Microelectronics Facility

The Microelectronics Core Facility provides the necessary fabrication and characterization resources for research into modern device technologies, including electronics, microfluidics, and photonics. It contains the varied pieces of equipment required for a complete fabrication sequence of devices such as transistors and lasers, including tools for lithography, etching, metal and dielectric deposition, and various thermal treatments. Run on a user fee basis, it provides the primary fabrication support for faculty and students in Engineering and Physics studying nanostructures and advanced devices, as well as technological services to colleagues in other departments at Brown (including Biology and Medicine,  Chemistry, and Geological Sciences), to local industry and to researchers at other academic institutions. In addition, the Facility supports graduate and undergraduate instruction, including an undergraduate Design of Semiconductor Devices experimental course that is entirely run on Microelectronics Facility equipment.

The Microelectronics Facility is operated as a cost-center and is administered by the Institute for Molecular and Nanoscale Innovation to provide support for personnel, supplies, and routine maintenance of the equipment. 

We would appreciate your acknowledgement in your reports and publications.

Microelectronics Equipment

The Institute for Molecular and Nanoscale Innovation's Microelectronics Core Facility is housed in approximately 1000 square feet of Class 1000 cleanroom with an additional Class 100 cleanroom for photolithography. The following systems and instruments are available in the facility:

Lithography


Karl Suss MJB-3 Mask AlignerKarl Suss MJB-3 Mask Aligner

  • Karl Suss MJB-3 Mask Aligner: The Karl Suss MJB3 UV300 is designed for high-resolution photolithography, with a 350 W mercury lamp and Suss diffraction-reducing exposure optics. The primary exposure wavelengths of 365 or 403 nm lead to roughly 1 µm minimum feature size. For smaller feature sizes, electron-beam lithography is available in the Electron Microscope Facility.
  • Newport-Oriel flexible Mylar-Mask Lithography System
  • Photoresist Spinner: The Cee Model 100 is a fully programmable high-precision spinner, with acceleration from 0 to 30,000 rpm/sec in 1 rpm/sec increments, mostly used for spin-on deposition of photoresist.
  • Wet Chemistry Hoods: The Microelectronics Facility has a number of wet chemistry workbenches equipped with fume hoods, to permit the chemical processing (cleaning, wet etching, electroplating, anodization, etc) employed in the fabrication of semiconductor and microelectronic devices.

Thin Film Deposition


Electron Beam EvaporatorElectron Beam Evaporator

  • Atomic Layer Deposition System
  • Electron Beam Evaporator: This system deposits thin films of inorganic materials, usually metals, by means of electron beam heating and evaporation inside a high vacuum (cryopumped) chamber. Intense heating can produce deposition rates of up to 1 micron/minute for some materials. 
  • Lesker Lab 18: The Lab-18 thin film deposition system is a combined electron-beam evaporator and RF sputtering Physical Vapor Deposition (PVD) that allows for high quality, research grade metallic, semiconducting, and dielectric thin films. The Lab 18 includes a four-pocket electron beam evaporator as well as two 2” magnetron sputter sources. Two mass flow regulated gas lines provide for control of chamber pressure and gas composition for reactive sputtering.
  • LPCVD ToolA furnace used to deposit SiO2, Si3N4 or poly-silicon films onto multiple wafers (up to 2"). The deposition is accomplished at 750o C from silane, ammonia, and dichlorosilane at reduced pressure. The dielectric films are of higher quality than those produced by low-temperature PECVD, at the cost of a higher thermal budget.PlasmaThermPlasmaTherm
  • Plasmatherm: The PlasmaTherm Model 790 RIE-PECVD system has a computer-controlled single-wafer turbopumped chamber that provides reactive ion etching (RIE) and plasma-enhanced chemical vapor deposition (PECVD) capabilities. RIE is accomplished using fluorine-chemistry gases (CF4, CBrF3, CHF3, etc.) with up to 500 W RF power. PECVD capability provides low-temperature (up to 350 oC) SiO2 and Si3N4 deposition from silane chemistry.



Plasma Etching


Trion Technology Minilock IITrion Technology Minilock II

  • Inductively Coupled Plasma RIE System: The SPTS LPX is an inductively-coupled plasma (ICP) reactive-ion etcher (RIE) that offers the ability to etch high-aspect ratio structures in a wide range of materials, especially silicon, silicon dioxide, and silicon nitride. This system is configured with a range of gases for reactive- and physical-ion etching (i.e. SF6, C4F8, CF4, O2, BCl3, Cl2, and Ar). The LPX-ICP system is equipped with a single-wafer load-lock transfer arm for 100mm wafers; smaller wafers and small pieces may be processed on the system using a carrier wafer.
  • Plasmatherm (Fluorine-chemistry).
  • Trion* (Chlorine-chemistry) RIE Tools: The Trion Technology Minilock II is a computer-controlled turbopumped load-locked single-wafer tool for etching Si and III-V technology materials using chlorine chemistry (Cl2, BCl3, etc.) or Argon.

Furnaces

  • Dopant: Furnaces for doping Si wafers (up to 2") n or p type using phosphorus (from POCl3) or boron (from BBr3) at high temperatures.
  • LPCVD Si Deposition Furnaces for 2" Substrates: A furnace used to deposit SiO2, Si3N4 or poly-silicon films onto multiple wafers (up to 2"). The deposition is accomplished at 750o C from silane, ammonia, and dichlorosilane at reduced pressure. The dielectric films are of higher quality than those produced by low-temperature PECVD, at the cost of a higher thermal budget.
  • Wet Oxide and Dry Oxide: Thermal oxide growth on silicon by a chemical reaction between the silicon and either dry oxygen or water vapor at atmospheric pressure. The typical temperature range for the oxidation of silicon for wafer fabrication 750˚C to 1100˚C. The tubes accommodate multiple 2" wafers.

Characterization


Dektak ProfilometerDektak Profilometer

  • Dektak Profilometer: The DekTak3 is a new computer-controlled surface profile measuring system, which accurately measures step heights from below 100 A to over 50 µm by moving a diamond-tipped stylus over the surface. Equipped with video camera and surface profile analysis software.
  • Rudolph Ellipsometer: A Rudolph Research Corp. ellipseometer measures the refractive index and the thickness of dielectric thin films.

Other

  • Wet Chemistry Workbences: The Microelectronics Facility has a number of wet chemistry workbenches equipped with fume hoods, to permit the chemical processing (cleaning, wet etching, electroplating, anodization, etc) employed in the fabrication of semiconductor and microelectronic devices.
  • Wire Bonder: A Kulicke & Soffa manual wedge bonder fitted with either aluminum or gold wire for bonding finished devices can place bonds on 60 um pads with 120 um centers.
For further information contact:
Rashid Zia
Director, Microelectronics Facility
Assistant Professor of Engineering
Rashid_Zia@brown.edu
P: (401) 863-6351
Box D, Brown University

William Patterson
Associate Director
Microelectronics Facility
William_Patterson_III@brown.edu
P:  (401) 863-1449
F: (401) 863-9028 
                                     Box D, Brown University

Michael Jibitsky
Senior Research Engineer
Microelectronics Facility
P: (401) 863-1402
Box D, Brown University 

Administrative Contact: 

Sue Prendergast
Assistant Director, IMNI
Sue_Prendergast@brown.edu
P:  (401) 863-2184
F:   (401) 863-1387