, the parameter values will
hange dramatically to get the excellent fit, but those unstable
arameter values carry very little information. To measure
he variability of parameter estimation, the whole data set in
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his analysis was divided into 10 subsets. (Subset j contains
he (10i + j)th sessions; i = 0, 1, 2, . . ., 9; j = 1, 2, . . ., 10.) and
he mean response rate gradient of each set was fitted by the
hree theories. Table 2b shows the coefficient of variation (the
tandard deviation divided by the mean, or CV) of each free
arameter across 10 samples. It shows that most parameters of
eT and Packet theory are very stable. But some parameters of
ET, such as γk and T0, are more variable.

.3. Generality

The generality of a theory should be composed of its input
enerality and output generality. Input generality refers to the
ange of procedures the theory can explain, and the output gen-
rality refers to the range of measures the theory can fit. The goal
f all theories is to account for a wide range of procedures and
e suitable for a wide range of dependent measures. Because it
s not the major issue of this analysis, the generality of the three
heories is not further discussed.

The comparison of three timing theories reveals that each of
hem has particular strengths and weaknesses. SET generated
xcellent fits, but was overly complex. LeT was parsimonious
nd its fits were good, but there were systematic errors. Packet
heory combined some good features of SET and LeT, which
llowed it to fit data well without using many parameters.
lthough this analysis described the applications of the three

heories to only a single dependent variable (the response rate
radient) of a single procedure (the peak procedure), at asymp-
ote, the successes of these theories suggest that much progress
as been made towards the development of an accurate, general,
nd parsimonious account of timing behavior.
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ppendix A. Explicit solutions of three theories

A peak procedure is a mixture of food cycles with a probabil-
ty of p and nonfood cycles with a probability of 1 − p. On food
ycles, the first response after a fixed interval T1 since the onset
f a stimulus (e.g., houselight) is reinforced with the delivery of
ood for a fixed duration d, and it terminates the stimulus. On
onfood cycles, the stimulus goes off T2 after the stimulus onset
ithout food. The short delay between the food availability and

ts delivery following a response on food cycles is not under the
onsideration of this analysis.

.1. SET
In SET, the probability of response P[R(t)] is largely deter-
ined by the probability of |mm − m(t)|/mm < b, denoted by
(E).

w
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The number of pulses in the accumulator, m(t) = λτ, is a
oisson distribution. The pacemaker rate λ is a normally dis-

ributed random variable with a mean Λ and standard deviation,
λ = γλΛ, where γλ is the coefficient of variation of λ. The
witch is assumed to have some latency (t1) to close after the
timulus turns on and some latency (t2) to open after the stimulus
urns off. The difference between the two latencies, t0 = t1 − t2, is
ormally distributed with a mean T0 and standard deviation σ0.
he effective switch closure time, τ, is the difference between

he actual time t and t0: τ = t − t0. Then, the expected value of
(t) is

[m(t)] = Λ(t − T0) (A1)

nd the variance is

ar[m(t)] = (1 + γ2
λ)(Λσ0)2 + Λ(t − T0) + γ2

λΛ2(t − T0)2

(A2)

he number of pulses at the time of reinforcement (t = T1) is mT.
t is stored in memory as mm, multiplied by a variable km (i.e.,

m = kmmT). km is a normally distributed random variable with
mean Km and standard deviation σm = γkKm, where γk is the

oefficient of variation of km. Then, the expected value of mm is

(mm) = KmΛ(T1 − T0) (A3)

nd the variance is

ar(mm)=K2
m[(1 + γ2

λ)(1 + γ2
k )(Λσ0)2 + (1 + γ2

k )Λ(T1 − T0)

+((1 + γ2
λ)(1 + γ2

k ) − 1)Λ2(T1 − T0)2] (A4)

he threshold b is a normally distributed random variable with a
ean B and standard deviation γbB, where γb is the coefficient

f variation of b.
The three variance sources, m(t), mm, and b, can be combined.

efine xi(t) = m(t) − [1+(−1)ib]mm, i = 1, 2. The expected value
f xi(t) is

[xi(t)] = Λ(t − T0) − [1 + (−1)iB]KmΛ(T1 − T0) (A5)

nd the variance is

ar[xi(t)] = σ2
m + σ2

mm
(γ2

bB2 + [1 + (−1)iB]
2
)

+[KmΛ(T1 − T0)]2γ2
bB2 (A6)

here σ2
m ≡ Var[m(t)] and σ2

mm
≡ Var(mm) (Eqs. (A2) and

A4)).
DefineZi = −E[xi(t)]/

√
Var[xi(t)], i = 1, 2. Z1 and Z2 are the

orresponding z values of zero on the distribution of x1 and x2,
espectively. Because the distribution of xi(t) is approximately
ormal (see Appendix in Gibbon et al., 1984, for details), the
istribution of Zi is approximately a standard normal distribution

ith a mean of zero and standard deviation of one. Then, the
robability of |mm − m(t)|/mm < b is

(E) = Φ(Z2) − Φ(Z1) (A7)
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here Φ is the distribution function of standard normal distri-
ution:

(x) = 1√
2π

∫ x

−∞
exp

(
−u2

2

)
du

he probability of response P[R(t)] is calculated by P[R(t)] =
(E)P[R(t)|E] + P(Ē)P[R(t)|Ē], where P[R(t)|E] refers to

he probability of response given |mm − m(t)|/mm < b, and
[R(t)|Ē] refers to the probability of response given

mm − m(t)|/mm ≥ b. Because P[R(t)|E] = 1, P[R(t)|Ē] = PR0 ,
nd P(Ē) + P(Ē) = 1, the probability of response is rewrit-
en as P[R(t)] = (1 − PR0 )P(Ē) + PR0 , which is translated to
esponse rate by a scale parameter A:

(t) = A[(1 − PR0 )P(E) + PR0 ] (A8)

.2. LeT

LeT has three components: behavioral states, operant
esponse, and the association between the behavioral states and
he operant response.

The activation of behavioral state j at time t is

(t, j) = exp(−λt)(λt)j

j!
(A9)

here λ is the parameter that refers to the speed of the activation
preading across the states.

The associative strength at the beginning of (n + 1)th cycle is

n+1(0, j) = pWn(T1 + d, j)︸ ︷︷ ︸
food cycle

+ (1 − p)Wn(T2, j)︸ ︷︷ ︸
nonfood cycle

(A10)

n(T + d,j) is obtained through the reinforcement dynamic pro-
ess (Eq. (6) in Machado, 1997) with t = T1 + d (i.e., the previous
ycle is food cycle), and Wn(T2,j) is obtained through the no-
einforcement dynamic process (Eq. (5) in Machado, 1997) with
= T2 (i.e., the previous cycle is nonfood cycle). Both of them can
e written as a function of Wn(0,j). Then, Eq. (A10) becomes a
inear difference equation: the left-hand side is Wn+1(0,j) and the
ight-hand side only contains Wn(0,j). The solution of Wn(0,j)
an be calculated and its steady-state distribution, denoted by
(j), is

(j) ≈ X(T1, j)

X(T1, j) + γ
∫ T1

0 X(τ, j) dτ

+γ(1 − p/p)
∫ T2

0 X(τ, j) dτ

(A11)

here γ = α/βd. α and β are the learning parameters during rein-
orcement and no-reinforcement, respectively. LeT assumes that

n(t,j) at steady state does not change appreciably with time on a
ingle cycle, such that Wn(t,j) ≈ Wn(0,j). Then, W(j) in Eq. (A11)
s an approximation of the steady-state distribution of Wn(t,j).
The modified response rule is

(t) = A
∑
j=1

X(t, j)W(j) + R0 (A12)

ith a scale parameter A and operant level R0.
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.3. Packet theory

The explicit solution of Packet theory presented in this
ppendix is a condensed version, with a full account to be
rovided elsewhere (Yi, 2006). At steady state, the storage
echanism contains the remembered time of reinforcement T̂1,

eference memory m(t) and strength memory w(t).
T̂1 is a normally distributed random variable with a mean

T1 (K, the mean of memory coefficient and T1 is the time of
einforcement) and standard deviation γkKT1 (γk, the coefficient
f variation of memory coefficient). Then the density function
f T̂1 is

(y) = 1

γkKT1
√

2π
exp

(
−(y − KT1)2

2γ2
k (KT1)2

)
(A13)

he steady-state reference memory m(t) is

(t) = T̂1 − t (0 ≤ t ≤ T2), m(t) = m0 (t > T2)

(A14)

here m0 is the initial memory. The steady-state strength mem-
ry w(t) is approximately constant.The threshold b is normally
istributed with a mean B and standard deviation γbB, where γb
s the coefficient of variation of b. Then the density function of
is

(x) = 1

γbB
√

2π
exp

(
−(x − B)2

2γ2
bB2

)
(A15)

here B is the ϕth percentile of m(t) (for m(t) ≥ 0). Because
(t) is a function of T̂1 (Eq. (A14)), B is also a function of T̂1,

xpressed as B(T̂1).
The response state h(t) is based on the comparison of |m(t)|

ith b: when |m(t)| is less than b, the high response state h(t)
s true (i.e., h(t) = 1), otherwise, it is false (i.e., h(t) = 0). The
onvolution of T̂1 and b is calculated to obtain the expected
alue of h(t):

[h(t)] = 1

2πγkγbKT1

∫ ∞

0
dy

∫ ∞

|y−t|
dx

1

B(y)

× exp

(
−(x − B(y))2

2γ2
bB2(y)

)
exp

(
−(y − KT1)2

2γ2
k (KT1)2

)

(A16)

he packet initiation rate r(t) depends on the response state
(t), the strength memory w(t), and the operant level of packet
nitiation r0:

(t) = ah(t)w(t) + r0 (A17)

here a is a scale parameter. To translate packet initiation rate to
esponse rate, the number of responses per packet u is required:
(t) = ur(t). Because the mean of u and w(t) are constant, or

pproximately constant, the expected value of response rate is

[R(t)] = AE[h(t)] + R0 (A18)

here A = auw(t), and R0 is the operant level of response rate.
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