
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Journal of Neuroscience Methods 174 (2008) 245–258

Contents lists available at ScienceDirect

Journal of Neuroscience Methods

journa l homepage: www.e lsev ier .com/ locate / jneumeth

A flexible software tool for temporally-precise behavioral control in Matlab

Wael F. Asaada,b,∗, Emad N. Eskandara,b

a Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
b Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA

a r t i c l e i n f o

Article history:
Received 9 May 2008
Received in revised form 30 June 2008
Accepted 16 July 2008

Keywords:
Neurophysiology
Psychophysics
Matlab
Behavioral control
Software
Cognition
Human
Monkey

a b s t r a c t

Systems and cognitive neuroscience depend on carefully designed and precisely implemented behavioral
tasks to elicit the neural phenomena of interest. To facilitate this process, we have developed a software
system that allows for the straightforward coding and temporally-reliable execution of these tasks in
Matlab. We find that, in most cases, millisecond accuracy is attainable, and those instances in which it is
not are usually related to predictable, programmed events. In this report, we describe the design of our
system, benchmark its performance in a real-world setting, and describe some key features.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Interesting neural data are often the products of well-designed,
psychophysically-rigorous behavioral paradigms. The creation and
execution of these behavioral tasks relies upon a small range of
applications that run on a relatively narrow range of software and
hardware (Hays et al., 1982; White et al., 1989–2008; Ghose et al.,
1995; Maunsell, 2008). The strengths and weakness of each applica-
tion reflect the types of behaviors studied at the time of their initial
development. Too often, the transition towards different types of
behavioral tasks strains the flexibility of these programs, and cum-
bersome workarounds layer successively upon one another.

Recently, however, the performance of even a higher-level
programming environment, specifically Matlab, has been demon-
strated to be adequate for behavioral control at the 1 ms time-scale
(Meyer and Constantinidis, 2005; Asaad and Eskandar, 2008). Thus,
although no software running on Windows can attain truly deter-
ministic, hard-real-time performance (Ramamritham et al., 1998),
such software can nevertheless deliver high (not perfect) temporal
reliability. Given those data, we now focus on the design, real-world
performance, and usability such a system can achieve.
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In particular, we sought to harness the Matlab high-level pro-
gramming environment to allow the quick and efficient coding
behavioral tasks. By creating a system that has minimal program-
ming overhead, we hoped to allow users to focus on the essential
features of experimental design and the basic elements of behav-
ioral control and monitoring rather than on the often arcane details
of the video presentation and data acquisition hardware. Our major
goals were:

• To allow behavioral control with high temporal precision in Mat-
lab.

• To allow straightforward scripting of behavioral tasks using stan-
dard Matlab syntax and functions.

• To interface transparently with data acquisition hardware for
input / output functions, such as eye-signal, joystick and button-
press acquisition, reward delivery, digital event marker output, as
well as analog and TTL output to drive stimulators and injectors.

• To allow the full reconstruction of task events from the behavioral
data file by including complete descriptions of behavioral perfor-
mance, the event markers and their text labels, the task structure,
and the actual stimulus images used; as a demonstration of this
goal, to allow the re-playing of any given trial from the behavioral
data file alone.

• To provide the experimenter with an information-rich display of
behavioral performance and to reflect task events in real-time to
aid the assessment of on-going behavior.
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2. Materials and methods

Our tested system was composed of a Dell Computer with a Pen-
tium Core 2 Duo processor (model 6300) running at 1.86 GHz and
containing 1 GB of RAM (Dell Inc., Round Rock, TX). The operating
system was Microsoft Windows XP, service pack 2 (Microsoft, Red-
mond, WA). The graphics hardware in this machine consisted of an
nVidia Quadro NVS 285 with 256 MB of video RAM. Output from this
dual-headed graphics card was split to two subject displays running
in full-screen mode at pixel resolutions of 800 × 600, and an experi-
menter’s control display, running in windowed mode at a resolution
of 1024 × 768. The displays were standard cathode-ray tubes mea-
suring 15 inches in the diagonal, also from Dell. The refresh rate for
the tests reported here was 100 Hz, and video was double-buffered.
The experimenter’s display window was set to update every 100 ms
during behavioral monitoring to allow near-real-time observation
of the subject’s performance.

Matlab software (version r2007b, The Mathworks Inc., Natick,
MA), including the Data Acquisition Toolbox and the Image Pro-
cessing Toolbox, was used to write the behavioral control software
tested here, and to analyze the timing data reported below. All func-
tions comprising our software were written as simple “.m” files that
are directly editable by any user. Matlab was run in the default,
non-multi-threaded mode. Matlab figures for the experimenter’s
display (created using the built-in graphics functions) relied upon
OpenGL with hardware acceleration enabled. For the subject’s dis-
play, low-level routines for video control (based on DirectX from
Microsoft Corp.) were obtained through the generosity of Jeffrey S.
Perry at the University of Texas at Austin. All tests were run within
Matlab with the Java Virtual Machine disabled (launched by typing
“matlab –nojvm” at the windows command prompt).

An optimized system profile was created as described previously
(Asaad and Eskandar, 2008) to minimize the amount of proces-
sor time that could be stolen by other applications and devices.
In addition, increasing the process priority of Matlab in Windows
effectively decreased the amount of time stolen from the behavioral
task by other applications (Asaad and Eskandar, 2008). Therefore,
trials were run at the highest process priority allowed by Win-
dows (“Real Time”), and the priority was lowered to “Normal”
during the inter-trial-intervals to allow other pending activities
time to execute (Note that setting the process priority for trials is
accessible to the user through an option in the main menu of our
software).

Behavioral signals were monitored using two identical data
acquisition boards (a.k.a., DAQ boards) from National Instruments:
two PCI-6229 multi-function DAQ cards were each connected to
a BNC-2090a break-out box (National Instruments, Austin, TX).
These were interfaced to Matlab using the Data Acquisition Toolbox.
Although this toolbox is not intended for real-time control, our tests
(Asaad and Eskandar, 2008) have suggested that it is nevertheless
capable of delivering the performance necessary for millisecond-
level behavioral monitoring.

We split the incoming behavioral signals into two analog input
boards to allow more rapid sampling and simultaneous storage of
these data. This is because logging and sampling data from the same
board would be subject to upload delays caused by the temporary
storage of samples in the acquisition board’s local memory buffer
(Asaad and Eskandar, 2008). An option in our software automat-
ically detects the presence of two identical DAQ boards, and will
allocate one for storage and one for on-line sampling.

Digital event markers were written to a separate neural data
acquisition system (Plexon, Dallas, TX) using the parallel port rather
than the digital outputs on the DAQ card because we found that, on
our system, the parallel ports were significantly faster (Asaad and
Eskandar, 2008).

To assess the performance of our software, we analyzed data
from the on-going training of a subject. Specifically, we employed a
simple behavioral task in which a rhesus monkey (macaca mulatta,
male, 6.1 Kg) was presented with four objects simultaneously, and
needed to learn to pick one of the four at the end of a short delay by
trial-and-error. To allow eye-tracking, head fixation was achieved
using a head-post system (Judge et al., 1980). Visual fixation was
required for a total of 2.5 s (1 s of initial fixation followed by a 500 ms
cue presentation and then a 1 s delay) before the execution of a
saccadic response to select a target. An inter-trial-interval of 2 s was
used. Data from three consecutive days of training (one session each
day) were collected and confirmed to yield nearly identical results,
so one of these sessions was chosen arbitrarily for presentation
below. This session consisted of 1601 trials over 2 h and 53 min. At
all times, the animal was handled in accord with NIH guidelines
and those of the Massachusetts General Hospital Animal Care and
Use Committee.

Analog X & Y position signals conveying behavioral output con-
sisted of an optical eye-tracking system (Iscan, Inc., Burlington,
MA) running at 120 Hz. Although the relatively slow speed of eye-
tracking used here did not necessitate millisecond-level accuracy
(unique behavioral samples were available only every 8.3 ms), 1 ms
accuracy is nevertheless the standard to which behavioral control
systems such as ours aspire. A joystick (JC200 multi-axis inductive
controller from Penny & Giles, Dorset, U.K.) was used to test the
behavioral task during initial scripting.

For a more straightforward demonstration, a schematic diagram,
the code (timing script) and the conditions file for a simpler task
(a standard delayed-match-to-sample, or DMS, task) is shown in
Fig. 4 (the task actually tested, described above, consisted of 96
conditions and more lines of code to assess on-line learning and
handle block selection).

3. Results

First we describe the basic design strategy of the software and
the potential strengths and weaknesses of our approaches. We then
examine the temporal performance of the software, specifically in
the context of an actual behavioral task (rather than as in the more
abstract tests described in Asaad and Eskandar, 2008). Finally we
describe some features intended to enhance usability.

4. Design

The interactive structure of any behavioral task is defined by
only two main activities: stimulus presentation and behavioral
monitoring (corresponding to input and output, from the perspec-
tive of the subject). As such, our software is designed to facilitate
these two activities by providing one function corresponding to
each.

Stimulus presentation consists of the activation or inactivation
of inputs to the subject that are intended to drive or constrain
behavior and/or neural activity. Stimuli can be delivered through
any of several modalities, including visual, auditory, electrical (ana-
log output), or chemical (digital or analog output to an injector).
These are specified by the experimenter in a table that lists the
stimuli available for each trial type, or “condition” (Fig. 3b), simi-
lar to the way that is done in CORTEX (White et al., 1989–2008),
but with the direct specification of stimulus objects in this file
rather than through an index into another “items” file (while this
has the advantage of placing all the stimulus information in direct
view, this table can appear overly-dense at times). A condition is
defined by the collection of stimuli that are employed for a par-
ticular trial, or the contingencies that determine the timing and
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Fig. 1. Program schematic. The minimum elements that must be provided by the user are marked with boxes. In addition, users can write Matlab scripts to control the time
at which blocks change, the selection of blocks, and the selection of conditions. The darker portions of the arrows correspond to the “entry” and “exit” times measured in
Table 1 (the eventmarker function is not shown, but would appear intermixed with toggle and track).

manner in which these stimuli are presented. Then, within any
individual trial, the activation or inactivation of a stimulus is accom-
plished through a call to the stimulus presentation function, toggle,
with arguments corresponding to the stimuli to be turned on or
off.

While the activation or inactivation of a stimulus is treated like
an instantaneous event (even though the stimulus itself may per-
sist in time), behavioral monitoring, on the other hand, is an activity
that explicitly specifies the passage of time. Repeated observations
of variables reflecting a subject’s behavioral or neural output are
processed until a certain condition is met or a specified amount
of time has elapsed. These variables, in practice, generally con-
sist of electrical signals corresponding to such things as eye- or
joystick-position, button presses, etc. Formally, the task of behav-
ioral monitoring can be subdivided into just two complementary
activities: 1) waiting for a signal to enter a target range, or goal or
2) waiting for a signal to leave a target range, or goal. Within our
software, these tasks are accomplished through a call to the mon-
itoring function, track, with arguments corresponding to which of
these two activities is required, the signal to be monitored, the tar-
get(s), the threshold around the target(s), and the time allowed to
achieve the goal.

When tracking for target acquisition (i.e., waiting for the behav-
ioral signal to enter a particular goal range), multiple stimuli can
be specified as potential targets using standard Matlab vector nota-
tion. The track function can check the behavioral signal’s position
against one or many targets very efficiently because of the vector-
ized nature of the Matlab language. The output of this function will
be a scalar indicating which target was acquired, or zero if none
was acquired.

A task is constructed simply by interleaving these two functions,
toggle and track, within the requisite conditional structures relating
a subject’s behavioral or neural output to the appropriate stimuli
to be delivered. Concretely, the user must write a Matlab script that
calls these functions at the appropriate times, and provide a table of
conditions that indicates which stimuli are to be shown on which
types of trials. The way these user-provided elements fit into the
over-all program flow is shown in Fig. 1.

Calling the track function invokes a loop that performs the nec-
essary low-level functions to monitor the selected signal. Each cycle
of the loop samples the behavioral signal, transforms this signal into
calibrated coordinates, and compares these coordinates against the
positions of the possible targets. All of this is done automatically,
based upon the parameters specified initially by the user. This is
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in contrast to many existing behavioral control software packages
that leave the programming of this loop partly or entirely up to
the user. We prefer the former approach for a several reasons. First,
the execution of this loop is a core feature of any behavioral task,
so requiring each user to code it independently results in a great
deal of duplicated effort. Second, because the loop is standardized
across different tasks, the performance of a task can be estimated,
with some degree of certainty, based on previous experiments run
on that machine (for example, on our machine, all tasks tested pro-
duced mean cycle rates between 900 and 1050 Hz). Lastly, while a
special-purpose loop coded by an individual user tailored to his or
her specific requirements is likely to offer superior performance, in
terms of cycles executed per second, this is not likely to be of any
ultimate benefit in most cases, as the cycle rate of this general pur-
pose loop is sufficiently high to monitor behavior at the 1 ms time
scale (see section 5, below).

This strategy works well when relatively infrequent events
punctuate behavioral tracking, such as the appearance and dis-
appearance of stimuli at several hundred millisecond intervals.
However, this approach becomes increasingly cumbersome as the
temporal intervals between behavioral monitoring and stimulus
presentations decrease. For example, presenting a movie while
monitoring behavior requires interleaving these functions in a
manner not easily afforded by a single, general-purpose track func-
tion. In addition, because there are entry or exit costs to the
track and toggle functions (see section 5, below), rapidly alternat-
ing between them could produce unacceptable gaps in behavioral
monitoring. Nevertheless, it may be possible to find ways to incor-
porate movie presentation into this function without sacrificing
temporal performance (Markus Siegel, personal communication),
though this has yet to be confirmed.

Although the toggle and track functions contribute the bulk of
functionality for the creation of any behavioral task, other functions
are provided to allow for things such as digital time-stamping of
behaviorally-relevant events, marking trials as correct or incorrect,
defining interactive “hot keys,” etc.

Because scripting is done within the Matlab environment, its
rich syntax and function set is available for maximum flexibility.
In particular, the vectorized nature of the Matlab language is
ideal for the manipulation of trial-by-trial data that naturally fall
into these structures. For example, suppose one wanted to follow
behavioral performance to find instances of several consecutive
correct responses as an indication of learning:

where t is the number of the first trial that begins a sequence of
n correct trials. Alternatively, one could take a moving average
over the last k trials to assess if performance has surpassed some
threshold, m (where 0 < m < 1):

where r is one if the threshold performance has been met, or
zero otherwise. If, in this calculation, one wanted to consider
only a certain subset of conditions, say conditions 3 and 4, in
only the current block (say, 2), a simple modification is all that is
needed:

Those are just a few simple examples of the ways Matlab’s syn-
tax simplifies these sorts of tasks that are common in the realm
of interactive behavioral control. Because vectors corresponding to
behavioral errors, condition and block numbers – and a variety of
other behavioral data – are available to the user’s script on-line,
Matlab’s vector notation can be applied for the efficient manipu-
lation of these arrays to assess behavior and modify the on-going
task accordingly.

5. Performance

5.1. General performance

At the beginning of each trial, functions such as toggle and track
are initialized with information regarding the memory addresses of
the video buffers containing the current trial’s stimuli, and with the
latest DAQ assignments and calibrations. In addition, data logging
is initiated on the DAQ that is set to acquire data to memory. These
events took 0.11 ms, at maximum, as shown in Table 1.

At the end of each trial, the logged analog data and a record of
time-stamps is retrieved before returning to the main loop which is
responsible for selecting the next trial during the inter-trial interval
(I.T.I.). These events took on average 14.1 ms (28.1 ms maximum).
The trial entry and exit times do not impact behavioral tracking
(because the user’s timing script controls events between these
time points), and so may be considered part of the I.T.I. However,
because these times are not currently subtracted from the user’s
desired I.T.I. time, the actual I.T.I. will be longer by the sum of the
trial entry and exit times.

These data take into account all trials except the first one. As
shown in Table 1, there is a significant first-trial cost upon exit-
ing a trial, and when first calling any sub-functions (here, toggle,
track, and eventmarker). This is despite initializing those top-level

functions as described previously (Asaad and Eskandar, 2008).
Therefore, for some applications, it may be necessary to disregard
the first trial. If this is not possible (e.g., during a non-stationary
task in which every stimulus presentation counts towards learn-
ing), appropriately placed time-stamps that mark events relative
to the deterministic system clock can alleviate, to some extent, the
magnitude of this problem (fortunately, the eventmarker subrou-
tine is susceptible to relatively smaller first-trial costs, as shown in
Table 1).

During each I.T.I., the subsequent block and condition to be
run is selected either using built-in options (e.g., “random without
replacement” and “repeat errors immediately”) or by user-provided
Matlab scripts. All the relevant stimuli for that trial are loaded into
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Table 1
Function timing

Function Mean (ms) Max (ms) First trial (ms)

Trial
Entry time 0.11 0.11 0.15
Exit time 14.07 28.06 45.76

Toggle
Entry time 1.02 2.21 14.94
Core time 0.18 0.29 0.91
Exit time 25.85a 29.99a 26.60a

Track
Entry time 1.15 1.29 1.16
Core timeb 0.98 2.27 2.04
Exit time 1.09 1.24 1.09

Eventmarker
Entry time 0.24 0.35 4.30
Core time 0.50 0.69 1.40
Exit time 0.01 0.11 0.46

Inter-trial-interval
Preparation time 99.51 115.51 234.43

The measured times based on 1601 trials of the sample task (see section 2) are pre-
sented. “Entry time” refers to the amount of time required for initialization of each
function, before the execution of the essential activity. The “Core time” in each case
reflects the amount of time required to execute that activity. Lastly, the “Exit time”
is the amount of time required to clean up and leave the function (i.e., return control
to the user) after the core activity has completed.
For the “Trial” row, the entry time corresponds to the time required to initialize all
the trial sub-functions (i.e., toggle, track, and eventmarker, as well as others), and to
initiate analog data acquisition. The core time here would be wholly dependent on
the user’s timing script specifying the timing and contingencies of the behavioral
task itself, so this is not shown. The exit time reflects the time from the end of the
user’s script to the end of the trial, during which analog data and event markers are
retrieved for storage in the local data file (event markers were also sent to a separate
neural data acquisition system in real-time).
In the case of the toggle sub-function, the entry time is the time required to parse the
user’s command options and blit the appropriate stimuli to the screen’s back-buffer.
Then, the core activity is flipping the screen to display or extinguish the requested
stimuli. Note there will be a variable delay (excluded from the values shown here)
between the completion of these entry tasks and the execution of the flip; the exact
delay is inversely linearly dependent on the time remaining until the next flip at the
time this function is called. The exit time is the time required to display the control
screen symbols corresponding to the currently visible stimuli before returning con-
trol to the user.
In the case of the track sub-function, the entry time corresponds to the time required
to parse the user’s command options and calculate the target thresholds. The core
activity consists of one cycle retrieving the most recent analog data samples, trans-
forming these into calibrated coordinates, and comparing these coordinates against
those of the possible targets. The exit time here corresponds to the time required to
extinguish the target rings and return control to the user.
In the case of the eventmarker sub-function, the entry time is the time required to
parse the user’s command options and convert the decimal integers to binary form
for digital output. The core time is the time required to write the digital bytes to
the neural data acquisition system (two operations were required: first set the value
bits, then trigger the strobe bit). The exit time is the time needed to reset the digital
strobe bit, buffer the time-stamp for local storage, and to return control to the user.
The I.T.I. preparation time is the time needed to select the next trial according to
the built-in block and condition-selection options (a user-specified function could
take longer or shorter), load the necessary stimuli from disk to video memory (here,
six 100 pixels × 100 pixels true-color images, each file 4 KB in size, as well as five
program-generated fixation dots, 8 pixels × 8 pixels in size, were used), and update
the control-screen graphics to reflect the updated behavioral performance mea-
sures (e.g., percent correct over-all, per-block, and per-condition, and reaction times
over-all and per-condition). The graphical updates constitute the bulk of this time
(only ∼2–4 ms are required for trial selection and stimulus preparation under these
conditions).

a These exit times for the toggle function are modifiable by the user: one can
elect to skip drawing the control-screen symbols corresponding to the currently
active visual stimuli, in which case, the exit times averaged 0.91 ms (1.77 ms
maximum). This option is useful when many stimuli must be presented in rapid-
succession with precise timing, or when a ∼25 ms delay before the next trial event is
sub-optimal.

b The core times in the case of the track function shown here exclude the first
cycle, during which the initial control-screen update is performed. This is the cycle
in which rings around the specified targets are drawn to the experimenter’s display.
This one initial cycle took 22.0 ms on average (26.7 ms maximum).

memory and then transferred to video RAM. In addition, figures on
the experimenter’s display are updated to reflect the statistics of
behavioral performance (e.g., percent correct, reaction times, etc.).
When assessed using our sample task (see section 2), these events
took about 99.5 ms on average (115.5 ms maximum, see Table 1).
This time will vary, however, with the number and size of stimuli
to be processed. Therefore, the scheduled I.T.I. time is varied con-
versely to this measured preparation time to keep the actual time
constant near the user’s desired value.

5.2. Video performance

The ability of Matlab to accurately control and time-stamp video
displays has been described previously (Meyer and Constantinidis,
2005; Asaad and Eskandar, 2008), and Matlab is employed for
visual stimulus presentation by software widely used in the psy-
chophysics community (Brainard, 1997; Pelli, 1997). The key feature
of any such system is the ability to accurately mark the time of the
screen refresh (“flip”) in order to use this information to determine
the time of appearance of a visual stimulus (based on its screen posi-
tion). In our particular system, the standard deviation of the jitter
of time-stamps (stored upon software detection of a vertical blank)
relative to the actual appearance of a stimulus (measured using a
photoresistor) was 0.3 ms (Asaad and Eskandar, 2008). Therefore,
in what follows, we use software detection of the vertical blank as
a surrogate for the photoresistor.

Four steps are required to present a visual stimulus on a standard
computer display. First, that stimulus must be loaded into the com-
puter’s memory (usually from disk). Then, the image data must be
passed to a memory buffer created for that image on the video card
itself. In our software, these first two steps are performed during
the inter-trial-interval. Every trial type (“condition”) can be asso-
ciated with one or more possible stimuli, and once a condition is
chosen, all of its stimuli are loaded into video RAM. Because our
goal was to minimize the amount of time needed to present stimuli
from within a trial itself, performing these steps during the I.T.I. was
considered the best option. The potential disadvantage of this strat-
egy is the relatively smaller amount of video memory compared to
system memory; it is possible that a trial using many large images
or several large movies (not all of which would necessarily be dis-
played in any one trial, but all must be available) could exhaust the
available video memory. Fortunately, the amount of video mem-
ory on modern graphics cards (currently 128 to 512 MB, enough
to hold at least several hundred medium-sized stimuli typical of
psychophysics experiments) is sufficient in most cases.

Next, the particular stimuli to appear at a given time must be
transferred from video RAM to a specialized area of video memory
that serves as a screen buffer (an operation termed a “blit”). A mem-
ory pointer can then indicate which buffer is currently the active
screen. Redirecting this pointer to a new buffer is described as “flip-
ping” the display. We kept the “vertical sync” enabled so that this
flip could occur during only the vertical blank interval, prevent-
ing tearing artifacts. These processes of blitting then flipping are
both performed at the time a stimulus is called up to appear (at the
issuance of a toggle command).

In our software, these events are largely hidden from the user;
he or she needs to be concerned only with selecting the image(s)
to be displayed, defining the screen position of each in degrees
of visual angle, and then toggling the image(s) on or off at the
appropriate times. Because graphics hardware and the associated
drivers are constantly changing, our system interfaces with the
low-level graphics drivers via a single gateway function. At least
two publicly-available software packages allow low-level control
of video hardware from within Matlab (Brainard, 1997; Pelli, 1997;
Perry, 2008). All calls to video hardware act through this single
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function to execute the basic steps of visual stimulus presentation.
If future generations of video hardware and associated control soft-
ware necessitate a different method of interaction, changes will be
required in only this gateway routine (written as a directly editable
Matlab function) to interface with the updated drivers, in this way
minimizing the time and labor required.

The temporal performance of the toggle function itself is shown
in Table 1. Note that the time from when this function is invoked
by the user to when it is ready to flip (i.e., the function “entry
time”) was always less than 2.3 ms (except in the first trial). How-
ever, because the flip will occur only at the time of the next vertical
blank, a variable delay ensues. In our case, running at 100 Hz, the
delay to the flip was always between 0 and 10 ms, and never more,
indicating that there were no skipped frames.

By default, the toggle function updates the experimenter’s dis-
play with rectangles reflecting the size and color of the visual
stimuli before returning control to the user. This is a time-
consuming event, taking 25.9 ms on average (30 ms maximum).
The user can elect to skip this step, in which case this function’s
exit time averages 0.9 ms (1.8 ms maximum).

5.3. Behavioral monitoring performance

Behavioral monitoring most often involves sampling one or
more analog signals, transforming those signals into calibrated
coordinates (e.g., angle of gaze or screen position of a joystick
cursor), comparing those coordinates against possible targets, and
intermittently updating a representation of the behavioral signal on
the experimenter’s display. For most psychophysical applications,
the ability to perform these steps about once every millisecond is
required. So, at a first approximation, the speed of a system can
be assessed by counting the number of cycles executed per sec-
ond. We found mean cycle rates on our test system approached
1 kHz, thereby suggesting that behavioral signals can be monitored
at about one per millisecond, on average (Fig. 2). Furthermore, sam-
pling intervals were generally regular; specifically, delays greater
than 2 ms were rarely observed (99.9% of cycles were under 2 ms).
Previously, we identified a temporal cost associated with the first
cycle during which a screen update was requested (Asaad and
Eskandar, 2008). Here, that update is called on the first cycle of each
tracking epoch. Data from this task confirms that cycle times greater
than 2.3 ms were observed exclusively on the first cycle within each
call to the track routine. Within this first cycle, the highest recorded
latency was 26.7 ms.

The cycle times for a typical tracking epoch are shown in Fig. 3a.
The distribution of individual cycle times across all trials is shown
in Fig. 3b (only the first cycle during each track call is excluded).
There is a multi-modal distribution of cycle times where the highest
modes (those above 1.5 ms) corresponded to cycles in which the
position of a behavioral trace (a simple dot) on the control screen
was updated (in our case, this occurred about once every 100 ms).

Yet, simply because increased cycle times were rare, it is possible
that these episodes of increased latency were occasionally grouped
in close temporal proximity (as could be due to a burst of high oper-
ating system activity, or to on-going background activity related to
the plotting of the behavior trace), such that there were sporadic
periods of unacceptably infrequent behavioral sampling. To evalu-
ate this possibility, we examined the data from 1600 trials of our
behavioral task (all but the first) and noted all cycle latencies greater
than 1.5 ms (i.e., those cycles in the higher mode of Fig. 3b). The
shortest interval between such high-latency events was 81 cycles.
Another way of representing this data is shown in Fig. 3c. Here,
a histogram of cycle latencies is plotted relative to every high-
latency event (at time zero). There is only a small tendency for
latencies in the immediately following cycle to be increased (11.6

Fig. 2. Measured Cycle-rates This histogram shows the mean cycle-rates for each
trial over the behavioral session. As previously described (Asaad and Eskandar, 2008)
the cycle rate of the first trial is typically lower, as marked here with a dot, represent-
ing 913 cycles per second. The next-slowest trial averaged 941 cycles per second. The
mean cycle rate across all these trials except the first was 960. These rates include all
cycles performed within the track function, including the first. Significantly faster
cycle rates (>2000 per second) have been observed on newer-generation PC sys-
tems. Note that only correct-choice and incorrect-choice trials are shown, because
other trial types placed different demands on stimulus presentation and tracking
(i.e., average cycle-rates for break-fixation trials tended to be slightly lower, as rel-
atively less time was spent in tracking than was spent in updating the screen, and
no-fixation trials were slightly faster for the opposite reason). Over all trials, the
range of cycle rates varied from 800 to 1020 Hz except for 3 instances in which
the subject broke fixation nearly instantaneously, resulting in average cycle rates
between 700 and 800 Hz.

percent increase above the following bins or 0.11 ms in absolute
time).

A more parametric way of showing this, at least for adjacent
cycles, is depicted in Fig. 3d. Here, no threshold was applied to
the data. Rather, each cycle time is plotted against the subsequent
one, yielding two interesting observations. First, the slope of the
horizontally-oriented points was about 12%, equivalent to the result
in Fig. 3b, and the slope of the vertically-oriented points was about
2% (relative to the vertical), showing that there is indeed a very
slight tendency for increased cycle times in those cycles preceding
a high-latency event. Second, multiple modes are clearly visible.
The cluster that appears between 1.2 and 1.3 ms (labeled as mode
2) consists nearly entirely of points corresponding to the second
cycle within each tracking period. The lowest mode (below 1.2 ms)
contained 99.0% of all points (because of a ceiling density effect in
this figure, the relative magnitudes of these populations are more
clearly appreciated in the logarithmic plot of Fig. 3a).

These data confirm that behavioral tracking is generally very
regular with a period of about 1 ms on our tested system, and cycles
with increased latency occur at predictable times with respect to
programmed events. Importantly, over all 1601 trials lasting nearly
3 h, there was not a single non-initial cycle time greater than 2.3 ms.

5.4. Usability

5.4.1. Task scripting
Fig. 4 shows the elements necessary for constructing a simple

delayed-match-to-sample (DMS) task. This task requires the sub-
ject to maintain fixation throughout an initial fixation period, a
subsequent cue period, and finally a brief delay. Two pictures are
then presented simultaneously and the subject must pick the one
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Fig. 3. Behavioral tracking performance. (a) The cycle times for a typical behavioral tracking epoch are plotted. The y-axis is truncated at 3 ms (the first cycle time here is
26.5 ms). Note the periodically increased times corresponding to the 100 ms interval between updates to the behavioral trace in the experimenter’s display. (b) The distribution
of individual cycle times across all epochs of behavioral tracking in 1600 trials (the entire first trial, and the first cycle in each tracking epoch of all subsequent trials, were
excluded). Cycle time is plotted against the number of cycles on a logarithmic scale. Cycle times in the higher mode (above 1.5 ms) were found to correspond exclusively
to those cycles during which the eye-trace on the experimenter’s display was updated. (c) The relative distribution of high-latency events during behavioral tracking is
shown. This histogram was triggered on the occurrence of behavioral tracking cycle times greater than 1.5 ms (here at time 0). The lighter shaded region at the top of each
bar represents the area of the mean value ± the standard deviation. The cycles immediately following the high-latency instances tended to be slightly increased in time
(increased relative to baseline by 11.6% or 0.11 ms). The minimum interval in any trial between two high latencies, each greater than 1.5 ms, was found to be 81 cycles. (d) A
scatter diagram plotting the time for each cycle against the time for the subsequent one (excluding the first cycle in each tracking epoch). Multiple modes are more clearly
visible in this plot, but the relative numbers within each cluster are more difficult to ascertain than in (a) because of density saturation. Mode 1 contained 99.0% of all points,
corresponding to a typical tracking cycle. Mode 2 corresponded to the second cycle within each tracking period. Modes 3 and 4 corresponded to those cycles in which a
screen update request was made. No clear pattern of occurrence distinguished these last two modes.
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Fig. 4. Example construction of a simple delayed-match-to-sample (DMS) task. The over-all task design of a standard DMS task is shown in (a). The task consists of a fixation
period, sample period, delay period, and then the presentation of choices. The subject’s goal is to select that object among the choices that matches the sample cue, by making
a saccade to that object. The subject must fixate on the central dot throughout the task until the choices are presented. (b) A condition’s table describing this task. This table
allows for either of two pairs of objects to be used on any given trial: pictures A and B, or pictures C and D. “Relative Frequency” determines how likely a particular condition
is to be chosen, relative to the other conditions. “Conditions in Block” enumerates the blocks in which that particular condition can appear (for instance, running block #2
would play only conditions 5–8, and so would use only pictures C and D). “Timing File” refers to the Matlab script that organizes the contingencies that relate behavioral
monitoring to stimulus presentation (as in (c), below). Here, all conditions use the same timing file. “Object” columns list the stimuli that can appear in each condition. These
can be visual objects, sounds, analog waveforms, or TTL pulses; any type of stimulus object can be triggered with the same toggle command. Note that, to simplify coding
of the timing script, objects serving the same purpose are always in the same column (so, here, the sample object is always Object #2 and the target is always #3). (c) The
Matlab script constituting the timing file used for this DMS task is shown. Functions that are provided by our software are highlighted in bold. Several other functions exist for
time-stamping behaviorally-relevant events, repositioning-objects on-the-fly, turning the joystick-cursor on and off, defining interactive “hot keys” that initiate user-defined
functions when the a key is pressed, etc.
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Fig. 4. ( Continued ).

corresponding to the cue presented earlier by saccading to it. The
conditions table (Fig. 4b) shows 8 conditions comprising two pairs
of stimuli (A & B or C & D). The timing script (Fig. 4c) determines the
times at which stimuli appear in relation to the subject’s behavior;
it consists of 43 lines of code (excluding the variable definitions). Of
these, 28 are involved in simply saving an error code and aborting
the trial if the subject fails to perform the requisite steps properly
(e.g., breaking fixation). Therefore, it is possible that even more effi-
cient scripting could be achieved by incorporating error handling as
an option within the track function itself (though this would likely
come at the expense of a more complicated track syntax).

5.5. Interfacing with I/O devices

Using the Matlab Data Acquisition Toolbox as a foundation, we
constructed a system whereby a set of behaviorally-relevant sig-
nals can be mapped directly to specific inputs or outputs. In other
words, analog input signals representing eye or joystick position,
digital inputs representing button presses, digital or analog outputs
for reward delivery, and digital outputs for sending event markers

to a separate neural data acquisition system, as well as other types
of signals, can be assigned to specific channels (if analog) or lines (if
digital) using a straightforward GUI. For example, to assign a signal
to an input our output, simply select that signal (e.g., “Eye X Posi-
tion”), then select the board (e.g., National Instruments PCI-6229),
then the subsystem (e.g., “Analog Input”), and finally the channel
(e.g., “1”), before clicking “Assign.” Thus, any hardware input or out-
put recognized by the Data Acquisition Toolbox can be used in the
same manner. However, no explicit support is provided for serial
ports, although these objects can be created and monitored by the
user.

This approach allows the same task to be reconfigured easily to
run on separate machines that may have different hardware con-
nections, or to run on different types of hardware altogether, so
long as the relevant channels or lines are visible to Matlab.

A potential disadvantage of this approach is that the types of
behavioral signals that can be acquired are hard-coded into the
system. In other words, while interfacing with two-dimensional
signals such as eye-position and joystick-position is straightfor-
ward, and one-dimensional inputs such as buttons and levers are
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also recognized, more complicated signals that involve more than
two dimensions of input are not directly supported (e.g., a signal
representing multiple variables such as joint position or location in
3-D space). A user would need to create directly the Matlab data
acquisition objects and code a behavioral monitoring loop to track
these sorts of behavioral variables. Similarly, there is currently no
support for monitoring multi-bit digital inputs (such as might be
used to direct the course of the behavioral task based upon input
from a separate computer system dedicated to monitoring some
aspect of behavioral output); this would also require a user-coded
subroutine.

Because the polarity of the read (or “strobe”) trigger bit on some
neural data acquisition systems is reversed relative to that of par-
allel ports (e.g., the Neuroport system from Cyberkinetics), there
is a menu option to invert this bit. Likewise, because some reward
systems use a falling rather than a rising voltage to deliver reward,
the polarity of this function can be reversed through a menu option
as well.

Currently, analog data is not acquired into our system contin-
uously. This is because acquiring continuous analog signals for
the duration of an experiment (typically many minutes to sev-
eral hours) would require intermittent transfer of that data to disk,
possibly resulting in delays at inopportune moments during the
behavioral task. Instead, analog data acquired to memory during
each trial is retrieved at the end of that trial and saved to disk dur-
ing the I.T.I. A major disadvantage of this approach is the loss of
the analog data record during the I.T.I. Therefore, to perform anal-
yses on eye-position during this interval, for example, one would
need to split the analog signal into a separate neural data recording
system that is capable of continuous analog data acquisition, and
then use digital event markers to align this signal with behavioral
events.

5.6. Signal calibration

Behavioral signals such as eye or joystick position can be used
in either a raw (i.e., pre-calibrated) manner, or they can be cali-
brated from within the software. This is done by presenting dots
in sequence and marking the instant of fixation or joystick acquisi-
tion with a key-press. In contrast to some other calibration methods
that take into account only signal offset and gain, our calibration
method also takes into account skew using a projective transform.
This greatly improves the quality of the calibration, especially when
multiple, closely-spaced targets are used.

Most eye-tracking systems are subject to some degree of drift
over time, even with measures such as tracking the pupil relative
to the corneal reflection (on optical systems). Often, this drift is the
result of some slight degree of head-movement during the task ses-
sion. To counteract this, we employed a drift-correction algorithm
(similar to what is available in other systems, such as CORTEX).
Specifically, at the completion of each trial, fixations are extracted
from the continuous eye-position record, and these fixations are
compared to the position of targets that had been displayed; small
errors are then assumed to reflect intended fixation on the center
of those targets, and a fraction of this error is corrected. Using this
method, we find that no manual intervention is needed, even over
several hours, to keep the calibration exact.

5.7. Data file record

In our experience, data files generated by most behavioral con-
trol systems contain cryptic references to the conditions run, the
stimuli shown, and the timing of key events. For example, they
may contain unlabelled numeric markers that identify the trial type
(condition), the code numbers and time-stamps of critical behav-

ioral events, as well as a record of any acquired analog data. These
numbers are then referenced to tables stored in separate files or
notebooks that allow the reconstruction of trial events. Because
these data are separate, it is possible that they can be lost or mis-
associated, rendering the events undecipherable. Many researchers
in this field have had the troubling experience of attempting to
reconstruct the events of an experiment performed years ago by a
colleague now long gone.

To remedy this, we included in our data files the fullest account
of the behavioral record we thought possible and practical. These
data files contain the actual stimulus images used, the text descrip-
tions of the event markers, the conditions-table structure for the
entire experiment, and a variety of task configuration information
(e.g., screen resolution, signal calibration matrices, etc). This rich
record allows the reconstruction and replaying of any given trial
from this single data file, so there is no ambiguity about what events
actually took place.

Because of their relative completeness, these data files are,
unsurprisingly, somewhat large; a 3-h session can generate a 50 MB
file easily. In the long-term, however, we believe such file sizes will
become only more practical as the power of typical PCs increases.

Two provided functions plot behavioral data in a graphical form
to allow a quick over-view of events. The first plots the performance
over trials and shows the reaction time histogram (Fig. 5a). In addi-
tion, trials can be re-played, and movies of those trials created, from
this figure window. The second is called up from the first, and shows
a timeline for the currently selected trial (Fig. 5b).

5.8. Experimenter’s display

At a minimum, during the execution of a behavioral task, most
users will want some sort of real-time feedback which reflects
the on-going behavior of the subject. For example, in a task in
which eye-position (i.e., angle of gaze) is the monitored behavioral
parameter, a moving point corresponding to the instantaneous gaze
position will allow an observer to follow behavior to determine the
reasons for a subject’s successes or failures. Also, the experimenter
will want to know this position relative to any objects currently
visible on the subject’s screen. Therefore, we constructed a display
window that included markers corresponding to the current posi-
tion of analog inputs such as eye or joystick position in relation to
visual stimuli currently visible to the subject (Fig. 6). In addition,
objects reflecting lever position or digital inputs such as button
position are visible if those inputs are active, and rings reflect-
ing potential targets with their threshold radii also appear at the
appropriate times.

This main display is surrounded by text indicating the current
trial, condition, and block, graphs showing the performance within
each of these groups, a reaction-time histogram, and a time-line of
the event markers stored for the previous trial.

We found that the time required to update the experimenter’s
display was linearly related to the number of graphical elements
drawn in this figure window. The more polygons present, the longer
the time that was required to update the display, even if the only
change involved repositioning a small dot. Therefore, it is likely that
faster performance (shorter cycle times) could have been achieved
by simplifying this display. However, we chose to balance per-
formance and usability. Specifically, we calibrated the complexity
of our display to maintain cycle times of about 2 ms on our test
machine on those cycles when updates were requested.

5.9. Configuration menu

A single user interface (Fig. 7) is the starting point for load-
ing an experiment, setting and saving a variety of configuration
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Fig. 5. Behavioral graphs. A basic overview of performance is shown in (a). Behavior over time is plotted at the top, reaction times are shown at the bottom-right, and basic
file information and trial-selection is at the bottom-left. In the bottom-middle is an area which shows the objects used on the currently-selected trial and the eye- or joystick
record. The trial can be played back in this window by pressing “Play,” and a movie can be created from any trial. (b) A time-line representation of the currently-selected trial.
X- and Y-eye or joystick traces are shown at the bottom. The horizontal red bars indicate that the object at left was currently visible. The vertical green lines indicate reward
delivery (here, three pulses of juice).

parameters (e.g., video settings, I/O mappings), and for setting the
manner in which blocks and conditions are to be selected and what
to do if the subject makes an error. While simple options such as
“select conditions randomly with replacement,” “choose blocks in
increasing numerical order” or “immediately repeat incorrect tri-
als” are explicitly available in this menu, Matlab functions can be
used in place of these options to execute more complicated logic,

such as detecting when a subject has learned and only then switch-
ing blocks, or always selecting certain conditions after others, or
arranging the order of blocks in some specific manner, etc. Once a
configuration has been created and saved for a particular behavioral
task, launching an experiment involves loading the conditions file
(which then automatically loads the associated configuration file
and timing script(s)), entering a data file name, and clicking “Run.”
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Fig. 6. Experimenter’s and subject’s screens. The experimenter’s display (a) contains a representation of the stimuli currently visible on the subject’s display (b). In addition,
a red ring marks the boundaries of the current fixation (or joystick target) window and a dot represents the current eye- or joystick-position (updates are generally set to
occur every 50 or 100 ms, depending on user preferences). In the top-right, the experimenter’s display relays information about the current trial, condition, block numbers
and performance over-all, over the current block, and for the current condition. Reaction time histograms over-all and for the current condition are plotted at the lower-right.

5.10. Troubleshooting

To aid set-up, several diagnostic functions can be called from the
main menu (Fig. 7). Video tests are available to assess currently-
selected video display options (e.g., resolution and refresh rate)
and stimulus appearance at those settings. I/O tests are available
to assess current DAQ assignments, to acquire or deliver individ-
ual analog or digital signals, and to test each digital line used for
event-marker output. In addition, the maximum achievable on-line
sampling rate can be estimated for the type and number of DAQs
present. For optimizing on-line drift correction, an option exists to
collect 3 s of eye data and show where saccades and fixations are

detected according to the user’s current settings. Lastly, one can col-
lect a few hundred thousand latencies corresponding to open-loop
cycle times to assess, grossly, Matlab’s performance in the con-
text of current system settings. In our experience, these address
some of the more common problems to arise when first building a
behavioral control system.

6. Discussion

Being unsatisfied with currently available options for behav-
ioral control, we sought to develop a high-level software system
that simplifies task design and execution while maintaining a
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Fig. 7. The configuration menu. This menu is where an experiment and all of its configuration parameters can be loaded, modified, and saved. Video settings are organized
within the left panel. Input-output assignments and other settings are found within the right panel. Task-execution settings (e.g., condition- and block-selection criteria) are
in the middle panel. This menu is the point from which an experiment is launched.

high degree of temporal precision. Matlab turned out to be an
excellent platform for this project, as the timing constraints could
be met while providing the user access to the simplicity and
flexibility of that environment. Nevertheless, there are notable lim-
itations.

Windows cannot support hard real-time operation. Therefore,
while sub-millisecond jitter is acceptable in many, if not most,
psychophysical settings, there are nonetheless many potential
applications for which the software described here would not be
suitable. In particular, experiments that must provide feedback
within a very small temporal window (for example, to influence
an on-going synaptic event) would find 1–2 ms jitter simply too
variable. Likewise, delivering feedback that requires a great deal
of processing could potentially incur unacceptably long delays
unless these computations are programmed in a lower-level lan-
guage.

There is a ∼25 ms “blind” period at the beginning of each behav-
ioral tracking episode. If a subject were to respond within that
interval, it would not be appreciated until the end of this period.
Therefore, in tasks in which behavioral responses are expected to
occur very early in each tracking epoch and must be measured
precisely, this software as it is currently designed would not be
adequate. It would be possible to disable experimenter’s display
updates, but that would significantly hinder one’s ability to follow
behavioral events in real-time.

Other limitations include the current inability to display movies
or translating visual stimuli while simultaneously tracking behav-
ioral signals. In addition, behavioral signals are not currently stored

during the inter-trial interval. The ability to store analog sig-
nals continuously would benefit not only behavioral signals, but
neurophysiological ones as well. In other words, although many
acquisition cards are clearly capable – in terms of number of chan-
nels, sampling rates and PC storage – of recording neural data
alongside behavioral signals, no support has been built-in for this
purpose. Fortunately, most users so far have preferred relying on
a separate neural data acquisition system (e.g., Plexon). Nonethe-
less, such a capability would likely be useful for many potential
applications.

We use this software on several different machines dedicated to
neurophysiology in humans or non-human primates. This software
has been very adept at the creation of basic sensori-motor tasks, and
is especially useful for the creation of cognitive tasks with greater
numbers of stimuli and contingencies. These tasks are often coded
within an hour, and modifications are simple to test.

As with any endeavor, abstraction layers hiding lower-level
details have certain benefits and potential pitfalls. For example,
while such abstraction can improve ease-of-use and encourage
adoption and innovation, it may also isolate one from those tech-
nical details that are critical to the task at hand; this could result
misapplication or a false sense of limitation (ultimately, comput-
ers are capable of much more than any particular software system
allows). Because our software constitutes a highly-abstracted envi-
ronment, we hope that the benefits outweigh these costs. We hope
that the lower the barrier to designing and executing behavioral
paradigms, the more likely it is that one will explore the space of
possible variations and implementations.
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For lack of imagination and in the absence of a clever acronym,
we refer to our software as “MonkeyLogic.” The software is available
by request to the authors. Documentation for user’s is available at
www.monkeylogic.net.
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