A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation

Michelle M. Rouxa, Ian K. Townleya, Michael Raischa, Anna Readea, Cynthia Bradhamb, Glen Humphreys c, Herath Jayantha Gunaratned, Christopher E. Killiane, Gary Moyd, Yi-Hsien Sued,1 Charles A. Ettensohnf, Fred Wiltg, Victor D. Vacquierd, Robert D. Burkek, Gary Wesselc, Kathy R. Foltza,*

⁎ Corresponding author.
E-mail address: foltz@lifesci.ucsb.edu (K.R. Foltz).

1 Current address: Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.

Available online 12 September 2006

Abstract

The sea urchin egg has a rich history of contributions to our understanding of fundamental questions of egg activation at fertilization. Within seconds of sperm–egg interaction, calcium is released from the egg endoplasmic reticulum, launching the zygote into the mitotic cell cycle and the developmental program. The sequence of the Strongylocentrotus purpuratus genome offers unique opportunities to apply functional genomic and proteomic approaches to investigate the repertoire and regulation of Ca2+ signaling and homeostasis modules present in the egg and zygote. The sea urchin “calcium toolkit” as predicted by the genome is described. Emphasis is on the Ca2+ signaling modules operating during egg activation, but the Ca2+ signaling repertoire has ramifications for later developmental events and adult physiology as well. Presented here are the mechanisms that control the initial release of Ca2+ at fertilization and additional signaling components predicted by the genome and found to be expressed and operating in eggs at fertilization. The initial release of Ca2+ serves to coordinate egg activation, which is largely a phenomenon of post-translational modifications, especially dynamic protein phosphorylation. Functional proteomics can now be used to identify the phosphoproteome in general and specific kinase targets in particular. This approach is described along with findings to date. Key outstanding questions regarding the activation of the developmental program are framed in the context of what has been learned from the genome and how this knowledge can be applied to functional studies.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Sea urchin; Egg activation; Calcium signaling; Phosphoproteins; Proteomics

Introduction

Fertilization initiates a series of events that coordinately launch the oocyte or egg into the developmental program. These “egg activation” events are rapid and transient, committing the formerly quiescent egg to cytoskeletal remodeling, cell cycle re-entry and metabolic activation. In all animals studied, a rise in cytosolic free Ca2+ is crucial for egg activation and, in deuterostomes, the Ca2+ is released initially from stores in the egg endoplasmic reticulum (ER) (Runft et al., 2002; Whitaker, 2006). This Ca2+ release spreads as a wave across the egg from the point of sperm entry and then returns to pre-fertilization levels within a few minutes. New Ca2+ signals are then required for mitotic regulation and later developmental events (Ducibella et al., 2006; Whitaker, 2006). Despite the many descriptions and clear importance of Ca2+ dynamics at fertilization and during development (Whitaker, 2006), relatively little is known about
the molecular repertoire of Ca\(^{2+}\) signaling systems that modulate these events.

Egg activation is executed by existing egg proteins, and therefore, modulation of the localization and activity of egg proteins is achieved through post-translational modifications (Kinsey, 1997; Sato et al., 2000) and protein turnover. Thus, in order to understand the coordinated signaling events of egg activation, including the regulation of Ca\(^{2+}\) release, it is useful to have a model system that has synchronous fertilization and is biochemically tractable, as well as amenable to single cell experiments. The sea urchin egg offers these advantages and has a long history of contributions to the field of fertilization and Ca\(^{2+}\) signaling (Monroy, 1986). For example, *Lytechinus pictus* sea urchin eggs (Steinhardt et al., 1977) were the first cells in which a Ca\(^{2+}\) increase was recorded, along with the Medaka fish egg (Ridgway et al., 1977). Sea urchins are marine invertebrates, in the class Echinoidea. As Echinodermata, they are members of a phylum on the deuterostome branch of the animal phylogenetic tree and more closely related to the members of the other deuterostome phyla (the Chordata, including the *Strongylocentrotus purpuratus* genome sequence (Consortium, 2005). The completion of the *Strongylocentrotus purpuratus* genome sequence (Monroy, in press) now adds a valuable experimental feature to the sea urchin as a model system. Analysis of the genome sequence has revealed the sea urchin’s basic "calcium toolkit," based on the vertebrate model (Berridge et al., 2000, 2003), and provides context for which Ca\(^{2+}\) signaling systems are likely to be operating in eggs and early embryos. Furthermore, functional proteomic analysis has resulted in the identification of candidate proteins modulating various aspects of sea urchin egg activation as well as a global description of egg protein turnover and modification by phosphorlylation at fertilization.

Materials and methods

Sequence database searches, genomic analysis and annotation

Several data sets of the *S. purpuratus* genomic sequence were analyzed: (i) the whole genome shotgun sequence; (ii) the 11/23/2004, 7/18/2005 and 3/16/2006 genome assemblies from the Human Genome Sequencing Center at Baylor College of Medicine Human Genome Sequencing Center (BCM-HGSC, http://www.hgsc.bcm.tmc.edu/projects/seaurchin/); (iii) GLEAN3 gene models (BCM-HGSC); and (iv) the NCBI Gnomon ab initio gene models (http://www.ncbi.nlm.nih.gov/genome/guide/sea_urchin/). A community-accessible database of predicted cDNAs also is available (Wei et al., 2006).

Sequences encoding putative calcium toolkit components, molecules of the egg activation pathway and scaffold proteins were identified on a candidate basis by the BLAST program (www.ncbi.nlm.nih.gov/BLAST) using amino acid sequences of conserved domains and by comparing the patterns of amino acid conservation to PFAM domains (Bateman et al., 2004). Gene identification was based on the best score, and in many cases, further analysis by multiple alignment using CLUSTAL W (Thompson et al., 1994). The BLAST match in the human protein list was determined and, as corroboration, the best urchin match was also determined. In almost all cases, the best matches were bidirectional. *In silico* predictions of cDNA were confirmed or modified according to cDNA cloning and sequence when available.

Expression of the cognate mRNA of each predicted gene identified in the BLAST searches was evaluated by manual inspection of the embryonic tiling array data (Samanta et al., in press) and EST databases. In some cases, rtPCR analyses and antibody detection were also conducted (see below). If available, references detailing expression of mRNA, protein or functional activity in echinoderms were compiled and are provided on the gene list tables (Supplementary Tables 1 and 2, Tables 1 and 2).

Isolation and handling of sea urchin gametes

Adult *S. purpuratus* were collected from the Santa Barbara Channel (Goleta Pier, Goleta, CA), maintained in open system aquaria at 10–12°C and fed a diet of *Macrogyra*. Gamete collection and fertilization were as described (Foltz et al., 2004).

mRNA isolation, rtPCR and sequencing

For the predicted SFK genes, rtPCR was conducted to confirm the expression and sequence of the mRNA in eggs. Total RNA was isolated from unfertilized *S. purpuratus* eggs using Trizol (Invitrogen, Carlsbad, CA). Poly(A\(^+\)) mRNA was selected by using the Micro Poly(A) Pure Kit (Ambion Inc., Austin, TX) and cDNA was synthesized (SuperScript First-strand synthesis kit, Invitrogen, Inc.). Amplification was carried out on the egg cDNA using gene specific primers that were designed based on the predicted cDNA sequences flanking the tyrosine kinase domain of the target. Amplified products were cloned into the TOPO vector (Clontech) and sequenced (Iowa State Sequencing Facility, Ames, IA). Sequences were analyzed by alignment with the predicted *S. purpuratus* gene sequence and also subjected to a tBLASTx search to assign identity.

Egg fractionation, sample preparation and immunoblotting

For analysis of proteins for two-dimensional (2D) electrophoresis, total NP-40 soluble lysates of unfertilized eggs or eggs fertilized by addition of sperm (1:25,000 final dilution) were prepared by described methods (Kumano et al., 2001). Lysates were kept on ice and used the same day for 2D gel electrophoresis analyses. Protein concentration was determined by the BCA method (Pierce, Inc.). The procedure outlined in Belton et al. (2001) was used to prepare lipid raft fractions by sucrose gradient density centrifugation from unfertilized eggs and eggs fertilized (1:50,000 final dilution) and collected 30 s post sperm addition.

To confirm expression and to localize egg proteins to membrane fractions, proteins (25 μg per lane) were separated on a 10% polyacrylamide SDS–PAGE gel. Proteins were transferred to nitrocellulose membranes and the blots were probed with affinity purified Sp-SFK1 IgY (Giusti et al., 2003) or anti-human CSK polyclonal IgG (Santa Cruz Biotech; H-75) at 0.2 μg/mL in a blocking buffer containing 3% dry milk. HRP-conjugated anti-chicken or anti-rabbit secondary antibodies were purchased from Aves Labs, Inc or Promega, Inc, respectively. Antibody detection was accomplished with EnHanced Chemiluminescence (Pierce Endogen, Inc.) followed by exposure to X-ray film.

Two-dimensional electrophoresis and proteomic analyses of unfertilized and fertilized eggs

First and second dimensional separations of total NP-40-soluble protein lysates (see above) were carried out according to published protocols (Bernard et al., 2004). Briefly, 25 μg or 35 μg soluble protein was denatured then rehydrated into isoelectric focusing (IEF) strips of various pH ranges (see Supplementary Fig. 2). Separation in the first dimension was carried out using a Multiphor II flatbed chamber (GE Healthcare) as follows: pH 3–11: 10–12 kV, pH 4–7: 11–15 kVh, pH 6–11: 10 kV, pH 3–5.6: 11–15 kVh, pH 5.3–6.4 and 6.2–7.5: 28–35 kVh. Proteins were then separated by size in the second dimension by SDS PAGE on Criterion 8–16% gradient gels (BioRad, Hercules, CA). All samples within a given experiment were run simultaneously and in triplicate to maximize reproducibility.

Gels were fixed and proteins were detected using multiplex staining with ProQ Diamond stain for phosphorylated proteins followed by SYPRO Ruby stain for total protein (Molecular Probes Inc, Eugene OR,) and imaged using a BioRad FX scanner with a ~600 nm band pass emission filter. Images were imported into PDQuest (version 7.4) for spot detection and excision (Bio Rad, NC).
Hercules, CA). Selected spots within various analysis sets (see Figs. 1–6) were picked using the ProteomeWorks Robotic Spot Cutter and PDQuest Basic Excision Software (BioRad, Hercules, CA) followed by in-gel digestion with trypsin. Peptides were subjected to quadrupole time of flight tandem mass spectrometry (Q-ToF MS/MS), and peptide spectra were analyzed using ProteinLynx Global Server (PLGS) software (Waters, Milford, MA). PLGS workflows were designed to search the sea urchin genome on NCBI. Identities were assigned to proteins showing two or more non-overlapping peptide matches.

Results and discussion

Overview of the sea urchin calcium toolkit

Calcium is a crucial intracellular signal that operates over a wide temporal range to regulate many cellular processes, including egg activation and later developmental events (Ducibella et al., 2006; Whitaker, 2006). Ca\(^{2+}\) can act locally to trigger fast responses in microseconds (e.g. exocytosis at the synaptic junction), and Ca\(^{2+}\) also can control slower responses (e.g. gene transcription) over minutes to hours via global repetitive transients or waves. Berridge and colleagues (2000, 2003) provide a framework for organizing the various Ca\(^{2+}\) signaling systems in mammalian somatic cells, referred to as the "calcium toolkit." Intracellular Ca\(^{2+}\) levels can be considered as a balance between 'on' reactions that result in Ca\(^{2+}\) influx or efflux from internal stores and 'off' reactions that remove free intracellular Ca\(^{2+}\) via a combination of buffers, pumps and exchangers (Berridge et al., 2003). Systematic, homology-based searches were conducted for S. purpuratus genes encoding Ca\(^{2+}\) signaling components falling into four broadly defined, functional categories: (1) stimuli that generate Ca\(^{2+}\) mobilizing signals; (2) components that mediate entry of Ca\(^{2+}\) into the cytoplasm; (3) Ca\(^{2+}\) sensors that effect changes; and (4) components that remove Ca\(^{2+}\) from the cytoplasm. The annotated genes encoding the basic calcium toolkit in the sea urchin genome are compiled in Supplementary Table 1 and diagrammed in the context of egg activation in Fig. 1. The full repertoire of predicted gene families that comprise the mammalian Ca\(^{2+}\) signaling and homeostasis systems is present in the S. purpuratus genome. Although likely to expand with further study, the current list (Supplementary Table 1, Fig. 1) of nearly 200 genes includes many G-protein-coupled receptors (GPCRs) and protein tyrosine kinase linked receptors (TKRs) known to modulate Ca\(^{2+}\) in signaling in mammalian cells.

![Fig. 1](#) A model of the major signal transduction events that occur during sea urchin egg activation. The major pathways in the sea urchin egg that mediate Ca\(^{2+}\) release and downstream responses at fertilization are shown on the left. Ca\(^{2+}\) is indicated by the starbursts. The signaling pathway shown in red (the SFK/PLC-γ/IP₃ pathway) is thought to be the major pathway leading to the initiation of Ca\(^{2+}\) release at fertilization. Alternative pathways for Ca\(^{2+}\) release are shown in blue. Additional proposed pathways are indicated by dashed lines. Examples of downstream egg activation events – cortical granule exocytosis (CGE), the rise in pH (through activation of a Na⁺/H⁺ antiporter) and the MAPK pathway – are shown in orange. A summary of the genes encoding the S. purpuratus Ca\(^{2+}\) toolkit is shown at the right, with the number of genes encoding the various components indicated in parentheses. See text for further discussion and Tables 1 and 2 and Supplementary Tables 1 and 2 for gene lists.
Transducers (G-proteins, regulators of G-protein signaling, ADP-ribosyl cyclase and phospholipase Cs) also are predicted. A large number of genes encoding channels (voltage-operated channels, receptor-operated channels, second messenger-operated channels, transient receptor potential ion channels, IP3 receptor, ryanodine receptor, polycystins) and channel regulators also are present. Ca2+ effectors (such as synaptotagmins, troponin, calmodulin) and buffers (such as calnexin, calsequestrin, GRP78, GRP94) are present, as are a number of calcium-sensitive enzymes (NOS, PKCs, CAMKs). A substantial collection of pumps and exchangers (including NCXs, PMCA and SERCA) round out the list (Supplementary Table 1, Fig. 1). This repertoire indicates that the sea urchin Ca2+ toolkit is diverse and likely enables the sea urchin to modulate an array of temporally and spatially distinct Ca2+ signals as necessary.

The cognate mRNAs of all of the genes in the S. purpuratus Ca2+ toolkit are represented in the embryonic expression tiling array, consistent with a developmental program that relies on Ca2+ signaling. Many of the Ca2+ toolkit genes are expressed in adult tissues as well. Burke et al. (2006) discuss the various channels and channel modulators in greater detail in the context of the S. purpuratus nervous system. Interestingly, in almost all cases, the sea urchin genome is predicted to contain fewer members in each Ca2+ toolkit gene family when compared to mammals. This likely is due to a lack of duplication, which seems to be a common feature of most of the major gene families in the sea urchin (Consortium, in press; Materna et al., 2006). For example, a single S. purpuratus gene encodes the inositol 1,4,5-trisphosphate (IP3) receptor, a ligand-gated Ca2+ channel (Supplementary Tables 1 and 2). This is the case in both Drosophila and Caenorhabditis elegans, as well as in the ascidian (Ciona), while there are three IP3R genes in mammals (Patterson et al., 2004). Coupled with the ability to image Ca2+, the completion of the sea urchin genome sequence positions the sea urchin egg and early embryo as an excellent deuterostome model system in which to study the modulation of Ca2+ signals as a biochemical and systems biology problem with minimal redundancy.

Genomic insights into Ca2+ signaling pathways implicated in egg activation 1. Initial release of Ca2+ via IP3 production

In echinoderm (as in other deuterostome) eggs, Ca2+ is released from the ER via the IP3Rs as a result of IP3 production by the hydrolysis of PIP2 (Stricker, 1999). Other signaling pathways that are capable of regulating Ca2+ release clearly are present in eggs (Fig. 1) and may participate in modulating Ca2+ wave progression or aspects of Ca2+ spatio-temporal dynamics (Whitaker, 2006). However, only a few of the putative signaling components have been isolated or characterized and their precise roles in egg activation remain unknown. The completion of the sea urchin genome sequence allows for a merging of the cellular physiology data with genomic determinants that have been shown or predicted to be involved in signaling the release of Ca2+ during fertilization. Although much of the cellular physiology of fertilization and Ca2+ signaling has been conducted in L. pictus and L. variegatus, a genus separated by about 50 Mya from S. purpuratus, the major egg activation events are conserved across sea urchin species (Stricker, 1999) and it is almost certain that the gene complement of S. purpuratus is similar to that of the other sea urchin species. The S. purpuratus genome sequence was mined for proteins predicted to play a role in fertilization and egg activation. Identification and annotation of these cognate genes (Fig. 1, Supplementary Table 2) fill a major gap in our knowledge of egg activation mechanisms by providing details about the genomic determinants of previously described enzymatic activities or antigens cross-reactive with antibodies generated against mammalian proteins (Stricker, 1999; Runft et al., 2002; Whitaker, 2006). Knowledge of gene structure, coupled with expression profiles, provides specific tools for studying the spatio-temporal properties of signaling at fertilization.

Ca2+, which is stored in the egg ER, is released initially through IP3Rs at fertilization, when IP3 levels increase transiently. In sea stars (Asterina miniata) and sea urchins (Lytechinus spp.), blocking IP3 production (Carroll et al., 1997, 1999; Shearer et al., 1999) or preventing IP3 binding to the IP3R (Iwasaki et al., 2002) inhibits sperm-induced Ca2+ release. Although the presence of the IP3R protein, a non-voltage gated Ca2+ channel, has been documented in S. purpuratus and other echinoderm eggs based on immunological cross-reactivity with the vertebrate IP3R (Parys et al., 1994), most studies have relied on indirect methods to assess function (reviewed in Stricker, 1999). The S. purpuratus genome contains a single, canonical IP3R gene that encodes a protein with 80% identity to that of the sea star protein (Iwasaki et al., 2002). The presence of the S. purpuratus IP3R cognate mRNA in the embryonic tiling assessment is consistent with the earlier work (Parys et al., 1994) indicating that this Ca2+ channel is expressed in S. purpuratus eggs. In mammalian somatic cells, there is a number of proteins that interact with and modulate activity of the IP3R, yet none has been described in eggs. Genomic analysis identified S. purpuratus genes encoding orthologs of several of these mammalian IP3R modulators (Supplementary Table 1) such as FKBP12 and a newly described protein, IRBIT (IP3R binding protein released with inositol 1,4,5-trisphosphate) (Ando et al., 2003, 2006; Shirakabe et al., 2006). Identification of these proteins enables studies investigating the regulation of the IP3R activity at fertilization.

The production of IP3 leading to the activation of the IP3R is mediated by the action of PLCs. The phospholipase C genes are highly conserved across phyla (Patterson et al., 2005). The larger family comprises six main subfamilies: PLC-γ, PLC-ε, PLC-δ, PLC-α, PLC-ο and PLC-ζ (Cockroft, 2006). In mammals, each family, except for PLC-ζ (which is represented by a single gene), has at least two genes encoding isozymes (Patterson et al., 2005; Cockroft, 2006). The sea urchin genome contains a single gene for PLC-ε, PLC-δ, PLC-γ and PLC-ο, and two genes encoding-β type PLCs based on sequence comparisons and phylogenetic analyses (Supplementary Table 1 and Fig. 1). Although all of the predicted S. purpuratus PLC genes are expressed at some point over early development as evidenced by the detection of their cognate mRNAs in the tiling data, only the PLC-ο, PLC-β4 and
PLC-γ proteins have been detected in sea urchin eggs (PLC-ε and PLC-η have not been assessed). The cDNA encoding *S. purpuratus* PLC-δ has been cloned, and the protein is expressed in gametes and embryos (Coward et al., 2004). *S. purpuratus* eggs express PLC-γ protein based on antibody cross-reactivity and enzymatic activity (De Nadai et al., 1998; Rongish et al., 1999; Shearer et al., 1999; Coward et al., 2004; Runft et al., 2004; Kulisz et al., 2005). A cDNA encoding a PLC-γ has been characterized from *L. pictus* and the protein shown to be present in eggs as well (Kulisz et al., 2005). However, only PLC-γ has been demonstrated to be required for the initiation of Ca²⁺ release at fertilization in sea urchins. Inhibiting PLC-γ in *Lytechinus* spp. and *Paracentrotus lividus* (Carroll et al., 1999; Shearer et al., 1999; Runft et al., 2004), as well as sea star (*A. miniata*) eggs (Carroll et al., 1997; Runft et al., 2004) inhibits sperm-induced Ca²⁺ release, though it is possible that other isozymes play a role in amplification of the Ca²⁺ signal or later Ca²⁺-mediated events (Coward et al., 2004; Kulisz et al., 2005).

Identification of the *S. purpuratus* PLC gene family sheds light on an outstanding question in egg activation—the nature of the triggering mechanism. What activates the pathway leading to IP₃-mediated Ca²⁺ release at fertilization? Is it receptor-mediated, require a factor delivered by sperm, or involve some combination of events? In mammals, a novel form of PLC, PLC-γ is a sperm-borne protein that causes Ca²⁺ oscillations (Swann et al., 2006). To date, a PLC-γ ortholog has not been detected in the sea urchin genome draft and likely is present only in eggs. Inhibiting PLC-γ in *Lytechinus* spp. (Coward et al., 2004; Kulisz et al., 2005).

A current model (Fig. 1) for the activation of egg PLC-γ during echinoderm fertilization is via tyrosine phosphorylation by a SFK (Townley et al., 2006; Whitaker, 2006). Prior to the genome project, a single SFK (designated SpSFK1) had been identified in *S. purpuratus* eggs. The *S. purpuratus* SFK1 mRNA and protein are present in unfertilized eggs, and the kinase is required for normal Ca²⁺ release at fertilization (Giusti et al., 2003). However, at least 3 SFK proteins are expressed in sea star (*A. miniata*) eggs. Two of these SFKs, designated AmSFK1 (the ortholog of Sp-SFK1) and AmSFK3, are required for initiation of Ca²⁺ release at fertilization and may be sequentially activated (O’Neill et al., 2004). Experiments designed to amplify protein tyrosine kinases by rtPCR suggested that additional SFKs were expressed in *S. purpuratus* eggs (Wessel et al., 1995; Giusti et al., 2003) as well as in eggs of the sea urchin *Anthocidaris crassispina* (Sakuma et al., 1997; Onodera et al., 1999). Genomic analyses now have revealed that at least 6 Src-like sequences are predicted in the *S. purpuratus* genome, along with a single member each of the other Src gene family members, Csk, Tec and Abl (Table 1). This non-receptor protein tyrosine kinase family is considered in the larger context of the sea urchin kinome in the accompanying paper by Bradham et al. (2006). While the *S. purpuratus* Abl, Tec and Csk genes are unambiguous orthologs to vertebrate genes, SpFrk is the only clear ortholog among the true Src members (Bradham et al., 2006). This is consistent with the proposed duplication of the Src genes in vertebrates (Hanks, 2003; Segawa et al., 2006). Further analyses will provide insight into functional relationships between echinoderm and vertebrate members of the Src gene family.

All of the *S. purpuratus* SFK genes are transcribed based on mRNA accumulation revealed in the tiling arrays, and the presence and sequence of the respective mRNAs have been confirmed by rtPCR using egg mRNA as template (Table 1). The SpAbl (Peaucellier et al., 1993; Moore and Kinsey, 1994; Belton et al., 2001), SpCsk (Fig. 2) and Sp-SFK1 (Giusti et al., 2003) proteins have been detected in eggs using specific antibodies, but the presence of the other SFK proteins in *S. purpuratus* eggs is not yet known. Even if a given kinase protein is present in eggs, functional studies are required to reveal if it plays a role in egg activation or later developmental events. For example, inhibition of tyrosine kinase activity very early in *S. purpuratus* development inhibits gastrulation nearly 24 h later (Kinsey, 1995; Livingston et al., 1998). Furthermore, the Abl protein is present, but is not required for the initiation of Ca²⁺ release at fertilization in *S. purpuratus* (Giusti et al., 2003) or sea stars (O’Neill et al., 2004). Similarly, the sea star ortholog of SpFrk (AmSFK2) is present in eggs but not active or required until later in development (O’Neill et al., 2004). The genomic identification of these various SFKs allows for development of specific tools for determining the activity profiles and functions of each. Based on comparison with the sea star orthologs, the simple prediction is that the Sp-SFK3 protein will be required at egg activation, but this must be tested directly. Other Sp-SFKs may be required as well. The potential involvement of the sea urchin Tec family kinase (SpTec) is worth investigating since this kinase has been implicated in the regulation of Ca²⁺ release (Smith et al., 2001) and actin cytoskeletal remodeling (Finkielstein and Schwartzberg, 2004) in mammalian somatic cells, which are major events of egg activation as well (Runft et al., 2002).

The identification of the SpCsk gene provides a tool for investigating the regulation of Sp-SFKs. In metazoans, CSK is responsible for actively repressing Src type kinase activity by phosphorylating the inhibitory tyrosine on the Src protein C terminus (Miller et al., 2000; Boggan and Eck, 2004; Segawa et al., 2006). To determine if the SpCSK protein is expressed in *S.
purpuratus eggs and to begin to investigate the potential role of SpCSK, specific antibodies were used to localize SpCSK and Sp-SFK1 in biochemical fractions of eggs. SFK activity is associated with the detergent resistant membrane microdomain ("raft") fractions in S. purpuratus (Belton et al., 2001) and *Xenopus* (Sato et al., 2002, 2003) eggs. The Sp-SFK1 protein is present in the raft fraction of unfertilized eggs and enriched further in this fraction prepared from eggs 30 s post sperm addition (Fig. 2). The CSK antibody reacted specifically with a sea urchin egg protein of ca. Mr ∼50 K, the predicted size for SpCSK that was present in the raft fraction of unfertilized eggs. While SpCSK protein was also present in this fraction of fertilized eggs, a shift in relative distribution out of the raft fraction to higher density fractions was apparent (Fig. 2), consistent with the activation of Sp-SFK1 at fertilization. Further studies (such as overexpression of a constitutively active SpCSK or inhibition of SpCSK via dominant interference, as well as determining if SpCSK interacts with Sp-SFK1) are needed to determine if SpCsk plays a direct role in regulating Sp-SFK1 (or other egg SFKs) at fertilization and to investigate the regulation of subcellular localization in more detail.

In somatic mammalian cells, adaptor and scaffold proteins modulate the dynamic localization (and thus activity) of many signaling proteins, including CSK (Davidson et al., 2003; Rahmouni et al., 2005). Any signaling complex involved in initiation of Ca^{2+} release (Fig. 1) or other aspects of egg

Table 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Gene ID (SPU #)</th>
<th>Best human match</th>
<th>Expression data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp-CSK</td>
<td>022112</td>
<td>AAJ06074 (HsCSK)</td>
<td>rtPCR in eggs, antibody detection (this work)</td>
</tr>
<tr>
<td></td>
<td>004037</td>
<td>BAG97346 (HsCSK variant)</td>
<td>Tiling data: 9/11 exons, not in 26,827–26,913 or 28,618–28,685 (SH1 domain only)</td>
</tr>
<tr>
<td>Sp-CSK2</td>
<td>013522</td>
<td>CAI22300 (HsFYN)</td>
<td>rtPCR in eggs, embryos; mRNA blot in eggs, embryos; full length cDNA from arrayed library</td>
</tr>
<tr>
<td></td>
<td>023261</td>
<td>Tiling data: all exons; antibody detection (Giusti et al., 2003; this work)</td>
<td></td>
</tr>
<tr>
<td>Sp-SFK1</td>
<td>026766</td>
<td>AAH48960 (HsYes)</td>
<td>rtPCR in eggs, embryos</td>
</tr>
<tr>
<td></td>
<td>026766</td>
<td>AAH51270 (HsSrc)</td>
<td>Tiling data: all exons</td>
</tr>
<tr>
<td>Sp-SFK6</td>
<td>014473</td>
<td>CAA26485 (Hs-csrc)</td>
<td>rtPCR in eggs</td>
</tr>
<tr>
<td></td>
<td>024525</td>
<td>Tiling data: all exons; antibody detection (Giusti et al., 2003; Belton et al., 2001; Peaucellier et al., 1993; Moore and Kinsey, 1994)</td>
<td></td>
</tr>
<tr>
<td>Sp-SFK5</td>
<td>023952</td>
<td>BAD92693 (HsAb1)</td>
<td>rtPCR in eggs, embryos; cDNA from arrayed library</td>
</tr>
<tr>
<td>Sp-ABL</td>
<td>012277</td>
<td>AAJ01714 (HsTec)</td>
<td>rtPCR in eggs, embryos; antibody detection (Giusti et al., 2003; Belton et al., 2001; Peaucellier et al., 1993; Moore and Kinsey, 1994)</td>
</tr>
<tr>
<td>Sp-TEC</td>
<td>012277</td>
<td>AAJ01714 (HsTec)</td>
<td>Tiling data: 15/17 exons for SPU_12278, not 36,157–36,166 or 36,915–36,916</td>
</tr>
<tr>
<td></td>
<td>012278</td>
<td>1/2 exons for SPU_12277, not in 50,668–50,730</td>
<td></td>
</tr>
</tbody>
</table>

Genes predicted to encode SFKs were identified based on BLAST analysis using conserved SFK family domain sequences and evaluated by CLUSTAL W alignments. The top scoring human gene hit obtained by BLAST of the NCBI database is listed.

* All predicted exons were checked for representation in the egg/embryo expression tiling dataset (Samanta et al., in press). Confirmation by rtPCR is indicated and references to published expression data are provided.

Fig. 2. Localization of Sp-SFK1 and SpCSK proteins in sea urchin egg rafts. Particulate fractions from unfertilized and fertilized (30 s post sperm addition) eggs were resuspended in 2% TX-100 buffer, adjusted to 42.5% sucrose and subjected to equilibrium density centrifugation through a 42.5/30/5% sucrose step gradient. Equal amounts of protein were separated by SDS polyacrylamide gel electrophoresis and transferred to nitrocellulose. The numbering of the gradient fractions begins with the low-density samples (fraction 1) and ends with the high-density fractions (fraction 12). The cytosolic (C) fraction and the insoluble (I) fraction are indicated. Blots were probed with the antibodies indicated followed by HRP-conjugated secondary antibodies and visualization was with Enhanced Chemiluminescence. Blots probed with Sp-SFK1 antibody were exposed for 1 min, and the blots probed with CSK antibody were exposed for 15 min.
activation is likely to include adaptor and scaffold proteins. Initial genomic analysis suggests that the sea urchin genome encodes orthologs of many known scaffolding and adaptor proteins (Table 2), including Src homology 2 (SH2) domain-containing adaptors such as NCK, CRK, GRB2 and SHC, consistent with the observed requirement for protein tyrosine kinase signaling at fertilization. In addition to these scaffold and adaptor proteins, other SH2 domain-containing proteins are present as well. A cursory assessment of the sea urchin genome using the Pfam domain search (Bateman et al., 2004) revealed 45 genes predicted to encode SH2 domain-containing proteins (Supplementary Table 3). In comparison, the human genome encodes 110 nonredundant SH2 domain-containing proteins (Liu et al., 2006). The fewer number observed in the *S. purpuratus* genome is largely due to the reduced number of members in each gene family, not lack of representation of a given gene family (Supplementary Table 3). Again, this is consistent with the observations of many gene families in the sea urchin genome (Consortium, in press).

The general model of regulation of the initial Ca\(^{2+}\) signal (Fig. 1) also invokes the activity of protein phosphatases, acting on Ca\(^{2+}\) signaling components, including the SFKs. These could include both “activating” phosphatases that would be responsible for relieving the repression on the SFKs, as well as Ca\(^{2+}\) sensitive phosphatases that would act as negative feedback modulators on the SFK activity (Supplementary Tables 1 and 2). Identification of sea urchin egg phosphatases has been difficult, due to poor cross-reactivity with antibodies against vertebrate protein phosphatases (Wessel et al., 1995; Kawamoto et al., 1999, 2000) and the lack of highly conserved domain structures. Not surprisingly, a large number of phosphatases now have been identified in the sea urchin genome (Byrum et al., 2006), complementing the kinase repertoire (Bradham et al., 2006). Of particular interest is the *S. purpuratus* ortholog of vertebrate

![Table 2 S. purpuratus genes predicted to encode adaptor or scaffold proteins](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>SPU gene ID</th>
<th>Best human match</th>
<th>Accession identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp-SLMAP</td>
<td>008120</td>
<td>NP_009090</td>
<td>Sarcolemma associated protein</td>
</tr>
<tr>
<td>Sp-CBP partial</td>
<td>019024</td>
<td>NP_004371</td>
<td>Creb binding protein</td>
</tr>
<tr>
<td>Sp-CBP partial</td>
<td>019025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp-SLMAP</td>
<td>019026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp-Eph</td>
<td>027145</td>
<td>P28693</td>
<td>Tyrosine–protein kinase receptor CEK5/CSK-binding protein-like</td>
</tr>
<tr>
<td>Sp-G3BP2 like</td>
<td>017827</td>
<td>NP_987101</td>
<td>Ras-GTPase activating protein SH3 domain-binding protein 2 isoform a</td>
</tr>
<tr>
<td>Sp-GRB2/DRK</td>
<td>003585</td>
<td>NP_002077</td>
<td>Growth factor receptor-bound protein 2 isoform 1</td>
</tr>
<tr>
<td>Sp-GRB2</td>
<td>007721</td>
<td>NP_536739</td>
<td>GRB2-associated binding protein 2 isoform a</td>
</tr>
<tr>
<td>Sp-CRK</td>
<td>016214</td>
<td>NP_005198</td>
<td>v-crk sarcoma virus CT10 oncogene homolog</td>
</tr>
<tr>
<td>Sp-Ptn6/11</td>
<td>013810</td>
<td>NP_002825</td>
<td>Protein tyrosine phosphatase, non-receptor type 6/11</td>
</tr>
<tr>
<td>Sp-e1</td>
<td>015429</td>
<td>NP_055382</td>
<td>Breast cancer anti-estrogen resistance 1</td>
</tr>
<tr>
<td>Sp-Sin</td>
<td>004247</td>
<td>NP_060589</td>
<td>Polymerase (RNA) III (DNA directed) polypeptide E</td>
</tr>
<tr>
<td>Sp-ITSN2</td>
<td>028457</td>
<td>NP_003015</td>
<td>Intersectin 1, isoform ITSN-1</td>
</tr>
<tr>
<td>Sp-GRB2/DRK</td>
<td>003586</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp-Nck</td>
<td>014752</td>
<td>NP_001004722</td>
<td>NCK adaptor protein 2 isoform B</td>
</tr>
<tr>
<td>Sp-AKAP1</td>
<td>002839</td>
<td>X97335.1</td>
<td>Kinase A anchor protein</td>
</tr>
<tr>
<td>Sp-AKAP13</td>
<td>028249</td>
<td>AAL49023.1</td>
<td>Protein kinase A anchoring protein Ht31</td>
</tr>
<tr>
<td>Sp-SH3md2</td>
<td>004827</td>
<td>NM_020870.3</td>
<td>SH3 domain-containing ring finger 1</td>
</tr>
<tr>
<td>Sp-SH3D19</td>
<td>016351</td>
<td>NM_001009555.2</td>
<td>SH3 domain protein D19</td>
</tr>
<tr>
<td>Sp-ITSN2</td>
<td>019253</td>
<td>NP_062541</td>
<td>Intersectin 2, isoform 3</td>
</tr>
<tr>
<td>Sp-H3gl3</td>
<td>02043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp-Ash1</td>
<td>023951</td>
<td>BC042864.1</td>
<td>SH3GL3 protein</td>
</tr>
<tr>
<td>Sp-Ash2</td>
<td>025482</td>
<td>AAF68983</td>
<td>ASH1</td>
</tr>
<tr>
<td>Sp-Ash2</td>
<td>018423</td>
<td>BAA74520</td>
<td>ASH2-like</td>
</tr>
<tr>
<td>Sp-Ash3-like</td>
<td>031490</td>
<td>DAA00301</td>
<td>TPAexp: class II basic helix-loop–helix protein</td>
</tr>
<tr>
<td>Sp-SH3-B-rs1</td>
<td>027685</td>
<td>CAB43208</td>
<td>Hypothetical human protein</td>
</tr>
<tr>
<td>Sp-SH3C</td>
<td>006908</td>
<td>NP_079021</td>
<td>SHC SH2-domain binding protein 1</td>
</tr>
<tr>
<td>Grb10 interacting G+F protein 2</td>
<td>025579</td>
<td>C89095</td>
<td>Hypothetical human protein</td>
</tr>
<tr>
<td>Sp-Cbl-r1</td>
<td>007862</td>
<td>AAB09293</td>
<td>Cas-Br-M (murine) ecotropic retroviral transforming sequence</td>
</tr>
<tr>
<td>Sp-Cbl</td>
<td>007863</td>
<td>AAB09293</td>
<td>Cbl-b truncated form 2</td>
</tr>
<tr>
<td>Sp-Chiap2</td>
<td>000998</td>
<td>CAE45842</td>
<td>Hypothetical human protein</td>
</tr>
<tr>
<td>Sp-Apld-31</td>
<td>003070</td>
<td>BAD92041</td>
<td>Adapter-related protein complex 3 delta 1 subunit variant</td>
</tr>
<tr>
<td>Sp-JIP1</td>
<td>00237</td>
<td>BAD92957</td>
<td>MAPK 8 interacting protein 1 variant [Homo sapiens]</td>
</tr>
<tr>
<td>Sp-JIP3</td>
<td>001396</td>
<td>NP_020375</td>
<td>MAPK 8 interacting protein 3 isoform 2</td>
</tr>
<tr>
<td>Sp-JIP3</td>
<td>017187</td>
<td>CAB72318</td>
<td>c371H6.1 (KIAA0516 protein)</td>
</tr>
<tr>
<td>Sp-JIP3</td>
<td>019022</td>
<td>AA61565</td>
<td>JNK-associated leucine-zipper protein</td>
</tr>
<tr>
<td>Sp-Sin-like</td>
<td>011145</td>
<td>BAA95976</td>
<td>KIAA1452 protein</td>
</tr>
</tbody>
</table>

* Each gene is identified by the name, determined by the annotator and the SPU number. The best human gene match was determined by a BLAST search of the nucleotide sequence for each SPU (see Materials and methods). Note that annotations are subject to change.
rPTPα (Supplementary Table 2), a phosphatase that is known to activate SFKs in mammalian immune cells (Zheng et al., 2000) and that has been implicated in activation of zebrafish eggs at fertilization via relieving repression on the Fyn kinase (Wu and Kinsey, 2002).

Genomic insights into Ca\(^{2+}\) signaling pathways implicated in egg activation 3. Additional pathways to Ca\(^{2+}\) release and modulation

Sea urchin eggs have multiple pathways that are capable of modulating Ca\(^{2+}\) levels (Fig. 1). Most of these pathways have been characterized using pharmacological agents and tools developed in vertebrate somatic cells. Genomic sequence mining now has identified the genes encoding the key components of these pathways (Supplementary Tables 1 and 2) and offers an opportunity to develop specific reagents to test their roles in activation and early development.

While IP\(_3\) is the initial modulator of Ca\(^{2+}\) release in most eggs studied, other second messengers can trigger Ca\(^{2+}\) release in intact sea urchin eggs (Fig. 1). Among these are cyclic ADP-Ribose (cADPR), cGMP, NAADP and nitric oxide (NO) (Stricker, 1999; Whitaker, 2006). While none of these secondary messengers has been shown to be necessary for initiation of the Ca\(^{2+}\) rise at fertilization, live cell studies using eggs of *Lytechinus* spp. (Churchill and Galione, 2001; Galione and Churchill, 2002; Santella et al., 2004) and species from Japan (Galione and Ruas, 2005; Churamani et al., 2006) and China (Leckie et al., 2003) can trigger egg activation 3. Additional pathways to Ca\(^{2+}\) release and modulation

A number of changes occur in eggs wholly or in part due to the rise in cytoplasmic Ca\(^{2+}\) levels (Fig. 1). Cortical granule exocytosis, which modifies the egg surface as a permanent block to polyspermy and results in the elevation of the fertilization
envelope, is a well-studied model of coordinated cellular exocytosis. Many of the genes encoding proteins thought to be involved in the regulation and execution of this event have been described (Wong and Wessel, 2004; Song et al., 2006; Wong and Wessel, 2006). Likewise, the *S. purpuratus* genes encoding cytoskeletal proteins and their regulators now have been identified (Morris et al., 2006) and will be valuable tools for investigating the molecular mechanism of sperm nuclear entry, syngamy and mitotic spindle position, to name just a few of the critical egg activation events that involve the cytoskeleton. For example, the integrins are crucial for the actin reorganization that occurs during egg activation. They are present on *S. purpuratus* eggs and morpholino antisense oligonucleotide-mediated knockdown of the integrin beta subunit results in eggs that lack cortical actin arrays and become apoptotic (Murray et al., 1998; Miller and Epel, 1999) and the rise in cytosolic pH that occurs after fertilization in *L. pictus* (Johnson et al., 1976; Grainger et al., 1979; Shen and Steinhardt, 1979; Whitaker and Steinhardt, 1982) and in *S. purpuratus* eggs (Johnson et al., 1976; Winkler et al., 1980). The pH change has been implicated in a number of other cellular events including: pronuclear migration in *L. pictus* and *A. punctulata* eggs (Schatten et al., 1985); initiation of translation in *L. pictus* (Epel et al., 1974; Grainger et al., 1979); and *S. purpuratus* eggs (Epel et al., 1974; Winkler et al., 1980) and DNA synthesis in both *S. purpuratus* and *L. pictus* (Mazia and Ruby, 1974; Miller and Epel, 1999). Pharmacological studies in *S. purpuratus* (Johnson et al., 1976) and *L. pictus* eggs (Shen, 1989) indicate that the pH rise is mediated through a Na+/H+ exchanger, but detailed mechanistic studies require more specific tools and knowledge of the precise exchanger(s) expressed in eggs. Analysis of the sea urchin genome sequence reveals genes that are predicted to encode redox effectors and Na+/H+ exchangers, as well as a number of other proton exchangers and receptors that mediate ionic exchange (Fig. 1, Supplementary Table 2), setting the stage for further investigation.

Another key question is how the fertilized sea urchin egg handles the dramatic changes in internal Ca2+ concentration. At the peak of the Ca2+ wave, the cytosolic Ca2+ concentration is 3–4 μM, but within 5–10 min, this Ca2+ is returned to ~0.1 μM (Stricker, 1999; Runft et al., 2002). The sea urchin genome contains genes encoding Ca2+ buffers, pumps and exchangers that may participate in this ‘off’ reaction (Fig. 1, Supplementary Table 1). The *S. purpuratus* Ca2+ ATPase gene family is discussed in more detail in an accompanying article. A cDNA representing the single SERCA pump gene in the sea urchin genome has been cloned and described in detail, and immunoblotting reveals that it is expressed in eggs (Gunaratne and Vacquier, 2006), consistent with its role in driving Ca2+ accumulation in the egg ER (Whitaker, 2000). The single copy gene encoding the *S. purpuratus* PMCA is highly expressed in sperm (Gunaratne et al., 2006), and in eggs and embryos as well. Several Ca2+/Na+ exchangers (NCX) are represented in the sea urchin genome (Supplementary Table 1) and a K+-dependent exchanger has been well characterized in *S. purpuratus* sperm (Su and Vacquier, 2002). A number of genes encoding transient receptor ion channels (TRP) channels that are reported to carry Ca2+ are present in the genome (Supplementary Table 1), and in this light, it is interesting to note that recent mammalian somatic cell studies link tyrosine kinase (particularly Src Family Kinase) and GPCR coupled signaling to regulation of a subset of these channels, including TRPC3 (Kawasaki et al., 2006). Identification of the genes encoding the *S. purpuratus* repertoire of Ca2+ channels and exchangers provides a crucial bridge between egg physiology and signaling mechanisms that now can be investigated in detail.

Other examples of sea urchin egg activation events that have been well described at the biochemical and cellular physiological level include the substantial redox changes (Whitaker and Steinhardt, 1981, 1982; Schomer and Epel, 1998; Miller and Epel, 1999) and the rise in cytosolic pH that occurs after fertilization in *L. pictus* (Johnson et al., 1976; Grainger et al., 1979; Shen and Steinhardt, 1979; Whitaker and Steinhardt, 1982) and in *S. purpuratus* eggs (Johnson et al., 1976; Winkler et al., 1980). The pH change has been implicated in a number of other cellular events including: pronuclear migration in *L. pictus* and *A. punctulata* eggs (Schatten et al., 1985); initiation of translation in *L. pictus* (Epel et al., 1974; Grainger et al., 1979); and *S. purpuratus* eggs (Epel et al., 1974; Winkler et al., 1980) and DNA synthesis in both *S. purpuratus* and *L. pictus* (Mazia and Ruby, 1974; Miller and Epel, 1999). Pharmacological studies in *S. purpuratus* (Johnson et al., 1976) and *L. pictus* eggs (Shen, 1989) indicate that the pH rise is mediated through a Na+/H+ exchanger, but detailed mechanistic studies require more specific tools and knowledge of the precise exchanger(s) expressed in eggs. Analysis of the sea urchin genome sequence reveals genes that are predicted to encode redox effectors and Na+/H+ exchangers, as well as a number of other proton exchangers and receptors that mediate ionic exchange (Fig. 1, Supplementary Table 2), setting the stage for further investigation.

Another important group of egg activation effectors is the canonical Protein Kinase C (PKC) enzymes and other Ca2+ sensitive kinases such as the Ca2+-calmodulin-dependent protein kinases (CaMKs). These protein families are described in more detail in the companion paper by Bradham et al. (2006), but it is worth noting that a number of these kinases are expressed in *S. purpuratus* eggs (Supplementary Tables 1 and 2) and past functional studies in *L. pictus* strongly support their role in later egg activation events (Baitinger et al., 1990; Shen and Buck, 1990).

Finally, entry into the mitotic cell cycle is perhaps the most obvious downstream egg activation event. Sea urchins are one of only a few groups of animals that produce eggs that are naturally matured and arrested in a haploid, quiescent state. Fertilization directly triggers mitotic cell cycle entry while most other animals produce oocytes that are arrested in meiosis and fertilization triggers the completion of meiosis followed by mitotic entry. Because the same signaling pathways modulate meiotic arrest, meiotic completion and mitotic cell cycle entry (Kishimoto, 2004), it has been difficult to tease apart specific molecular mechanisms for each. The sea urchin, therefore, offers the opportunity to study mitotic cell cycle entry directly, without this complication. The genes encoding the *S. purpuratus* cell cycle regulators and machinery now have been documented (Fernandez-Guerra et al., 2006). Among the most important signaling pathways governing cell cycle re-entry downstream of the intracellular Ca2+ rise is the Mitogen Activated Protein Kinase (MAP kinase) pathway. Genes encoding many members of this signaling pathway, including MAP kinases, MAPK kinases and MAPKK kinases, as well as the phosphatases implicated in their regulation, now have been documented in the sea urchin genome (Supplementary Table 2; Byrum et al., 2006; Bradham et al., 2006).

In several species of sea urchin (*P. lividus*, *L. pictus* and *S. purpuratus*), MAPK activity has been implicated in regulating
cell cycle events, but the data differ regarding the precise role of MAPK (Chiri et al., 1998; Philipova and Whitaker, 1998; Carroll et al., 2000; Kumano et al., 2001; Kumano and Foltz, 2003; Philipova et al., 2005a,b; Philipova and Whitaker, 2005; Zhang et al., 2005, 2006). An outstanding question is whether there are multiple MAPK signaling pathways, which might explain the conflicting results reported (Philipova et al., 2005a; Zhang et al., 2005, 2006). In the S. purpuratus genome, a single gene has been identified to date that encodes an ERK-like MAP kinase (Bradham et al., 2006). The cognate mRNA is present in unfertilized eggs (Kumano and Foltz, 2003), and monoclonal antibodies directed against vertebrate ERKs detect a protein of the correct size in S. purpuratus eggs and embryos (Carroll et al., 2000; Kumano et al., 2001; Kumano and Foltz, 2003). In contrast, there are at least five genes encoding MAPK kinases (Bradham et al., 2006) and commercial antibodies specifically detect an MEK-like protein in eggs (Kumano et al., 2001). The identification of these pathway components and development of specific tools allows for investigation of an outstanding question—the mechanism of the unique haploid arrest of the egg and subsequent mitotic re-entry at fertilization. More detailed investigations of downstream targets, the effectors of the cell cycle re-entry, are now also possible. The first several cell cycles do not require transcription, so these MAP kinase signaling targets are unlikely to be the typical ones (transcription factors) commonly found in somatic cells (Lewis et al., 1998; Garrington and Johnson, 1999; Pearson et al., 2001). Rather, these and other effectors of egg activation will be maternal proteins that are regulated post-translationally. Thus, the information provided by the genome is only the first step in understanding the mechanism of egg activation—identification of the maternal proteins is crucial.

The significance of the egg proteome—genes involved in the post-translational modification of maternal proteins that mediate egg activation

The egg is a complex cell that contains many mRNAs and proteins that will not be used until later in development. In addition, no transcription and very little translation occurs in eggs that will not be used until later in development. In L. pictus, proteasome-mediated protein turnover begins within 15–20 min after fertilization, and a peak in proteasome activity occurs at ~100 min post fertilization, right before nuclear envelope breakdown (Kawahara et al., 2000). Inhibition of proteasome activity results in over-replication of DNA and blocks mitotic entry, extending the role of protein degradation as a cell cycle regulator beyond that of mitotic exit (Kawahara et al., 2000). Genomic analyses have revealed a number of components of the S. purpuratus translational control apparatus, proteasome and ubiquitination pathways, which will allow for a more detailed study of structure, function and regulation (Fernandez-Guerra et al., 2006; Morales et al., 2006). An emerging model for the egg to embryo transition is the required degradation of key proteins, regulated by conserved kinases (Greenstein and Lee, 2006). These studies have been carried out mainly in C. elegans, allowing for precise genetic models to be constructed. The sea urchin zygote is a good model for the complementary biochemical experiments. Genes encoding a number of the components identified in the C. elegans egg to embryo transition, including Dyrk, Cdk-1, Gsk-3 and Kin-19 (Shirayama et al., 2006; Stitzel et al., 2006), have now been identified in the sea urchin (Supplementary Table 2).

The transition from egg to embryo has been described as a series of translational regulatory events (Vasudevan et al., 2006). The dramatic rise in protein synthesis that occurs in S. purpuratus eggs is independent of transcription (Epel, 1967; Brandhorst, 1976) and likely requires the degradation of 4E-BP proteins, which sequester the 5′ cap binding subunit of the elf4F initiation factor (Elf4F). In eggs of Sphaerechinus granularis, fertilization-induced phosphorylation of 4E-BP is concomitant with its dissociation from elf4F and subsequent degradation (Cormier et al., 2001), linking protein synthesis and turnover with phosphorylation.

Protein phosphorylation, especially on tyrosine, is another major regulatory event that occurs during egg activation in all metazoans studied (Kisney, 1997; Sato et al., 2006; Whitaker, 2006), but the identities of the phosphoproteins, kinases and phosphatases are largely unknown. Candidate protein tyrosine kinases activated in S. purpuratus eggs at fertilization have included members of the receptor tyrosine kinases as well as non-receptor tyrosine kinases, especially the SFKs (Fig. 1, Supplementary Table 2). It is also likely that protein serine/threonine phosphorylation is important. The PKC and the MAP kinase pathways, for example, are implicated in later egg activation events (see above). The completion of the S. purpuratus genome sequence enables the coupling of the powerful biochemical and cellular approaches available in the sea urchin to functional proteomic methods in order to identify key maternal proteins that regulate egg activation.

Baseline characterization of the egg proteome and phosphoproteome

Historically, the biochemical tractability and synchronicity of the sea urchin zygote have made it an attractive model for studying global protein synthesis. Brandhorst (1976) used two-dimensional gel electrophoresis to visualize differences between unfertilized and fertilized sea urchin (L. pictus and S. purpuratus) egg proteins, providing the first glimpse of the egg proteome and changes derived from initiation of maternal mRNA translation that had been described earlier by Epel (1967). Grainger et al. (1986) then took advantage of the biochemical tractability and synchronous development of the early sea urchin embryo to analyze temporal differences in total protein complement at
various stages by comparative 1- and 2-dimensional gels. The sequence of the sea urchin genome together with improvements in 2D gel electrophoresis and protein detection methods sets the stage for a thorough proteomic investigation of egg activation and early development.

Studies of protein turnover and dynamic phosphorylation events that occur in unfertilized eggs and in zygotes at various times after fertilization were initiated. Following 2D gel electrophoresis, proteins were visualized with SYPRO Ruby stain. Optimal, reproducible resolution of as little as 25 μg soluble protein was achieved using all available pH gradients (Supplementary Fig. 2). Analysis of the broadest pH range separation (pH 3–10) data set reveals that there are ∼740 individual protein spots that are reproducibly visualized and easily resolved in unfertilized eggs (Fig. 3A). This represents the detectable baseline S. purpuratus egg proteome. The same type of analysis can be conducted for any time point after fertilization (Fig. 3B). Separation on pH 4–7 gradients (Supplementary Fig. 2B) resulted in optimal resolution of the majority of proteins. Table 3 (first column) summarizes the number of reproducibly detectable proteins in unfertilized eggs and at various times post fertilization using the pH 4–7 gradient. For comparison, previous studies reported the presence of ~400 proteins in eggs (Brandhorst, 1976) or ∼100 proteins (Grainger et al., 1986) in L. pictus and S. purpuratus eggs using 35S-methionine labeling and silver staining and pH ranges of 4.5–7.3 and 5–7, respectively. The increased number of detectable proteins (Table 3) likely is the result of improved resolution and detection sensitivity.

After visualization of the total protein complement, the same gels were then stained with ProQ Diamond, which detects serine-, threonine- and tyrosine-phosphorylated proteins (Steinberg et al., 2003). Analysis of the phosphorylated proteins revealed that ∼30% of the detected proteins in unfertilized eggs are phosphorylated (Fig. 3A′, Table 3). This represents the reproducibly detectable baseline egg phosphoproteome and is consistent with observations in mammalian systems indicating that one-third of all cellular proteins are phosphorylated (Ahn and Resing, 2001). The exquisite synchrony of S. purpuratus fertilization allows for assessment of rapid time points. At 2 min post sperm addition, the number of detectable phosphorylated proteins doubles, and by 30 min, the percentage of phosphorylated proteins has returned to pre-fertilization levels (Table 3). These qualitative results complement and extend previous studies of bulk protein phosphorylation changes in eggs at fertilization (reviewed in Kinsey, 1997).

Fertilization-responsive changes in the proteome and phosphoproteome

Temporal differences in the total and phosphoproteome were analyzed in more detail. Soluble protein lysates from a single batch of unfertilized eggs and at various times after fertilization were analyzed by 2D gel electrophoresis in triplicate and stained with SYPRO Ruby to analyze total proteins (Fig. 4). First, individual protein spots were tracked over a time course in triplicate to assess reproducibility. As expected, some proteins remained relatively stable over a 30 min time course while others disappeared reproducibly. For example, three proteins readily detected in unfertilized eggs (Fig. 4, arrows) were barely detectable by 2 min post fertilization and entirely gone by 15 min. The loss of a protein spot could be due to a post-translational modification that shifts its position on the gel, degradation or perhaps a subcellular relocalization event. For example, proteins present in the cortical granules would be lost after exocytosis at fertilization. It is also possible that a protein

Fig. 3. Multiplex detection of the sea urchin proteome. Total NP-40 soluble lysates (35 μg) from unfertilized (A, A′) and fertilized eggs 30 min post sperm addition (B, B′) were separated by isoelectric focusing using IEF 11 cm pH 3–10 strips then separated by Mr on an 8–16% gradient SDS gel. Panels A and B were stained with SYPRO Ruby which detects total protein. These same gels were then stained with ProQ Diamond, which detects phosphorylated tyrosine, serine and threonine residues (A′, B′). Arrows indicate examples of spots detected with both SYPRO and ProQ Diamond stains for multiplexed reference between gels and correspond to areas enlarged for analysis in Fig. 5.
could re-localize to a microdomain in the egg and become insoluble under the conditions used. All of these possibilities can be assessed using variations of stains, solubilization and fractionation procedures, depending on the question being addressed.

Specific, temporal differences in the phosphoproteome also were assessed. Soluble protein lysates from a single batch of unfertilized and eggs at various times after fertilization were analyzed by 2D gel electrophoresis and stained with ProQ Diamond to detect phosphoproteins. Three different regions of the same gel are shown as examples of the kinds of changes that are detected over an expanded time course (Fig. 5). Several proteins that are phosphorylated in unfertilized eggs remain stably phosphorylated over time (Fig. 5A). However, some proteins are phosphorylated in unfertilized eggs and are dephosphorylated after fertilization (Fig. 5B); in this example, dephosphorylation has occurred by 5 min post insemination (Fig. 5B, arrow). Other proteins become phosphorylated (Fig. 5C) or their phosphorylation state oscillates. For example, two proteins (Fig. 5C, circled) are phosphorylated by 30 min post insemination and remain phosphorylated while a third protein (Fig. 5C, arrow) is phosphorylated by 5 min and then decreases in phosphorylation at 30 min only to increase phosphorylation again at 45 min post insemination. Several other proteins visible in this region of the gel appear to have increased in phosphorylation following fertilization but are left unlabeled for simplicity. The ability to resolve changes in the phosphorylation state of a large number of proteins over a period of time sets the stage for a comprehensive analysis of the role of phosphorylation in egg activation at fertilization.

Table 3

<table>
<thead>
<tr>
<th>Time point</th>
<th>Total detectable proteins</th>
<th>Total phosphorylated proteins</th>
<th>% proteins phosphorylated</th>
<th>Representative egg activation events*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>604</td>
<td>182</td>
<td>30</td>
<td>Maintenance of haploid arrest; metabolic housekeeping (no Ca2+ signaling)</td>
</tr>
<tr>
<td>2 min</td>
<td>464</td>
<td>307</td>
<td>66</td>
<td>Src family tyrosine kinase activity peaks; Ca2+ wave completed, cortical granule exocytosis; initiation of cytoskeletal remodeling; PKC activation; initiation of pH rise; activation of NAD kinase, increase in NADP+ and NADPH; increase in O2 consumption</td>
</tr>
<tr>
<td>15 min</td>
<td>587</td>
<td>248</td>
<td>42</td>
<td>Changes in MAPK activity; pronuclear entry and syngamy; mRNA translation and amino acid transport begins; mitotic cell cycle events initiate; Ca2+ levels return to near pre-fertilization values</td>
</tr>
<tr>
<td>30 min</td>
<td>450</td>
<td>110</td>
<td>25</td>
<td>DNA synthesis nearly complete; protein synthesis and turnover steady</td>
</tr>
</tbody>
</table>

Total soluble protein lysates (25 μg) from unfertilized sea urchin eggs and eggs at various times post sperm addition were separated by isoelectric focusing using IEF 11 cm pH 4–7 strips then by Mr on a 8–16% gradient SDS gel. Triplicate gels were stained for total protein detection (SYPRO dye), and then the same gel was stained to detect phosphorylated proteins (ProQ Diamond dye). Gels were imaged and analyzed as described in Materials and methods. Numbers listed represent the average value of triplicate sample runs within the same experiment.

* Only a subset of egg activation events are listed and times are approximate, based on *S. purpuratus* eggs fertilized at 15–17°C (see Whitaker and Steinhardt, 1982; Townley et al., 2006). Note that the fast block to polyspermy (and fertilization potential rise) as well as sperm–egg membrane fusion is complete within 1 s. An increase in Ca2+ is detected within 10 s. Many of the other events listed in the 2 min time point initiate within the first 1–5 min (see Fig. 1, also).

Fig. 4. Temporal analysis of the total proteome. Eggs from a single sea urchin were collected as unfertilized and at various times post sperm addition as labeled. Total soluble proteins (25 μg) were separated by isoelectric focusing using IEF 11 cm pH 4–7 strips then separated by Mr on a 8–16% gradient SDS gel. Individual samples were run in triplicate and stained with SYPRO Ruby to detect total protein. The same area of the triplicate gels is shown at the different time points. Arrows indicate position of representative proteins over the first 30 min post sperm addition.
Identification of proteome components by mass spectrometry

The goal of this study is to move beyond the global proteome and phosphoproteome dynamics to identification and characterization of the individual proteins. Analyses of the proteome and phosphoproteome at various times after fertilization (Table 3) reveal dynamic changes that relate to the egg activation events occurring at given time points (Fig. 1). To begin to compare the unfertilized egg proteome with that of a fully activated egg (30 min post fertilization), spots representing proteins that fell into two distinct classes were chosen: those that were shared by both the unfertilized egg and 30 min post insemination zygote proteomes and those that were differentially represented in the two proteomes. Twelve individual spots were excised from the same coordinates on each of the gels (Fig. 6) and subjected to in-gel trypsin digestion. The digested samples were analyzed by Q-ToF tandem mass spectrometry, and the resulting peptide spectra were analyzed and assessed for matches against the predicted sea urchin genome. In all 12 cases, at least two unique (non-overlapping) peptide matches were discerned for each spot picked (Table 4) and identities were assigned with a high confidence level. Eight of the twelve proteins yielded peptide spectra that matched already-annotated S. purpuratus genes. The remaining four matched GLEAN predictions were then assessed and annotated. Not surprisingly, two of the most abundant proteins present in both unfertilized and 30 min zygote...
proteomes were α-tubulin and actin, known to be present and relatively stable during early sea urchin development (Bibring and Baxandall, 1977; Alexandraki and Ruderman, 1985). Gelsolin, an actin remodeling protein (Silacci et al., 2005), also fell into this class. Interestingly, two proteins that are present in unfertilized eggs, but absent in the 30 min fertilized proteome are cortical vesicle proteins (Sp-Cvp18 and Sp-rendezvin; Fig. 6, Table 4), whichlikely are lost during cortical granule exocytosis.

Table 4
Identification of S. purpuratus egg proteins using Q-ToF MS/MS

<table>
<thead>
<tr>
<th>Protein identity by Q-ToF MS/MS</th>
<th>S. purpuratus gene name</th>
<th>GENE ID (SPU #)</th>
<th>Analysis Set (PDQuest)</th>
<th>Sequence coverage (%)</th>
<th>Unique peptide matches</th>
<th>Unique peptide sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 18 kDa egg cortical vesicle protein</td>
<td>Sp-Cvp18</td>
<td>007216</td>
<td>Undetected in fertilized</td>
<td>4.3</td>
<td>2</td>
<td>(R)TIAFTVER(T)</td>
</tr>
<tr>
<td>2. 18 kDa egg cortical vesicle protein</td>
<td>Sp-Cvp18</td>
<td>007216</td>
<td>Undetected in fertilized</td>
<td>4.3</td>
<td>2</td>
<td>(R)TIAFTVER(T)</td>
</tr>
<tr>
<td>3. GTP binding protein</td>
<td>Sp-rendezvin</td>
<td>027023</td>
<td>Undetected in fertilized</td>
<td>11</td>
<td>5</td>
<td>(R)TGNEILVQF(T)</td>
</tr>
<tr>
<td>4. GTP binding protein</td>
<td>Sp-rendezvin</td>
<td>027023</td>
<td>Undetected in fertilized</td>
<td>11</td>
<td>4</td>
<td>(R)TGNEILVQF(T)</td>
</tr>
<tr>
<td>5. Peroxiredoxin</td>
<td>Sp-Peroxiredoxin1</td>
<td>014869</td>
<td>Undetected in fertilized</td>
<td>28</td>
<td>5</td>
<td>(K)IPLLSDMCGK(I)</td>
</tr>
<tr>
<td>6. Fumarylacetoacetase</td>
<td>Sp-Fumarylacetoacetase</td>
<td>020609</td>
<td>Undetected in fertilized</td>
<td>9.1</td>
<td>2</td>
<td>(R)LLADEPTLDRNADLR(E)</td>
</tr>
<tr>
<td>7. Tubulin alpha 2 chain</td>
<td>Sp-alpha-tubulin2</td>
<td>004143</td>
<td>Undetected in unfertilized</td>
<td>5.7</td>
<td>3</td>
<td>(R)AEAL(D)</td>
</tr>
<tr>
<td>8. Acyl-CoA dehydrogenase</td>
<td>Sp-Acadsb</td>
<td>005150</td>
<td>Undetected in unfertilized</td>
<td>11.8</td>
<td>2</td>
<td>(R)EALDKFLNYDR(G)</td>
</tr>
<tr>
<td>9. CG1106-PB isoform B</td>
<td>Sp-Gelsolin</td>
<td>003985</td>
<td>Detected in both</td>
<td>5</td>
<td>3</td>
<td>(R)DIYGIEMIEK(E)</td>
</tr>
<tr>
<td>10. Synaptotagmin</td>
<td>Sp-Syr1/2</td>
<td>002292</td>
<td>Detected in both</td>
<td>21.6</td>
<td>7</td>
<td>(R)LFQVEYAIK(L)</td>
</tr>
<tr>
<td>11. Tubulin</td>
<td>Sp-alpha-tubulin5</td>
<td>019990</td>
<td>Detected in both</td>
<td>13.2</td>
<td>6</td>
<td>(R)DVNAIAATIK(T)</td>
</tr>
<tr>
<td>12. Actin homolog 2</td>
<td>Sp-actin (predicted)</td>
<td>009481</td>
<td>Detected in both</td>
<td>20.5</td>
<td>8</td>
<td>(R)AVFPSIVGR(P)</td>
</tr>
</tbody>
</table>

a Numbers refer to protein spots identified in Fig. 6.
b Analysis sets were user-defined during analysis in PDQuest and are based on qualitative differences between replicate groups. Sequence coverage and unique peptide matches are reported from ProteinLynx Global Server (PLGS) software. Unique peptide sequences are also predicted from analysis of mass spectra using PLGS. See Materials and methods.
Again, however, absence of a detectable signal at any given coordinate could be due to either a degradation event or to a post-translational modification that causes a shift from the coordinates. For example, in unfertilized eggs, both Sp-Cvp18 and Sp-rendezvin were identified from two adjacent spots and likely represent differential phosphorylation states. In the case of tubulin, this could be due to glutamylation or acetylation (Luduena, 1998), and consistent with this, one form of alpha tubulin was observed to present in unfertilized eggs but absent at 30 min post fertilization (Table 4).

These results indicate that the annotated sea urchin genome is a valuable resource for proteomic analyses. Current efforts are focused on identifying proteins that change phosphorylation state at fertilization or in response to modulation of specific signaling pathways involved in egg activation and cell cycle regulation. This approach also is amenable to analysis of proteins that form temporally dynamic complexes isolated by co-immunoprecipitation or protein affinity chromatography. The completion of the sea urchin genome now allows the promise offered by the biochemistry and synchronicity of the sea urchin egg to be realized by providing the missing link needed to identify the proteins.

Conclusions

In summary, the completion of the sea urchin genome sequence propels the field of fertilization biology forward. It provides the ability to develop specific probes to test the function of known components and to identify new components involved in regulating Ca$^{2+}$ and the myriad of cellular changes that occur during egg activation. The strength of the sea urchin egg as a synchronous, easily handled, biochemical model will allow for continued functional proteomic approaches to outstanding questions of fertilization biology and basic cell biology.

Acknowledgments

We thank Monte Radeke and Linc Johnson of the UCSB Genomics and Proteomics Facility for Vision Research (NIH EY014799), S. Robin Saxon, Brian Slizgi and our many Consortium colleagues and fellow gene annotators. Special thanks to James Coffman, Arcady Mushegian and Marisha Goel, as well as George Weinstock, Erica Sodergren and the team at the Baylor College of Medicine Human Genome Sequencing Center. We also thank Clarissa Lin for help with 2D gel analyses, Carol Vandenberg for helpful discussions and Dave McClay, Rindy Jaffe, Forest O’Neill and two anonymous reviewers for comments and suggestions on the manuscript. Work in the laboratory of VDV is funded by the NIH (HD12986). Work in the laboratory of KRF is funded by the NSF (IBN-0415581). MMR was supported by an NSF Pre-doctoral Fellowship.

Appendix A. Supplementary data

References

Ando, H., Mizutani, A., Matsu-ura, T., Mikoshiba, K., 2006. IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J. Biol. Chem. 278, 106022–110612.

Mazia, D., Ruby, A., 1974. DNA synthesis turned on in unfertilized sea urchin
Strongylocentrotus
Luduena, R.F., 1998. Multiple forms of tubulin: different gene products and
McPherson, S.M., McPherson, P.S., Mathews, L., Campbell, K.P., Longo, F.J.,
Morales, J., Mulner-Lorillon, O., Cosson, B., Morin, E., Belle, R., Bradham,
Onodera, H., Kobari, K., Sakuma, M., Sato, M., Suyemitsu, T., Yamasu, K.,
Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.-E., Karandikar, M., Berman,
Philipova, R., Whitaker, M., 1998. MAP kinase activity increases during mitosis
Philipova, R., Kiselewlska, J., Lu, P., Larman, M., Huang, J.-Y., Whitaker, M.,
Sato, K., Fukushima, Y., Sato, K., Iwasaki, T., Ogawa, K., Konishi, M.,
Sato, K., Iwasaki, T., Ogawa, K., Konishi, M., Tokmakov, A.A., Fukami, Y.,
Sato, K., Iwasaki, T., Ogawa, K., Konishi, M., Tokmakov, A.A., Fukami, Y.,
Sato, K., Fukami, Y., Sato, K., Iwasaki, T., Ogawa, K., Konishi, M.,
Sato, K., Iwasaki, T., Ogawa, K., Konishi, M.,
Sato, K., Fukami, Y., Sato, K., Iwasaki, T., Ogawa, K., Konishi, M.,
Sato, K.-I., Tokmakov, A.A., He, C.-L., Kurokawa, M., Iwasaki, T., Shirouzu,
Sato, K., Fukami, Y., Sato, K., Iwasaki, T., Ogawa, K., Konishi, M.,
Sato, K.-I., Tokmakov, A.A., He, C.-L., Kurokawa, M., Iwasaki, T., Shirouzu,
Sato, K., Fukami, Y., Sato, K., Iwasaki, T., Ogawa, K., Konishi, M.,
Sato, K.-I., Tokmakov, A.A., He, C.-L., Kurokawa, M., Iwasaki, T., Shirouzu,
Sato, K., Fukami, Y., Sato, K., Iwasaki, T., Ogawa, K., Konishi, M.,
Sato, K.-I., Tokmakov, A.A., He, C.-L., Kurokawa, M., Iwasaki, T., Shirouzu,

