Physics Colloquium: Fluid transport at the nanoscales and application to osmotic energy harvesting

Lyderic Bocquet (Institut Lumière Matière, Université Lyon)

November 11, 2013

"Fluid transport at the nanoscales and application to osmotic energy harvesting"

"There is plenty of room at the bottom". This visionary foresight of R. Feynman, introduced during a lecture at Caltech in 1959, was at the root of numerous scientific and technological developments, taking benefit of the "strange phenomena" occurring at the smallest scales. There remains however a lot to explore, in particular in the context of fluids at the nanoscales and their specific transport properties. The great efficiency of biological nanopores, such as aquaporins, in terms of permeability or selectivity is definitely a great motivation to foster research in this direction. How to reach such efficiency in artificial nano-systems, and build new devices taking benefit of the strange transport behavior of fluids at nanoscales is still an open question.

I will discuss several results obtained in our group on the fluid transport at the nanoscales, in particular inside nanopores, nanochannels and nanotubes. I will then focus on the study of transport inside a single Boron-Nitribe nanotube. Using a nano-assembly route with nanostructures as building block, we have built a dedicated trans-membrane nanofluidic device allowing to study fluid and ionic  transport across a single nanotube. Experiments show unprecedented energy conversion from salt concentration gradients. Applications in the field of osmotic energy harvesting will be discussed.

References:

"Giant osmotic energy conversion measured in a single transmembrane boron-nitride nanotube", A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. Purcell, and L. Bocquet, Nature 494 455-458 (2013)

"Optimizing water permeability through the hourglass shape of aquaporins",
S. Gravelle, L. Joly, F. Detcheverry, C. Ybert, C. Cottin and L. Bocquet, Proc. Nat. Acad. Sci. USA 110 16367 (2013)   

"Soft nanofluidic transport in a soap film", O. Bonhomme, O. Liot, A.-L. Biance, and L. Bocquet, Phys. Rev. Lett. 110 054102 (2013)