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Asaad WF, Santhanam N, McClellan S, Freedman DJ. High-
performance execution of psychophysical tasks with complex visual
stimuli in MATLAB. J Neurophysiol 109: 249-260, 2013. First
published October 3, 2012; doi:10.1152/jn.00527.2012.—Behavioral,
psychological, and physiological experiments often require the ability
to present sensory stimuli, monitor and record subjects’ responses,
interface with a wide range of devices, and precisely control the
timing of events within a behavioral task. Here, we describe our recent
progress developing an accessible and full-featured software system
for controlling such studies using the MATLAB environment. Com-
pared with earlier reports on this software, key new features have been
implemented to allow the presentation of more complex visual stim-
uli, increase temporal precision, and enhance user interaction. These
features greatly improve the performance of the system and broaden
its applicability to a wider range of possible experiments. This report
describes these new features and improvements, current limitations,
and quantifies the performance of the system in a real-world experi-
mental setting.

behavior; methodology; neurophysiology; psychophysics; vision

THE ABILITY TO CONTROL PRECISELY the presentation of sensory
stimuli to subjects and to monitor their behavioral responses is
critical for performing experiments in a wide range of research
fields from social and cognitive psychology to systems and
cognitive neuroscience. Furthermore, such experiments may
utilize a diversity of model organisms, ranging from insects
and rodents to nonhuman primates and human subjects. Al-
though the exact needs of different experimental approaches
can differ widely, all studies investigating perception, cogni-
tion, or action of an awake subject share a number of common
requirements. First, researchers need control over the sensory
stimuli delivered to the subject. Second, researchers need the
ability to monitor and respond to subjects’ actions. Third, such
research requires the ability to analyze behavioral data both in
real-time and in offline analysis. Finally, when working with
subjects engaged in complex behaviors, the ability to create
quickly and easily a wide range of tasks and to modify task
parameters rapidly is essential.

A number of software tools for controlling such experiments
have been developed over the years, virtually all of which were
designed to run on a specific and narrow range of hardware and
software, and most required the user to program in a relatively
low-level programming language (e.g., C or C++). One lim-
itation of this approach is that not all experimentalists arrive at
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the laboratory with a strong programming background. If they
do have a programming background, they may not be familiar
with the particular language or platform required by the exper-
iment control software used in that laboratory. In a number of
research fields, including neurophysiology, cognitive neurosci-
ence, and perceptual psychophysics, MATLAB has become a
nearly ubiquitous tool that many investigators use extensively
for data analysis. MATLAB is a high-level programming
language that emphasizes ease of use and portability at the
expense of performance (i.e., processing speed) and access to
low-level hardware functions (e.g., memory management). In
the past, the idea of running experiments, which require mil-
lisecond-level timing precision for presenting stimuli and re-
cording responses, in a high-level programming environment
such as MATLAB was not feasible because the performance of
the software was inadequate for applications requiring milli-
second-level temporal performance.

Recent improvements both in computing hardware and
MATLAB software have made it possible to achieve tempo-
rally precise control over experiments using MATLAB (Asaad
and Eskandar 2008a; Brainard 1997; Gardner and Larsson
2012; Kleiner et al. 2007; Rose et al. 2008; Zeki 2012).
Previous reports described efforts to create a flexible and full-
featured tool for controlling behavioral and neurophysiological
experiments (Asaad and Eskandar 2008b) in MATLAB. At that
time, there were a number of limitations to both the features and
performance of the software that made it inadequate for some
applications. Here, we present a number of performance enhance-
ments and describe new features of the software that greatly
improve its effectiveness for controlling a wide range of behav-
ioral, perceptual, and neurophysiological studies in both human
and nonhuman subjects.

MATERIALS AND METHODS

Our tested system was composed of a Dell OptiPlex 980 computer
with an Intel i5-680 processor running at 3.60 GHz containing 4
gigabytes of random access memory (RAM; Dell, Round Rock, TX).
The operating system was 64-bit Microsoft Windows 7 Ultimate
(Microsoft, Redmond, WA) running with a non-Aero desktop theme.
The graphics hardware in this machine consisted of two ATI Radeon
HD 3400 cards with 1,979 megabytes of available video RAM. The
two outputs from one of the graphics cards were mirrored and
connected to two displays, each running in full-screen mode at a
resolution of 1,280 X 1,024 pixels and a refresh rate of 75 Hz, and
video was double buffered. One of the displays was a 21-in. Hewlett
Packard P1110 CRT monitor, which was the subject’s display. The
other display was a 19-in. Dell 1908FP LCD running at 1,280- X
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1,024-pixel resolution and 75 Hz and provided the experimenter with
a duplicate of the subject’s display. The second video card was
connected to a 22-in. Dell P2210 LCD monitor running at 1,680- X
1,050-pixel resolution and 60 Hz and served as the experimenter’s
display. The experimenter’s display window was set to update about
every 50 ms during behavioral monitoring to allow continuous obser-
vation of the subject’s performance.

MATLAB software (32-bit version R2010b; The MathWorks,
Natick, MA), including the Data Acquisition Toolbox (version 2.17)
and the Image Processing Toolbox (version 7.1), was used to write the
behavioral control code tested here and to analyze the data reported
here. All functions comprising our software were written as simple .m
files that are user-editable. MATLAB was run in the default nonmul-
tithreaded mode and with the Java Virtual Machine disabled (“matlab
-nojvm” from the command prompt). MATLAB figures for the
experimenter’s display (created using built-in graphics and plotting
functions in MATLAB) relied on OpenGL with hardware acceleration
enabled.

For controlling visual stimuli presented on the subject’s display,
two distinct software solutions were used and evaluated separately in
the tests described here. In the first solution, both static images and
dynamic movie stimuli were displayed using the XGL toolbox (ver-
sion 1.2), a set of low-level routines for video control (based on
DirectX from Microsoft), which were generously provided by Jeffrey
S. Perry at the University of Texas at Austin (Perry 2012). In the
second solution, images and movies were displayed using calls to Psy-
chophysics Toolbox (PTB; Version 3), an OpenGL-based MATLAB
toolbox (Brainard 1997; Kleiner et al. 2007; Pelli 1997; http:/
www.psychtoolbox.org). The software routes all calls to the video
display through a single gateway function. Separate versions of this
function were created to use either the XGL toolbox or PTB routines
for graphics. Apart from the differences in these calls to the graphics
system and different approaches for loading and preprocessing visual
stimuli, all aspects of the two versions of the software were identical.

An optimized system profile was created as described previously
(Asaad and Eskandar 2008a) to minimize the amount of processor
time that could be taken by other applications. The task was run at the
highest priority level (priority can be set in the software main menu)
allowed by Windows (“Real Time”), and the priority was automati-
cally lowered to “Normal” during the intertrial intervals (ITIs) to
allow other pending activities time to execute.

Behavioral signals were monitored using two identical National
Instruments PCI-6221 data acquisition (DAQ) boards (National In-
struments, Austin, TX). Each of the multifunction DAQ cards was
connected to a National Instruments BNC-2090A breakout box using
6.0-ft shielded connector cables. These were interfaced in MATLAB
through the Data Acquisition Toolbox. Although the Data Acquisition
Toolbox is not intended for real-time control, prior tests have dem-
onstrated that these routines provide sufficient performance for sub-
millisecond precision for behavioral monitoring (Asaad and Eskandar
2008a). We also performed tests to compare the latency of DAQ
operations between National Instruments’ PCI and USB DAQ boards.
We used the USB-6009 device for this purpose.

The incoming behavioral signals were split into two analog DAQ
input boards to allow for more rapid sampling and simultaneous
storage of the data. As described previously (Asaad and Eskandar
2008a), logging and sampling data from the same board is subject to
upload delays caused by temporary storage of samples in the local
memory buffer of the board. Our software is able to detect the
presence of two identical boards and will allocate one for storage and
another for online, unbuffered sampling.

Digital event markers were sent to an external neural DAQ system
(Plexon MAP system; Plexon, Dallas, TX) using digital input/output
channels from one of the two National Instruments PCI-6221 cards.
Event markers were encoded with nine digital lines corresponding to
an 8-bit word and one strobe/trigger digital line. It was reported
previously that temporal performance using digital lines on the DAQ

card showed poor temporal performance compared with using the
parallel port (Asaad and Eskandar 2008a). However, we have found
substantially improved temporal performance of digital outputs (faster
than 1.0 ms per strobed word) of several PCI-based National Instru-
ments cards when using newer versions of MATLAB and newer
computing hardware (see Performance).

Our tests were run using nonhuman primates (rhesus macaque
monkeys, Macaca mulatta) as subjects. For the data and analyses
presented here, monkeys performed either visual discrimination or
visual categorization tasks that required animals to maintain gaze
fixation and to indicate their decisions using a manual touch bar. For
our animal subjects, fluid reward (fruit juice) delivery was controlled
via analog or digital output of a transistor-transistor logic (TTL) pulse
trigger to an external device that operated a solenoid valve that
controlled the flow of juice delivered to the animal. All procedures
and protocols were approved by the University of Chicago’s Animal
Care and Use Committee and were in accordance with National
Institutes of Health guidelines.

An optical eye-tracking system (EyeLink 1000; SR Research,
Ontario, Canada) produced analog horizontal and vertical signals
conveying information about eye-gaze position with a temporal res-
olution of 1.0 kHz. A touch-bar detection circuit was used to deter-
mine whether the subject made contact with a manual touch bar, and
the output of this circuit was a voltage that could take one of two
states (high or low) depending on whether the subject made contact
with the lever. The eye signals were acquired with a sampling rate of
1.0 kHz via two analog input channels (corresponding to horizontal
and vertical eye position) on each of the two DAQ cards.

To assess the performance of our software for movie presentation,
we examined data acquired during the ongoing training of a subject.
The monkey was trained to perform a delayed match-to-sample task
with 360° of motion directions. Twelve motion directions were used
as sample and test stimuli. Each trial began with the onset of a 0.5°
square that the monkey had to fixate for 500 ms. Following the
fixation period, a sample stimulus (1 of the 12 motion directions) was
shown for 650 ms followed by a memory delay (1,000 ms) and a test
stimulus (1 of the 12 motion directions) for 650 ms. The monkey had
to release a manual touch bar if the test was the same direction as the
sample. If the test was a nonmatch (on 50% of trials), it was followed
by an additional delay (200 ms) and a 2nd test stimulus (650 ms) that
was always an exact match to the sample and required a lever release.
Stimuli were high-contrast, random-dot movies composed of 256 dots
per frame that moved at 5° per frame. The movie files (n = 145 AVI
movie files) were generated before the behavioral session, contained
90 frames each, were 155 X 155 pixels in size, and encoded with
24-bit color depth. There were a total of 972 conditions in the
condition file for the task. Monkeys maintained gaze fixation within a
2.0° radius of a fixation point during the fixation, sample, delay, and
test periods of the task.

To assess the performance of MonkeyLogic for image presentation
(and to provide a comparison with the previous report), we also
examined data acquired during the training of a subject to perform a
categorization task using static images. The monkey was familiarized
with a group of 25 images over a period of several months and then
trained to distinguish them from novel stimuli during a delayed
match-to-category (DMC) task with novel and familiar images as
categories. In the DMC task, each trial began with the monkey
fixating on a central fixation spot for 500 ms followed by the
presentation of a sample stimulus (either a novel or a familiar image)
for 650 ms. The sample was followed by a delay of 1,000 ms and then
a test stimulus (either a familiar or novel image) for 650 ms. If the test
stimulus belonged to the same category (i.e., novel or familiar) as the
sample, the monkey had to release a lever to obtain a juice reward. If
the test stimulus was not the same category as the sample, the monkey
was required to hold through another delay period (75 ms) followed
by a second test stimulus (presented for 650 ms) that was of the same
category as the sample and required a lever release. The monkey was
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also trained to perform an image-dimming detection task. In this task,
the monkey had to release a touch bar in response to a subtle reduction
in the luminance of an image stimulus. Trials started with 500-ms
fixation followed by the presentation of an image for 500 ms plus a
random time (exponential with a mean of 500 ms). This was followed
by a subtle dimming of the image. The monkey had to detect and
report immediately the dimming of the image by releasing the touch
bar to obtain a juice reward. The stimuli for the task were 100- X
100-pixel 24-bit color RGB images downloaded from the Internet and
resized in MATLAB. The fixation spot was 0.5°, and the monkey was
required to fixate within +2.0°.

The software performance is defined by the extent to which it can
display stimuli, collect behavioral responses from subjects, and output
digital signals to neural DAQ or other devices with a high degree of
temporal reliability and accuracy. The software is split into several
components that are responsible for these functions. A previous report
(Asaad and Eskandar 2008b) measured the temporal performance of
several functions in the software that are used to display stimuli on the
screen (“toggle”), collect behavioral responses (“track™), and output
event markers to a neural DAQ (“eventmarker”). Functions are
divided into “entry,” “core,” and “exit” sections. Entry time refers to
the amount of time required for initialization of each function before the
execution of the essential activity of that function. Core time is the
amount of time taken by the function to execute the activity. Exit time is
the time taken to perform cleanup activity and return control to the user
once the core activity has been completed. Although both entry time and
exit time are important for evaluating the performance of the function,
the core section must execute rapidly to ensure that we meet our goal
of submillisecond precision for detecting and responding to behav-
ioral events. Two other functions are also especially important from a
performance perspective: the “ITI” function is used to prepare stimuli
for the next trial and the “trial” function that initializes other trial-
related functions at the start of each trial and stores trial data at the end
of a trial. We also measured and report the ability of the software to
run trials involving movies, an important new feature that has been
added since the previous report.

For the toggle subfunction, entry time refers to the time required to
parse the user’s command options, determine the type of stimulus to
display (image, movie frame, etc.), and clear previous visual stimuli if
necessary. Core time refers to the act of displaying the stimulus on the
screen. The exit time is the time required to display the control screen
updates corresponding to the currently visible stimulus before return-
ing control to the user. For the track subfunction, entry time refers to
the time required to parse the user’s command options and calculate
the target thresholds required for detecting changes in behavior (as
specified by the user’s call to this function). The core activity consists
of retrieving the latest analog data samples, transforming them into
calibrated coordinates, and comparing these coordinates against those
of possible targets. This section of the function loops as fast as the
system will allow to monitor the subject’s behavior until a user-
specified amount of time has elapsed. Since a majority of the time in
most trials is spent during this loop, the performance of this loop
largely determines the responsiveness of the software to behavioral
events. Exit time corresponds to the time required to remove targets
from the control screen and return control to the user’s script. The
entry time of the eventmarker subfunction is the time required to parse
the user’s command options and convert digital codes into binary for
outputting on the digital lines. The core time is the time required to
write the digital bytes to the neural DAQ system (2 operations are
required: 1st setting the value of the marker being sent and then the
strobe bit). During exit, the strobe bit is reset, the time stamp is
buffered for local storage, and control is then returned to the user’s
script.

For the trial function, the entry time is the time required to initialize
all video and input-output subroutines (including toggle, track, and
eventmarker, among others), begin DAQ, and start the trial timer. The
core time of this depends entirely on the user’s script and is thus not

shown here. Exit time refers to the time taken from the end of the
user’s script to the end of the trial, during which analog data and event
markers are written to the local data file (event marker codes were also
sent to a separate neural DAQ system in real-time). During the
preparation time for the ITI, the next trial is selected according to the
prespecified block- and condition-selection functions (as specified by
the user). Stimuli are then loaded from disk to video buffers, and the
control screen is updated to provide the latest behavioral performance
measures (overall percentage correct, block percentage, condition
percentage, etc.) and information about the software performance
(average cycle rate and slowest cycle during trial). The loading of
stimuli constitutes the bulk of this time.

RESULTS

In following sections, we will first describe feature addi-
tions, updates, and enhancements to the software followed by
a detailed quantitative evaluation of the temporal performance
of the software by analyzing real behavioral data collected
during behavioral training sessions. Next, we provide details
about the compatibility of the software with various hardware
and software configurations. Finally, we discuss existing lim-
itations to the software and future plans for feature additions
that will further enhance performance and usability.

Design and Features

PTB. A key change to the software is that the DirectX-based
XGL toolbox video routines (see MATERIALS AND METHODS),
which were used previously to control the presentation of all
graphics on the subject’s display, can now be replaced entirely
with PTB (see MATERIALS AND METHODS) depending on user
preference. This has been a frequently requested change from
users of the software because of its wide adoption among
vision researchers, active development and support commu-
nity, and potential to use the many features of PTB for
generating and displaying both simple and complex stimuli.
Furthermore, PTB runs on Windows, Macintosh, and Linux
operating systems, opening up the possibility that our software
could be ported to other operating system platforms in the
future.

At the current stage of development, the adoption of PTB for
controlling the video system (and several keyboard-related
features) has been achieved with relatively minimal impact to
the functionality or performance of the software, and the
usability of the software has not changed from the user’s
perspective. In the future, new features will be added to our
software to take advantage of additional features of PTB.
Detailed information about the relative performance of the
XGL and PTB versions of our software is presented in the
Performance section of this paper.

Displaying movies. The ability to display movies is a major
new feature of the software and allows complex and dynamic
stimuli to be presented to the subject with careful control over
the precise timing of stimulus onset, offset, and synchroniza-
tion of movie frames with the refresh of the video system. The
ability to display movies is available in both the XGL toolbox
and PTB versions of the software.

In both the XGL and PTB versions of the software, the
approach taken to displaying dynamic stimuli in our software
is to present frames of previously generated AVI movie files.
The primary advantage to this approach is that the computation
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required to generate the movie itself is accomplished outside of
our software and before running an experiment. This allows
stimuli to be rapidly loaded, processed, and displayed without
causing unacceptable delays during a trial or experimental
session. One limitation is that it does not currently easily allow
new movies to be generated while a behavioral task is running
(e.g., during the ITI or during the trial itself), and the contents
of a movie file cannot be easily manipulated while a movie is
being played. However, several simple manipulations of mov-
ies can be achieved while running a behavioral task. For
example, frames of a movie file can be played in any order
(e.g., forward, backward, or in an arbitrary or random frame
sequence), and the movie (or any static image) can be trans-
lated along any arbitrary path (even while a movie is playing).
For tasks that require subjects to pursue a visual target
smoothly, the software now allows setting a translating stim-
ulus as a target for fixation.

The overall approach to displaying movies in the XGL and
PTB versions of the software is nearly identical. Movie support
was initially added to the XGL version (before development of
the PTB version of the software), and PTB development was
achieved primarily by identifying functions in PTB for movie-
related operation that were equivalent to the XGL functions
used for movie functionality in the original XGL version.
These include functions for copying video data to the video
buffer, the back buffer of the screen, the flip operation, and
clearing the screen and video buffers in preparation for the next
frame. During the ITI, before each trial, the movie frames for
all movies in the upcoming trial are loaded into video RAM on
the video card. To display these movies during the trial, the
software controls the onset of the first movie frame (as speci-
fied by the user’s trial function), the display of subsequent
movie frames, and the offset of the last movie frame with high
temporal precision. Because both the XGL toolbox and PTB
relay precise timing information about the status of the video
system (e.g., which raster line is currently being drawn), the
drawing of each movie frame is synchronized to the video
refresh interval. This allows movie frames to be drawn pre-
cisely at a predetermined rate without artifacts such as tearing
and without skipping frames. In the very rare event of a
skipped frame because of an unexpected delay or error in the
user’s timing code, a visible warning is displayed on the
experimenter’s display and is also saved as a time-stamped
behavioral code in the behavioral data file. Missed frames were
not encountered during the tests described in here. The rate of
movie frame display can be specified by the user. For example,
movie frames can be advanced and displayed on each video
frame or on every n video frames, where 7 is an integer. In all
of the tests presented here, the video refresh rate was set to 75
Hz, and movie frames were advanced on each video refresh.

It is essential that the processing overhead associated with
the display of movies does not interfere with the precise ability
to monitor and respond to behavioral events such as breaks of
gaze fixation, release of a lever, change in status of a button, or
movement of a joystick. This is achieved by incorporating the
function calls to display the next video frame into the same
track routine that monitors analog inputs such as eye position,
joystick, and buttons. If a movie had been drawn to the display
before the call to track, the appropriate time to display the next
frame of the movie is determined by monitoring the trial timer,
raster line, and frame number that is currently being drawn by

the video system. At the appropriate time (before the refresh),
the toggle routine is called from within track to display the next
movie frame. Because the main track loop runs much faster
(typically >1,000 Hz) than the video refresh rate (typically
60-100 Hz), behavioral monitoring performance in track is
minimally affected by the movie-related code on most cycles
of the loop. There is a modest decrease in track performance on
the cycle in which toggle is called (internally, by the track
function) to draw the next movie frame (see Performance).
However, this performance decrease is relatively small and
likely acceptable for most applications.

There are several notable limitations to movie functionality
at present. First, as described above, new movie files cannot be
generated during the ITI or during trial execution. Instead,
movie data must be loaded from pregenerated AVI movie files.
Second, movie frames are currently not loaded directly from
the AVI movie file at the start of each trial. Instead, each AVI
movie file is “preprocessed” before the start of an experimental
session. The preprocessing step loads the video data from the
AVl file, transposes the data into the format expected by the video
system, and saves the data as a MATLAB format data file. This
dramatically improves the speed of loading movies at the start of
each trial but adds an additional step (and sometimes a delay)
before starting a trial that uses many movies. The loading time for
trial-relevant stimuli is subtracted from the ITI, and delays only
occur when this time exceeds the duration of the ITI. When
many movie frames or very-high-resolution movies need to be
displayed on a trial, the time required for loading the movie file
and copying these data to video RAM increases and can cause
extended ITI durations. See the Performance section for infor-
mation regarding strategies for improving movie-loading
performance.

Usability features. A number of new functions and features
have been added for the purpose of improving the stability,
usability, and versatility of the software. Many of these fea-
tures are aimed at giving the user more rapid control of the
parameters of the behavioral task to facilitate training of the
subject. For example, customizable “hot keys” have been
added for changing task parameters (e.g., reward amount and
task-interval durations) or executing simple functions (e.g.,
giving a reward or centering the eye-gaze position) without
pausing a trial during task performance. A customizable popup
window has also been added to allow the task to be paused and
task parameters to be modified without having to quit and
restart the behavioral task. In addition, the ability to display
custom plots on the control screen has been added to give the
user control over the information that is displayed on the
experimenter’s display during a session.

Several features have been added to facilitate the process of
creating and troubleshooting new behavioral tasks. A “simu-
lation mode” has been implemented that allows the user to
bypass the analog inputs and manipulate the eye position,
joystick position, and button status variables using the key-
board. This has proven to be useful for testing and debugging
newly created behavioral tasks and components of the exper-
imental rig. A second useful debugging tool is a “user text” box
that has been added to the experimenter’s control screen. The
user text box can output customized text generated from the
timing file and is useful for viewing the status of variables in
the timing code, condition numbers, and task parameters.
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RELEASE
LEVER

Fixation
500 ms

Delay

1000 ms HOLD

LEVER

Test 2

Test (Non-Match)  (same as sample)

650 ms

Fig. 1. The behavioral task used to study movie performance. The subject
performed a delayed match-to-sample task and had to indicate (by releasing a
lever) whether sample and test stimuli were identical matches. If the sample
and test were not identical, the subject had to wait until a 3rd stimulus was
presented, which was always an identical match to the sample (and required a
lever release). Sample and test stimuli were both high-contrast, random-dot
movies on a gray background. The location of the receptive field (RF) of a
neuron is indicated by the dotted yellow circle.

Finally, the stability of the software has been substantially
improved. Mouse and keyboard input (except for the keyboard
hot keys) are now disabled while a behavioral task is running.
This greatly reduces the likelihood that the focus of the
operating system will be removed from MATLAB (which
would otherwise have caused an unrecoverable crash of the
behavioral task). In the event of a crash, changes have been
made to the routines for saving the behavioral data file so
that the file can be loaded and the behavioral data recovered
even in the event of a serious crash of the behavioral task,
MATLAB, or the operating system.

Compatibility. A goal for the development of this software is
to maintain its compatibility with the widest possible range of
computer and experimental hardware and software. Currently,
the software is compatible with personal computers (PCs)
running the Windows operating system (including 32- and
64-bit versions of Windows XP, Vista, and 7). At present, there
are no immediate plans to port the software to Macintosh or
Linux as the MATLAB Data Acquisition Toolbox (which
handles all analog and digital input and output in our system)
is only available for MATLAB running Windows. The soft-
ware is compatible with older (R2007b and higher) and more
recent (MATLAB R2010a) versions of MATLAB (32-bit only,
which can be run on top of a 64-bit Windows operating
system). The deprecation of non-Java plotting routines in more
recent versions of MATLAB (R2011a and up), however, cause
cosmetic problems in the display of the user menu; strategies to
fix this limitation are currently under development.

Performance

Performance during movie presentation. A key new feature
is that the software is now capable of displaying pregenerated
movies as stimuli. We demonstrate here that movie perfor-
mance meets the criterion of submillisecond precision (for a
description of the task used, see MATERIALS AND METHODS and
Fig. 1). We present a comparison between the current temporal
performance of the software while displaying movies and a
previous version displaying static image stimuli using the
functions listed above. Advances in PC hardware, operating

system software, MATLAB, and DAQ hardware and drivers
have allowed us to improve the performance of most of these
functions. In Table 1, we show that the performance of several
core routines in the software that are used to initialize trial
functions (trial), display movie stimuli (toggle), collect behav-
ioral data from the subject (track), send digital codes to a
neural DAQ system (eventmarker), and prepare stimuli for
display during the trial (ITT). Functions are divided into entry,
core, and exit sections (for more details, see MATERIALS AND
METHODS). These values are also compared between versions of
the software that use XGL or PTB to control video functions.

One area where there has been a dramatic improvement in
performance is during the exit time of toggle, which has been
reduced from 25 to 0.54 ms in the XGL version and 0.58 ms in
the PTB version. This is a notable improvement that will be of
practical use for users as this virtually eliminates a period
during which the system was unresponsive following a toggle
call, as described in a previous report (Asaad and Eskandar
2008b). The core time of toggle shows a marked difference
between the XGL and PTB versions. The XGL version runs in
0.10 ms on average (an improvement over the 0.18 ms in the
previous version of the software), but the PTB version requires
1.9 ms to run. This is a potential source for concern as the
toggle function is responsible for displaying stimuli and must
run efficiently to ensure that there are no timing delays. In the
case of movies, this is a more serious problem as there are far
more toggle calls during trials using movies than static stimuli.
Nevertheless, we have not encountered practical issues in the
presentation of movie stimuli using either XGL or PTB ver-
sions of the software, although a goal for future development is
to improve this performance and ensure that the presentation
(flip) operation always occurs in <1 ms. Eventmarker, which
is now optimized for sending digital signals via the digital
output lines of the DAQ board (rather than through the parallel
port as discussed in the previous report), has reduced the time
required to perform entry and exit operations by an order of

Table 1. Software performance during tasks with movies
Static Images: Asaad and Movies: XGL, Movies: PTB,
Eskandar (2008b), ms ms ms

Trial

Entry 0.11 13.94 16.29

Exit 14.07 12.73 12.85
Toggle

Entry 1.02 1.03 0.18

Core 0.18 0.10 1.90

Exit 25.85 0.54 0.58
Track

Entry 1.15 1.93 1.93

Core 0.98 0.56 0.67

Exit 1.09 0.21 0.21
Eventmarker

Entry 0.24 0.04 0.02

Core 0.5 0.59 0.60

Exit 0.01 0.0042 0.0038
Intertrial interval

Preparation time 99.51 415.1702 406.46

Values are means. The measured times for Asaad and Eskandar (2008b)
represent data collected over 1,601 trials. XGL toolbox and Psychophysics
Toolbox (PTB) values for the current study are obtained over 3,400 and 2,600
trials, respectively. For details, refer to MATERIALS AND METHODS.
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magnitude (to 0.04 and 0.02 ms in the XGL and PTB versions,
respectively) while maintaining submillisecond precision for
its core operation (Table 1).

One routine that shows substantially reduced timing perfor-
mance (but increased functionality) is the trial entry section,
which runs once before the start of each trial. Trial entry is
responsible for initializing all DAQ, video, and eventmarker
subroutines. The increase in processing time for this function is
due to its increased functionality, as it now supports more types
of stimuli (e.g., movies), and new subroutines have been added
to allow greater control over stimuli and task parameters. The
primary subroutine responsible for the increase in trial entry time
is track initialization (Table 1), which initializes the control screen
and verifies that data can be acquired by the user-specified
behavioral inputs. Consistent with the increase in the number of
operations performed by this function, the entry time for track has
nearly doubled, from 1.05 to 1.93 ms (in both XGL and PTB
versions). Trial exit, on the other hand, has shown a decrease
in the time required to store all acquired behavioral data, event
markers, and associated time stamps to the data file.

The track function, during which analog signals are obtained
and transformed into calibrated coordinates, has seen an in-
crease in entry time (as discussed above) but has shown
improvements in the core and exit times. The core of this
function is responsible for determining whether a task-relevant
behavioral event (such as an eye movement, joystick move-
ment, or a button press) has occurred and also controls the
updating of movie frames (through calls to toggle) during
movie display. As this operation is a main factor in determin-
ing the responsiveness of the software to behavioral events, it
is critical that the core of the track function is run as quickly as
possible to ensure that updates to the stimuli occur in a timely
manner.

For tasks involving the display of movies, the ITI shows
increased processing time, consistent with the additional pro-
cessing requirements for movies. During the ITI, preprocessed
movie files are loaded into memory from disk and then buff-
ered onto the video device. The increased processing times are
primarily due to loading the preprocessed movie files (which
contain the movie data) from disk. Because ITIs are often 1 s
or longer during behavioral tasks, the increased processing
time for movies is typically not a limitation in practice (except
perhaps in cases where very short ITIs are desired or when
many movies, movies with many frames, or very-high-resolu-
tion movies are used). For users that need to load very large
amounts of movie data in the ITI (which might cause the ITI to
exceed the desired duration), several options are available for
improving the speed of movie loading. Preliminary testing with
a solid state drive (SSD) for storage of the preprocessed movie
files improved performance substantially (by a factor of 3 on 1
tested PC), and preliminary testing suggests that substantial
further performance gains beyond the SSD may be obtained by
using a RAM disk for storage of movie data. For the perfor-
mance data presented here, movie data were stored on a
conventional hard disk. Users also have the option of loading
all movie data (for all trials) at the beginning of a session
(assuming sufficient memory capacity of the video card) rather
than loading movie data for each trial in the ITIs. This can
result in a delay before the start of the first trial, but subsequent
ITIs are fast since no additional movie data need to be loaded.
Additional performance gains can be obtained in some situa-

tions by disabling file compression when saving preprocessed
movies. Finally, future support for movies with a lower bit
depth (e.g., 8- or 16-bit) may be added that would further
improve the movie-loading performance.

Reliability of video timing. The reliability of video timing
during movie playback in both the XGL and PTB versions of the
software was verified by measuring and analyzing the output of a
photodiode attached to the subject’s display (Fig. 2). To do so, a
movie consisting of alternating “white” and “black” frames
was displayed for ~650 ms (50 total frames) using a black
background color on the display. During these tests, a photo-
diode circuit was used to indicate (with an increase in voltage)
precisely the time at which white frames appeared on the
screen. The movie was located in the center of the display, and
the photodiode was fixed to the screen near the center of the
display. The voltage output of the photodiode was recorded as
an analog input in the software, and the timing of the photo-
diode signal was compared with the timing of the stimulus-on
eventmarker code in offline analysis. In both the XGL (Fig. 24)
and PTB (Fig. 2B) versions of the software, the first movie
frame (which was white) appeared ~8.0 ms after the stimu-
lus-on eventmarker, which is consistent with the 13.33-ms
raster period of the display (at 75 Hz) and the location of the
photodiode near the midpoint of the display. No repeated or
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Fig. 2. Photodiode verification of video performance during movie presenta-
tion in the XGL (A) and Psychophysics Toolbox (PTB; B) versions of the
software. The black trace indicates the voltage recorded from the output of a
photodiode circuit with the photodiode sensor affixed to the display screen
(near the center of the display). The green and red lines indicate the timing of
the stimulus-on and stimulus-off event markers, respectively. The movie
consisted of alternating “white” and “black” frames, and frames were played
at a rate of 75 Hz. The interval between the green line and 1st upward
deflection of the photodiode signal was ~8.0 ms, which is consistent with the
frame rate and the position of the photodiode near the center of the display.
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Fig. 3. Histogram of average cycle rates across all movie
trials. A: the average cycle rate across 3,400 movie trials
using XGL was 1,767 Hz. The average cycle rate during
the Ist trial was 1,785 Hz, nearly double the 913 Hz
reported for images in the previous report (Asaad and
Eskandar 2008b) despite having additional processing
requirements. 99% Of trials had an average cycle rate
>1,100 Hz. 0.32% Of trials had average cycle rates
<1,000 Hz, and the lowest average cycle rate across all
trials was 873.5 Hz. B: the average cycle rate across 2,600
movie trials using PTB was 1,503 Hz. The average cycle
rate during the Ist trial was 1,431 Hz. 99% Of trials had
an average cycle rate >1,200 Hz. 0.04% Of trials had
average cycle rates <1,000 Hz, and the lowest average
cycle rate across all trials was 948.5 Hz.
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dropped frames were encountered during the example trials
shown in Fig. 2 or in the remainder of the testing session with
the photodiode. Note that the photodiode responds on only
every other frame, when pixels go from black to white when
the white frame is drawn. The regular pattern of photodiode
responses and absence of responses during the black frames
indicates that the video system is appropriately advancing
through the movie frames without repeating or skipping
frames.

Behavioral monitoring. A key measure of the performance
of the software is its rapid ability to monitor and respond to
changes in the status of analog inputs. To measure this perfor-
mance, we examined the cycle rate of the track subfunction,
which runs as a loop to monitor values in the analog input
buffers for script-specified events (e.g., release of a lever or
change in eye position) that may require a response from the
software (e.g., turning on or off a stimulus, delivering a reward,
etc.). We present histograms of average cycle rates during
movie trials using XGL and PTB (Fig. 3). Cycle rates primarily
reflect the temporal performance of the track routine core loop.

1500 2000

Average Cycle Rate (Hz)

Higher cycle rates indicate that the software can respond more
rapidly to behavioral events such as a change in target acqui-
sition or a response of the subject. Cycle rates have increased
substantially since the previous version of the software (Asaad
and Eskandar 2008b), with mean cycle rates across all trials of
1,767 Hz using XGL and 1,503 Hz using PTB (compared with
960 Hz using XGL in the 2008 study). The performance of the
software allows millisecond-level precision in behavioral mon-
itoring except on cycles where movie stimuli are manipulated
or during calls to toggle when using the PTB stimulus presen-
tation framework, which may take 1-2 ms (see Table 1). We
also computed the average cycle latency for all cycles of track
during the task involving movies (Fig. 4). Cycle latency is
defined as the time required to complete one cycle of the track
function. Across all cycles, average cycle latency was 0.56 ms
in the XGL version and 0.71 ms in the PTB version. Average
cycle latency during movie presentation for those cycles in
which movie frames were updated (through an internal call to
toggle) was 1.88 ms in the XGL version and 3.30 ms in the
PTB version.

XGL
108 ' ' 1 08 PTB
A B

10° 10°
n
@
3 Fig. 4. Histogram of cycle latencies across all trials.
E—_) A: average cycle latency across all 3,400 trials for XGL
S 104 i 104 was 0.56 ms. 99.9% Of cycles had a latency of <2 ms.
[} Here, we exclude 2 cycles with latency 101 ms
'g (0.00002% of all cycles). B: average cycle latency
=] across all 2,600 trials for PTB was 0.71 ms. 99.9% Of
z 2 2 cycles had a latency of <5 ms.

10 1 10

10° — A1 10° A0

0 10 20 30 0 10 20 30

Cycle Latency (ms)

Cycle Latency (ms)

J Neurophysiol » doi:10.1152/jn.00527.2012 « www.jn.org

€10z ‘9z Arenuer uo Alsianiun umoig e /610 ABojoisAyd-uly/:dny wouy papeojumoq



http://jn.physiology.org/

Innovative Methodology

256 HIGH-PERFORMANCE EXECUTION OF PSYCHOPHYSICAL TASKS IN MATLAB

Fig. 5. Cycle latencies for a typical behavioral tracking
epoch on a single example trial using XGL (top) and
PTB (bottom) stimulus presentation frameworks. Dur-

= N W b
T

ARAUNAARED

ing these example trials, 2 inputs (eye position and

button status) are being monitored by the track rou-
tine, and movie stimuli are displayed. The black trace
indicates individual cycle latencies for all cycles in the
trial. The green vertical lines indicate cycles during
which the toggle subfunction is called. The blue ver-
tical lines indicate cycles in which the control screen
is updated. The red vertical lines indicate cycles in
which the control screen is updated and the toggle
subfunction is called.
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During a trial, to monitor the subject’s behavior, the track
subfunction performs processes such as monitoring analog
input buffers (for changes in target acquisition, fixation, re-
sponse, etc.), updating the experimenter’s control screen, and
toggling stimuli on the subject’s screen. In Fig. 5 (top, XGL;
bottom, PTB), individual cycle latencies are plotted during a
typical behavioral tracking epoch during which analog input
values were monitored, the experimenter’s control screen was
updated, and movie frames were updated. The green, blue, and
red vertical traces in the figure represent cycles during which
various operations took place within the track subfunction:
monitoring 2 analog inputs (1 with X- and Y-components,
comprising a total of 3 analog lines) and toggling stimuli onto
the screen (green), monitoring 2 analog inputs and updating the
experimenter’s control screen (blue), and doing all 3 together
(red). In this particular trial, 3 movie stimuli were presented, as
indicated by the regions with green vertical bars and increased
cycle latencies. We grouped cycles across all trials during
which these processes occurred and observed their impact on
individual cycle latency (Fig. 6). The bars show the latency of

5
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Fig. 6. Average latency of processes in the track function. The bars show the
time required for different combinations of behavioral inputs, and video
operations in track using XGL (gray) and PTB (white) stimulus presentation
frameworks are shown. Each process consisted of monitoring 1 or 2 inputs
(“in”) while track simultaneously performed updates to the experimenter’s
control screen (“CS”) and toggled movie stimuli on the subject’s screen
(“TOG”). Error bars represent standard deviation.

|
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different combinations of monitoring one or two behavioral
inputs (“in”) and performing video operations such as updating
the experimenter’s control screen (“CS”) or toggling movie
stimuli (“TOG”) on the subject’s screen. Tracking two analog
inputs rather than one analog input did not have a substantial
impact on cycle latency; however, updates to the control screen
and toggling stimuli onscreen corresponded with increased
cycle times. Overall, XGL showed somewhat better temporal
performance than PTB, especially when stimuli are toggled on
the subject screen. This is also evident from the observation
that the core time of the toggle function in XGL runs more
quickly than its counterpart in the PTB version, as discussed
above and shown in Table 1.

Performance during static-image presentation. To compare
directly the current versions (PTB and XGL) of the software
and the version (XGL only) from the previous report (Asaad
and Eskandar 2008b), we ran a similar task to that used in the
previous report (for description, see MATERIALS AND METHODS
and Fig. 7) and measured the software performance. Improve-
ments were seen in many trial-related subfunctions (Table 2),
including the exit time of toggle, the core time of track (which
runs repeatedly over the course of the trial), and across all areas
of eventmarker (except in the core section for the PTB ver-
sion). The core time of toggle has seen a modest decrease in
performance from 0.18 to 0.5 ms in XGL but is still in line with
the goal of submillisecond precision. However, in the PTB ver-
sion, the core section of toggle takes longer to execute (2.15 ms).
The entry time of the trial function has seen a substantial
decrease in performance, compared with the older version, as
explained above. The ITI function has shown a moderate
decrease in performance from 99.51 ms in the previous version
to 148.89 ms in the new XGL version and 152.17 ms in the PTB
version. We measured the average cycle rate across all trials
during this task in both the XGL and PTB versions (Fig. 8). The
average cycle rate in the XGL version was 1,883 Hz, nearly
double the average cycle rate from the previous report, which
was 960 Hz. The average cycle rate for trials in the PTB
version was 1,435 Hz, also a marked improvement over the
previous version.

Digital output performance. At the time of the previous
report (Asaad and Eskandar 2008a), it was recommended that
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Fig. 7. The behavioral task used to study image performance. The subject
performed a delayed match-to-category task and had to indicate (by releasing
a lever) whether sample and test stimuli were of the same category, novel or
familiar. If the sample and test were not identical, the subject had to wait until
a 3rd stimulus was presented, which was always the same category as the
sample (and required a lever release). Sample and test stimuli were both
full-color RGB images.

the parallel port was used to transmit behavioral codes (as 8-bit
digital words plus a strobe bit) or other digital signals to
external devices (e.g., a neural DAQ system). Since that time,
updates to the MATLAB Data Acquisition Toolbox have
dramatically improved the performance of digital outputs on
the DAQ board, which are now suitable for the purpose of
transmitting time-sensitive digital outputs. Thus it is now
recommended that digital inputs and outputs make use of the
DAQ device. Here, we present a comparison of the timing of
analog and digital input and output functions for a PCI DAQ
card and a USB DAQ device (Table 3).

PCI cards outperformed the USB device on all four func-
tions (“putsample,” “getsample,” “putvalue,” and “getvalue”).
These functions are critical to the software performance. Get-
sample is used during trials to obtain analog inputs in the track
function and typically is called several thousand times per trial.
Putsample is used by the reward function to send an output
signal to an external reward device if connected via an analog
input. The putvalue function is used to generate TTL signals
and output digital event codes to the neural DAQ system and
also in the reward function when using a digital output. The
USB device showed slower performance, requiring >1.0 ms to
return, rendering them (currently) unsuitable for our purposes.
For example, the getsample call, without which analog inputs
cannot be acquired, takes 14.3 ms to run over USB, which is
much too slow for our requirements. By contrast, the same
getsample call was completed in 0.66 ms using the PCI DAQ
card.

DAQ performance, issues, and mitigation. One current lim-
itation that we have encountered during testing is that, in
certain situations, the number of analog samples acquired
during the course of a trial is sometimes slightly fewer than the
number of samples expected based on the length of the trial.
For example, when sampling at a rate of 1 kHz, the number of
samples should equal the length of a trial in milliseconds.
However, a problem arises because of the way the samples are
made available to the software through the MATLAB Data
Acquisition Toolbox. Samples, although acquired at the correct

sample rate by the DAQ card, are not immediately available to
the MATLAB workspace. Rather, they are made available to
MATLAB in discrete chunks. MATLAB Data Acquisition
Toolbox relates the number of samples available through a
property known as SamplesAvailable. From one millisecond to
the next, if SamplesAvailable has not changed, this means that,
even though a sample may have been acquired and buffered by
the DAQ card itself, it will not be available within MATLAB
until the next chunk is transferred from the DAQ buffer. Once
the trial has ended, any samples currently on the buffer of the
DAQ card are discarded and not made available to MATLAB.
Thus the number of samples recorded for that trial will be less
than expected due to the missing samples (typically <200) at
the end of the trial. Importantly, this issue does not affect the
real-time monitoring of analog behavioral inputs (e.g., eye or
joystick signals) because that functionality is handled by the
2nd, unaffected DAQ board running in an ad hoc (nonlogging)
mode (Asaad and Eskandar 2008a).

To demonstrate this discrete chunks phenomenon, we com-
pared time stamps from the “toc” MATLAB operation (to
establish time since the start of DAQ) with the size of Sample-
sAvailable over the course of 2,500 ms using a sample rate of
1 kHz. If the size of the buffer is updated on every sample
acquisition, we should see both increasing linearly. However,
we found that SamplesAvailable increased in a stepwise fash-
ion rather than linearly in the case of toc. This indicates that
SamplesAvailable lags the time stamp and is updated only at
finite intervals when new chunks of data are made available.
Figure 9 illustrates this phenomenon. For the DAQ device that
we tested, we found that the chunk size was a multiple of 64
(74% of chunks were of size 64, 25% were of size 128, and
0.52% were of size 192). Based on reports from other labora-
tories, this value can vary depending on the hardware config-
uration being used.

To ensure that the software provides all samples acquired
during the course of a trial, we modified the “end_trial”

Table 2. Software performance during tasks with static images

Asaad and Eskandar  Images: XGL, Images: PTB,
(2008b), ms ms ms

Trial

Entry time 0.11 13.08 16.47

Exit time 14.07 10.87 13.84
Toggle

Entry time 1.02 1.21 0.26

Core time 0.18 0.55 2.01

Exit time 25.85 0.47 0.50
Track

Entry time 1.15 2.14 2.15

Core time 0.98 0.53 0.71

Exit time 1.09 0.27 0.31
Eventmarker

Entry time 0.24 0.03 0.01

Core time 0.5 0.0029 0.58

Exit time 0.01 0.0021 0.0038
Intertrial interval

Preparation time 99.51 148.89 152.17

Values are means. The measured times for Asaad and Eskandar (2008b)
represent data collected over 1,601 trials. The measured times for the current
version using XGL and PTB represent data collected over 2,400 and 1,500
trials, respectively.
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routine, during which data from the device are read and written
to the behavioral data file. Previously, DAQ was halted as soon
as the end_trial was called, and data were immediately read
from the DAQ system using the “getdata” command. The
number of samples requested was specified using the Samples-
Available parameter. This had resulted in the lost samples at
the end of the trial in previous versions of the software. In the
current version, before stopping acquisition, a loop has been
added that monitors the size of SamplesAvailable until it
reaches the number of samples expected (typically requiring 1
update to SamplesAvailable) and then stops acquisition and
reads the data from the device. This ensures that there will be
data samples corresponding to the last few milliseconds of
behavioral events that may have immediately preceded the
function call to end the trial. Therefore, the trial exit time may
increase to accommodate this requirement.

DISCUSSION

This report documents recent progress in the development of
a comprehensive MATLAB-based software platform for pre-
senting sensory stimuli and controlling behavioral tasks and
describes its performance in a real-world experimental setting.
Important new additions to the software include the implemen-
tation of a more flexible stimulus-presentation system (PTB),
the ability to display dynamic stimuli (i.e., movies), perfor-

Table 3. Temporal performance of USB and PCI data
acquisition devices

Input/Output Type Mean, ms Standard Deviation, ms
putsample (USB) 1.3 0.15
putsample (PCI) 0.55 0.035
getsample (USB) 143 0.26
getsample (PCI) 0.66 0.17
putvalue (USB) 1.3 0.15
putvalue (PCI) 0.58 0.019
getvalue (USB) 1.3 0.12
getvalue (PCI) 0.55 0.035

Values reported represent average latency in milliseconds of various func-
tion calls to USB and PCI data acquisition devices.

Average Cycle Rate (Hz)

mance and stability enhancements, and features that facilitate
monitoring subjects’ behavioral performance.

A key addition to the software is the ability to present
movies as visual stimuli, which addresses a major limitation of
the previous version of the software. The ability to display and
precisely control dynamic stimuli is a key requirement for a
wide range of behavioral and neurophysiological studies. Im-
portantly, the display of movie frames is temporally precise
and is achieved without a substantial sacrifice in temporal
performance of other key functions such as monitoring behav-
ioral events, updating the experimenter’s control screen, digital
inputs and outputs, or reward delivery. At the present time, a
limitation is that only pregenerated movies (i.e., AVI movie
files generated before running a task) can be displayed. A goal
for future development is to add the ability to create and
display movies in real-time and/or in the ITI.

Several changes since the previous report have yielded
substantial increases in temporal performance of the system,
which alleviate limitations that made the previous version
unsuitable for some applications. Notably, an issue that led to
a ~25-ms “blind” period at the beginning of each behavioral
tracking episode that was documented in a previous report
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Fig. 9. Comparison between time stamps and number of samples acquired from
a hardware device. The toc function (black) and SamplesAvailable (gray) are
shown here. Toc is used to provide time stamps during data acquisition, and
SamplesAvailable (a property of MATLAB Data Acquisition Toolbox) indi-
cates the number of samples collected from the hardware device.
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(Asaad and Eskandar 2008b) has been solved. We also
demonstrate that the acquisition of analog signals through
the Data Acquisition Toolbox in MATLAB can cause sam-
ples to be lost at the end of trials, typically <200 samples in
a trial. We present a modification to the software to ensure
that all samples acquired by the hardware are stored in the
data file for further analysis. With several exceptions (as
described in RESULTS), temporal performance of most func-
tions and operations has improved due to both optimizations
of the software and improvements in computing hardware,
software, the operating system, and device drivers. Al-
though the software already delivers adequate performance
for most psychophysical and neurophysiological studies,
certain approaches could make use of further improvements
beyond that reported here. For example, temporally precise
electrical or optical microstimulation might require micro-
second-level temporal precision.

For researchers studying visual perception and visual neu-
rophysiology, the ability to generate easily a wider range of
visual stimuli (beyond simple predefined shapes, static images,
and pregenerated movies) would be a valuable addition to the
software. For example, the ability to implement transparency,
dynamic stimuli that can be generated or controlled in real-
time, and stereoscopic image presentation are all currently
unsupported but would benefit the vision research community.
The implementation of PTB (Brainard 1997; Kleiner et al.
2007; Pelli 1997) as the graphics system will provide a foun-
dation for enhanced image and movie performance through
future development.

A central goal and motivation for the development of this
software is to provide a tool for the quick and easy creation of
new experimental paradigms and behavioral tasks while main-
taining tight control over stimulus presentation and behavioral
events. The implementation of the software in MATLAB is a
significant advantage because of the wide adoption of MATLAB
as a tool for data analysis in our field. Similar systems that are
implemented using a low-level programming language (e.g., C
or C++) require nontrivial computer programming skills,
which can be discouraging or even prohibitive for researchers
that do not have a strong programming background. Further-
more, behavioral tasks coded in such programs tend to require
more lines of code and have a much higher complexity than the
same programs written in our software because of the greater
abstraction it provides; this simplicity is beneficial for debug-
ging and the avoidance of insidious errors in task execution.
High-level programming environments such as MATLAB
have proven to be easier to learn for many researchers and have
thus enjoyed wide adoption. This has the added benefit that a
single programming environment can be used for all stages of
a project, including experiment design, behavioral training,
data collection, and analysis.

MonkeyLogic is just one of several available software pack-
ages designed for behavioral control. It was created loosely based
on the COmputerized Real-Time EXperiments (CORTEX; http://
dally.nimh.nih.gov) software developed at the National Insti-
tute of Mental Health. Therefore, it shares broad features with
CORTEX such as the use of a conditions file that explicitly
enumerates the stimuli to be used in different trial types and a
timing file that is called on to control the actual ongoing events
(stimulus presentation and behavioral monitoring) within each
trial. The software handles the transitions between and selec-

tion of trials (according to user-specified criteria) and automat-
ically generates a standard behavioral data file. This is unlike
the approach taken by several other software systems such as
Lablib (http://maunsell.med.harvard.edu/software.html) or
independently run PTB (Brainard 1997; Kleiner et al. 2007;
Pelli 1997), in which the experimenter is responsible for
explicitly coding all events, such as for the selection of trials
and blocks, for saving behavioral data, etc. Those software
packages are designed primarily as a tool that gives the
researcher access to low-level video presentation and behav-
ioral-signal-acquisition hardware rather than as a framework
for trial-based experimentation.

Although such other software may, for some, provide a
sense of freedom to design a task completely from scratch and
unconstrained by the trial-based structure of systems such as
MonkeyLogic, this structure does allow for some advantages. For
example, three main features of our approach are: /) behavioral
contingencies (e.g., wait for subject to fixate on a particular
target regardless of where that target happens to be at any given
moment) can be set using a few simple options within an
abstract function call rather than through a millisecond-by-
millisecond programming of each contingency as it occurs;
2) trial randomization and block order often can be determined
using straightforward graphic user interface (GUI) options; and
3) standardized data files contain complete and easily accessi-
ble behavioral records (e.g., any trial performed in Monkey-
Logic can be replayed to watch the subject’s performance
through a simple GUI).

Our software does not currently provide an option for
drag-and-drop creation of behavioral tasks as is available in
some other behavioral control software. Therefore, a basic
familiarity with MATLAB programming is necessary to code
tasks in a scripted rather than graphic fashion. Rather than
develop such a GUI, we have instead focused our efforts thus
far on maximizing the simplicity of the scripting requirements:
for example, there is just one basic command for delivering
stimuli and another for monitoring performance; these flexibly
accommodate the modality of the stimulus being delivered
(e.g., visual static, visual movie, auditory, electrical, etc.) and
the type of behavioral signal being monitored (joystick, eye
position, and digital or analog buttons). In our experience,
given the relative simplicity of the MATLAB language and
MonkeyLogic-specific functions, the requirement to code tasks
manually has not been a significant barrier to adoption or use
even for novice programmers.

Nevertheless, there are clearly certain types of experi-
ments for which our software is not well-suited. For exam-
ple, a free-viewing task in which subjects are simply re-
quired to watch a long video while gaze position is being
tracked would be unfeasible in MonkeyLogic because, to
maintain timing accuracy, our software loads all stimulus
data to video or PCI-DAQ memory (for visual cues or
analog stimulation, respectively) rather than streams from a
more distant storage medium such as hard disk, optical
drive, or even motherboard RAM. Likewise, experiments in
which high-temporal determinism (e.g., electrical stimula-
tion must be delivered to within submillisecond precision of
another event) are likely to encounter significant barriers in
MonkeyLogic as well as in any pseudo-real-time behavioral
control system running in a high-level programming lan-
guage such as MATLAB.
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It is our hope that this software will improve productivity
and lower the energy barrier for developing new experiments
and testing more hypotheses. Additional information about the
software can be found at http://www.monkeylogic.net.

ACKNOWLEDGMENTS

We thank Markus Siegel, Camillo Padoa-Schioppa, Chris Rishel, Tim
Buschman, Valerie Yorgan, John Gale, Sam Barnett, Jillian McKee, Sruthi
Swaminathan, Arup Sarma, and Arjun Venkataswamy for major contributions
to the software, beta testing, and helpful discussions. We also thank Jeffrey S.
Perry for making the low-level graphic drivers publicly available and for
helpful advice regarding their implementation and the Psychtoolbox devel-
opment team. We also thank the many users of the software that have
provided bug reports, suggestions for new features, beta testing, and
feedback. MATLAB is a registered trademark of The MathWorks, Inc.

GRANTS

Funding was provided by National Institute of Neurological Disorders and
Stroke Grant RO3-NS-067322, National Eye Institute Grant ROI-EY-019041,
and National Science Foundation CAREER Award 0955640.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

W.F.A,, N.S., S.M., and D.J.F. conception and design of research; W.F.A.,
N.S., S.M., and D.J.F. performed experiments; W.F.A., N.S., S.M., and D.J.F.
interpreted results of experiments; W.F.A., N.S., and D.J.F. drafted manu-
script; W.F.A., N.S., S.M., and D.J.F. edited and revised manuscript; W.F.A.,

N.S., S:\M,, and D.J.F. approved final version of manuscript; N.S. and D.J.F.
analyzed data; N.S. and D.J.F. prepared figures.

REFERENCES

Asaad WF, Eskandar EN. Achieving behavioral control with millisecond
resolution in a high-level programming environment. J Neurosci Methods
17: 235-240, 2008a.

Asaad WF, Eskandar EN. A flexible software tool for temporally-precise
behavioral control in MATLAB. J Neurosci Methods 174: 245-248, 2008b.

Brainard DH. The Psychophysics Toolbox. Spat Vis 10: 433-436, 1997.

Gardner J, Larsson J. MGL Toolbox. In: Gardner Research Unit | mgl:
overview (Online). http://gru.brain.riken.jp/doku.php/mgl/overview, 2012.

Kleiner M, Brainard D, Pelli D. What’s new in Psychtoolbox-3? Perception
36, ECVP Abstract Suppl: 2007.

Lee D. Picto. In: Lee Lab (Online). http://leelab.yale.edu/Software.html [2012].

Maunsell JH. Lablib (Online). http://maunsell.med.harvard.edu/software.html
[2012].

National Institute of Mental Health, Laboratory of Systems Neuroscience,
Section on Neurophysiology. CORTEX. In: Software and Hardware for
Neurophysiology (Online). http://dally.nimh.nih.gov [2012].

Neurobehavioral Systems. E-Prime. In: Neurobehavioral Systems (Online).
http://www.neurobs.com [2012].

Pelli DG. The VideoToolbox software for visual psychophysics: transforming
numbers into movies. Spat Vis 10: 437-442, 1997.

Perry JS. XGLToolbox. In: Space Variant Imaging, Center for Perceptual
Systems, University of Texas at Austin (Online). http://fi.cvis.psy.utexas.edu/
software.shtml, 2012.

Psychology Software Tools. Presentation. In: Psychology Software Tools:
Stimulus Presentation Software and Hardware for Research, Assessment,
and Education (Online). http://www.pstnet.com [2012].

Rose J, Otto T, Dittrich L. The Biopsychology-Toolbox: a free, open-source
Matlab-toolbox for the control of behavioral experiments. J Neurosci Meth-
ods 175: 104-107, 2008.

Zeki S. Cogent 2000. In: Cogent | Wellcome Laboratory of Neurobiology
(Online). http://www.vislab.ucl.ac.uk/cogent.php, 2012.

J Neurophysiol » doi:10.1152/jn.00527.2012 « www.jn.org

€102 ‘9z Arenuer uo Alsianiun umoig 1e /Bio°ABojoisAyd-uly:dny woly papeojumoq



http://leelab.yale.edu/Software.html
http://maunsell.med.harvard.edu/software.html
http://dally.nimh.nih.gov
http://www.neurobs.com
http://fi.cvis.psy.utexas.edu/software.shtml
http://fi.cvis.psy.utexas.edu/software.shtml
http://www.pstnet.com
http://jn.physiology.org/

