Online Appendix (Not for Publication)

This Appendix contains the following additional results and material:

1. Details about the identification of the Input-Output Matrix Ξ,

2. Estimates of the production function coefficients,

3. A description of the bootstrap procedure,

4. An extension of the welfare equation (40) to a multi-sector environment,

5. Details about the algorithm used to calibrate the model of Section 4.

A.1 Identification of the Input-Output and Demand Structure

We use the French input-output tables from the OECD to discipline the demand parameters $[\alpha_s]$ and the matrix of input-output linkages Ξ. To determine Ξ, we focus on the intermediate supply from each industry j to each industry s. We abstract from any taxes and subsidies. As Ξ can be identified from expenditure shares by sourcing sector, see (25), we set

$$\zeta^s_j = \frac{\text{Intermediate supply from industry } j \text{ to industry } s}{\text{Intermediate consumption at final prices from industry } s}.$$

That is, ζ^s_j measures the importance of sector j in the production process of sector s. By construction, this ensures that $\sum_{j=1}^S \zeta^s_j = 1$ for all s. We arrange the input-output matrix so that the columns contain the distribution of expenditure for the different sectors:

$$\Xi = \begin{bmatrix}
\zeta^1_1 & \zeta^2_1 & \zeta^S_1 \\
\zeta^1_2 & \zeta^2_2 & \zeta^S_2 \\
\zeta^1_S & \zeta^S_S & \zeta^S_S
\end{bmatrix}.$$

To determine $[\alpha_s]$, we also use the input-output tables as they contain information on the composition of final demand. Since there is no trade in final goods in the theory, we exclude any exports and imports in final goods in the data. More specifically, the input-output tables report final consumption expenditure by households on sector j, denoted by $HHFC_j$. Following (25), we hence set

$$\alpha_s = \frac{HHFC_s}{\sum_{j=1}^S HHFC_j}.$$
The OECD input-output tables report their data at the 2-digit level of ISIC Rev. 3, which gives 37 manufacturing industries. To deal with the non-manufacturing industries, we group them into a “residual” sector which we denote by S. To incorporate this sector in the analysis, we set

$$\alpha_S = 1 - \sum_{j \in M} \alpha_j,$$

(81)

where M is the set of manufacturing sectors. Because in our theory this sector is not engaged in foreign sourcing\(^{76}\), we set

$$\Lambda_S = 0.$$

The input-output structure of sector S can be recovered from the input-output tables. In particular, we set

$$\zeta_j^S \equiv \frac{\sum_{n=1}^{NM} \text{Intermediate supply from industry } j \text{ to industry } n}{\sum_{n=1}^{NM} \text{Intermediate consumption at final prices to industry } n},$$

where NM is the set of non-manufacturing sectors. To measure the materials coefficient in the production of sector S, we employ the Input-Output Matrix for the non-manufacturing sectors. As we observe value added and intermediary spending for each sector, we set

$$\gamma_S = \frac{\sum_{n=1}^{NM} X_n}{\sum_{n=1}^{NM} (X_n + VA_n)},$$

(82)

where X_n denotes total intermediary spending by sector n. Table 16 summarizes how $[\alpha_s]$ and $[\gamma_s]$ are computed. The input-output matrix Ξ used in our empirical analysis is contained in Table 15.

\(^{76}\)Note that this sector may nevertheless benefit from input trade if it sources output from the manufacturing industries.

Table 14: Measurement of α_s and γ_s

<table>
<thead>
<tr>
<th>ISIC</th>
<th>α</th>
<th>Value Added</th>
<th>Intermediate Purchases</th>
<th>γ</th>
<th>Λ</th>
<th>Coarse Classification</th>
<th>α</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α_1</td>
<td>VA$_1$</td>
<td>X_1 (\frac{X_1}{X_1+VA_1})</td>
<td>λ_1</td>
<td>0</td>
<td>Non-Manufacturing α_S from (81)</td>
<td>α_1</td>
<td>γ_1</td>
</tr>
<tr>
<td>2</td>
<td>α_2</td>
<td>VA$_2$</td>
<td>X_2 (\frac{X_2}{X_2+VA_2})</td>
<td>0</td>
<td>0</td>
<td>Manufacturing</td>
<td>α_2</td>
<td>γ_2</td>
</tr>
<tr>
<td>3</td>
<td>α_3</td>
<td>VA$_3$</td>
<td>X_3</td>
<td>Estimate from micro-data</td>
<td>“Read off” from micro-data</td>
<td>Non-Manufacturing α_S from (81)</td>
<td>α_3</td>
<td>γ_3</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>α_{10}</td>
<td>VA$_{10}$</td>
<td>X_{10}</td>
<td>Estimate from micro-data</td>
<td>“Read off” from micro-data</td>
<td>Manufacturing</td>
<td>α_{10}</td>
<td>γ_{10}</td>
</tr>
<tr>
<td>16</td>
<td>α_{16}</td>
<td>VA$_{16}$</td>
<td>X_{16}</td>
<td>Estimate from micro-data</td>
<td>“Read off” from micro-data</td>
<td>Manufacturing</td>
<td>α_{16}</td>
<td>γ_{16}</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>α_{37}</td>
<td>VA$_{37}$</td>
<td>X_{37}</td>
<td>$\frac{X_{37}}{X_{37}+VA_{37}}$</td>
<td>0</td>
<td>Non-Manufacturing α_S from (81)</td>
<td>α_{37}</td>
<td>γ_{37}</td>
</tr>
<tr>
<td>40</td>
<td>α_{40}</td>
<td>VA$_{40}$</td>
<td>X_{40}</td>
<td>$\frac{X_{40}}{X_{40}+VA_{40}}$</td>
<td>0</td>
<td>Non-Manufacturing α_S from (81)</td>
<td>α_{40}</td>
<td>γ_{40}</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>α_{99}</td>
<td>VA$_{99}$</td>
<td>X_{99}</td>
<td>$\frac{X_{99}}{X_{99}+VA_{99}}$</td>
<td>0</td>
<td>Non-Manufacturing α_S from (81)</td>
<td>α_{99}</td>
<td>γ_{99}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sector</td>
<td>10-14</td>
<td>15-16</td>
<td>17-19</td>
<td>20</td>
<td>21-22</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----</td>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>10-14</td>
<td>8.69</td>
<td>0.12</td>
<td>0.02</td>
<td>0.41</td>
<td>1.8</td>
<td>0.26</td>
<td>9.83</td>
<td>4.85</td>
</tr>
<tr>
<td>15-16</td>
<td>0.48</td>
<td>21.33</td>
<td>2.27</td>
<td>0.1</td>
<td>0.51</td>
<td>1.97</td>
<td>0.24</td>
<td>0.06</td>
</tr>
<tr>
<td>17-19</td>
<td>0.26</td>
<td>0.11</td>
<td>46.79</td>
<td>0.08</td>
<td>0.65</td>
<td>0.8</td>
<td>1.39</td>
<td>0.44</td>
</tr>
<tr>
<td>20</td>
<td>1.33</td>
<td>0.38</td>
<td>0.13</td>
<td>30.47</td>
<td>1.07</td>
<td>0.17</td>
<td>0.38</td>
<td>2.06</td>
</tr>
<tr>
<td>21-22</td>
<td>1.44</td>
<td>2.29</td>
<td>1.73</td>
<td>1.45</td>
<td>44.73</td>
<td>3.02</td>
<td>2.27</td>
<td>2.82</td>
</tr>
<tr>
<td>24</td>
<td>4.53</td>
<td>1.25</td>
<td>8.25</td>
<td>1.69</td>
<td>5.03</td>
<td>39.28</td>
<td>40.03</td>
<td>3.31</td>
</tr>
<tr>
<td>25</td>
<td>1.68</td>
<td>2.46</td>
<td>2.36</td>
<td>0.65</td>
<td>1.67</td>
<td>3.03</td>
<td>15.72</td>
<td>1.44</td>
</tr>
<tr>
<td>26</td>
<td>8.53</td>
<td>0.79</td>
<td>0.19</td>
<td>0.81</td>
<td>0.21</td>
<td>0.81</td>
<td>0.66</td>
<td>21.53</td>
</tr>
<tr>
<td>27</td>
<td>0.62</td>
<td>0.09</td>
<td>0.4</td>
<td>0.64</td>
<td>0.8</td>
<td>0.76</td>
<td>1.67</td>
<td>3.24</td>
</tr>
<tr>
<td>28</td>
<td>5.95</td>
<td>1.39</td>
<td>1.16</td>
<td>3.51</td>
<td>0.98</td>
<td>2.13</td>
<td>1.78</td>
<td>2.26</td>
</tr>
<tr>
<td>29</td>
<td>20.33</td>
<td>0.79</td>
<td>1.66</td>
<td>3.31</td>
<td>0.87</td>
<td>0.78</td>
<td>2.79</td>
<td>2.6</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0.02</td>
<td>0.04</td>
<td>0.36</td>
<td>0.08</td>
<td>0.02</td>
<td>0.08</td>
<td>0.36</td>
</tr>
<tr>
<td>31</td>
<td>0.51</td>
<td>0.14</td>
<td>0.08</td>
<td>0.28</td>
<td>0.35</td>
<td>0.34</td>
<td>0.21</td>
<td>0.79</td>
</tr>
<tr>
<td>32</td>
<td>0.9</td>
<td>0.06</td>
<td>0.07</td>
<td>0.09</td>
<td>0.13</td>
<td>0.39</td>
<td>0.37</td>
<td>0.34</td>
</tr>
<tr>
<td>33</td>
<td>0.07</td>
<td>0.01</td>
<td>0.08</td>
<td>0.03</td>
<td>0.12</td>
<td>0.12</td>
<td>0.22</td>
<td>0.57</td>
</tr>
<tr>
<td>34</td>
<td>0.68</td>
<td>0.09</td>
<td>0.12</td>
<td>0.22</td>
<td>0.12</td>
<td>0.07</td>
<td>0.07</td>
<td>0.47</td>
</tr>
<tr>
<td>35</td>
<td>0.15</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>36-37</td>
<td>0.2</td>
<td>0.17</td>
<td>0.59</td>
<td>0.42</td>
<td>0.8</td>
<td>0.18</td>
<td>0.23</td>
<td>0.43</td>
</tr>
<tr>
<td>S</td>
<td>43.64</td>
<td>68.48</td>
<td>34.03</td>
<td>55.82</td>
<td>41.4</td>
<td>44.54</td>
<td>31.56</td>
<td>47.37</td>
</tr>
</tbody>
</table>

Notes: The table contains the French input-output matrix used in our empirical work. We report numbers in percentage terms. Sectors are classified at the 2-digit-level according to ISIC Rev. 3. The non-manufacturing sector S is constructed as explained in the main text and Table 16.

Table 15: Input-Output Linkages: Ξ
<table>
<thead>
<tr>
<th>Industry</th>
<th>ISIC</th>
<th>ϕ_k</th>
<th>ϕ_l</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining</td>
<td>10-14</td>
<td>0.374*** (0.039)</td>
<td>0.293*** (0.017)</td>
<td>0.333*** (0.043)</td>
</tr>
<tr>
<td>Food, tobacco, beverages</td>
<td>15-16</td>
<td>0.098*** (0.004)</td>
<td>0.177*** (0.003)</td>
<td>0.725*** (0.006)</td>
</tr>
<tr>
<td>Textiles and leather</td>
<td>17-19</td>
<td>0.081*** (0.003)</td>
<td>0.293*** (0.009)</td>
<td>0.626*** (0.012)</td>
</tr>
<tr>
<td>Wood and wood products</td>
<td>20</td>
<td>0.113*** (0.004)</td>
<td>0.285*** (0.006)</td>
<td>0.602*** (0.006)</td>
</tr>
<tr>
<td>Paper, printing, publishing</td>
<td>21-22</td>
<td>0.134*** (0.007)</td>
<td>0.362*** (0.011)</td>
<td>0.504*** (0.011)</td>
</tr>
<tr>
<td>Chemicals</td>
<td>24</td>
<td>0.124*** (0.008)</td>
<td>0.204*** (0.01)</td>
<td>0.671*** (0.014)</td>
</tr>
<tr>
<td>Rubber and plastics products</td>
<td>25</td>
<td>0.124*** (0.005)</td>
<td>0.289*** (0.007)</td>
<td>0.587*** (0.011)</td>
</tr>
<tr>
<td>Non-metallic mineral products</td>
<td>26</td>
<td>0.178*** (0.01)</td>
<td>0.294*** (0.012)</td>
<td>0.529*** (0.015)</td>
</tr>
<tr>
<td>Basic metals</td>
<td>27</td>
<td>0.124*** (0.01)</td>
<td>0.202*** (0.015)</td>
<td>0.674*** (0.021)</td>
</tr>
<tr>
<td>Metal products (ex machinery and equipment)</td>
<td>28</td>
<td>0.108*** (0.002)</td>
<td>0.412*** (0.008)</td>
<td>0.479*** (0.009)</td>
</tr>
<tr>
<td>Machinery and equipment</td>
<td>29</td>
<td>0.071*** (0.003)</td>
<td>0.313*** (0.015)</td>
<td>0.616*** (0.018)</td>
</tr>
<tr>
<td>Office and computing machinery</td>
<td>30</td>
<td>0.037*** (0.012)</td>
<td>0.150*** (0.032)</td>
<td>0.813*** (0.04)</td>
</tr>
<tr>
<td>Electrical machinery</td>
<td>31</td>
<td>0.096*** (0.008)</td>
<td>0.306*** (0.011)</td>
<td>0.598*** (0.014)</td>
</tr>
<tr>
<td>Radio and communication</td>
<td>32</td>
<td>0.055*** (0.006)</td>
<td>0.322*** (0.048)</td>
<td>0.624*** (0.052)</td>
</tr>
<tr>
<td>Medical and optical instruments</td>
<td>33</td>
<td>0.071*** (0.004)</td>
<td>0.435*** (0.026)</td>
<td>0.494*** (0.029)</td>
</tr>
<tr>
<td>Motor vehicles, trailers</td>
<td>34</td>
<td>0.106*** (0.009)</td>
<td>0.135*** (0.016)</td>
<td>0.759*** (0.014)</td>
</tr>
<tr>
<td>Transport equipment</td>
<td>35</td>
<td>0.152*** (0.019)</td>
<td>0.499*** (0.03)</td>
<td>0.349*** (0.044)</td>
</tr>
<tr>
<td>Manufacturing, recycling</td>
<td>36-37</td>
<td>0.084*** (0.003)</td>
<td>0.283*** (0.009)</td>
<td>0.633*** (0.012)</td>
</tr>
</tbody>
</table>

Notes: The table contains the production function parameters based on observed factor shares. See Section 3.1 in the main text for details.

Table 16: Production Function Coefficient Estimates, by 2-digit Sector: Factor Shares

A.2 Estimating the Parameters of the Production Function

We report the results of estimating the production function parameters using our different approaches. In Table 16, we report the results of the factor share approach. Note that this method imposes the assumption of constant returns, so that $\phi_k + \phi_l + \gamma = 1$. Table 17 reports the results based on proxy methods akin to Levinsohn and Petrin (2012) and Wooldridge (2009). We do not impose constant returns to scale for these approaches. We assume that labor is a dynamic input, which seems plausible given the stringent hiring and firing regulations of the French economy. Note that we do not include firms’ domestic share in material spending in the production function as we estimate ε in the second stage. Finally, Table 18 contains the results of the integrated GMM approach, where we treat the domestic expenditure share as a distinct input and estimate the parameter vector $(\phi_k, \phi_l, \gamma, \varepsilon)$ in one step.

A.3 Bootstrap Procedure

We sample firms from the empirical distribution with replacement to construct 200 replicates of our micro-data. For each of these samples, we re-calculate σ_s and re-estimate ε and $[\gamma_s]$ following the factor shares approach explained in Section 3.1 and then re-calculate $[\Lambda_s]$ and $[s_{D_s}^{Agg}]$. Figure 6 depicts the bootstrap distributions of these variables. For the three sector-level variables, we report the distribution of the sectoral averages, e.g. the upper right panel displays the distribution of $\frac{1}{S} \sum_{s=1}^{S} \gamma_s$. While the variation in γ and $s_{D_s}^{Agg}$ is relatively modest, there is a quite a bit of
<table>
<thead>
<tr>
<th>Industry</th>
<th>ISIC</th>
<th>ϕ_k</th>
<th>ϕ_l</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining</td>
<td>10-14</td>
<td>0.647***</td>
<td>0.626***</td>
<td>0.295**</td>
</tr>
<tr>
<td>Food, tobacco, beverages</td>
<td>15-16</td>
<td>0.174***</td>
<td>0.274***</td>
<td>0.538***</td>
</tr>
<tr>
<td>Textiles and leather</td>
<td>17-19</td>
<td>0.216***</td>
<td>0.513***</td>
<td>0.481***</td>
</tr>
<tr>
<td>Wood and wood products</td>
<td>20</td>
<td>0.138***</td>
<td>0.414***</td>
<td>0.521***</td>
</tr>
<tr>
<td>Paper, printing, publishing</td>
<td>21-22</td>
<td>0.061***</td>
<td>0.717***</td>
<td>0.600***</td>
</tr>
<tr>
<td>Chemicals</td>
<td>24</td>
<td>0.027</td>
<td>0.142</td>
<td>1.304***</td>
</tr>
<tr>
<td>Rubber and plastics products</td>
<td>25</td>
<td>0.148***</td>
<td>0.536***</td>
<td>0.357***</td>
</tr>
<tr>
<td>Non-metallic mineral products</td>
<td>26</td>
<td>0.221***</td>
<td>0.539***</td>
<td>0.357***</td>
</tr>
<tr>
<td>Basic metals</td>
<td>27</td>
<td>0.104</td>
<td>0.381***</td>
<td>0.481*</td>
</tr>
<tr>
<td>Metal products (ex machinery and equipment)</td>
<td>28</td>
<td>0.252***</td>
<td>0.655***</td>
<td>0.231***</td>
</tr>
<tr>
<td>Machinery and equipment</td>
<td>29</td>
<td>0.186***</td>
<td>0.563***</td>
<td>0.393***</td>
</tr>
<tr>
<td>Office and computing machinery</td>
<td>30</td>
<td>0.170**</td>
<td>0.574***</td>
<td>0.104</td>
</tr>
<tr>
<td>Electrical machinery</td>
<td>31</td>
<td>0.144***</td>
<td>0.448***</td>
<td>0.449***</td>
</tr>
<tr>
<td>Radio and communication</td>
<td>32</td>
<td>0.123**</td>
<td>0.565***</td>
<td>0.568***</td>
</tr>
<tr>
<td>Medical and optical instruments</td>
<td>33</td>
<td>0.231***</td>
<td>0.501***</td>
<td>0.421***</td>
</tr>
<tr>
<td>Motor vehicles, trailers</td>
<td>34</td>
<td>0.082</td>
<td>0.316**</td>
<td>0.765**</td>
</tr>
<tr>
<td>Transport equipment</td>
<td>35</td>
<td>0.194***</td>
<td>0.686***</td>
<td>0.997***</td>
</tr>
<tr>
<td>Manufacturing, recycling</td>
<td>36-37</td>
<td>0.242***</td>
<td>0.472***</td>
<td>0.430***</td>
</tr>
</tbody>
</table>

Notes: The table contains the production function parameters based on the GMM procedure by Levinsohn and Petrin (2012) and Wooldridge (2009). See Section 3.1 in the main text for details.

Table 17: Production Function Coefficient Estimates, by 2-digit Sector: GMM
Notes: The upper left panel contains the bootstrap distribution of e. The remaining panels depict the bootstrap distributions of $\frac{1}{S} \sum_{s=1}^{S} \gamma_s$, $\frac{1}{S} \sum_{s=1}^{S} \Lambda_s$ and $\frac{1}{S} \sum_{s=1}^{S} A^{agg}_s$. The point estimates used in the main analysis are reported as vertical lines.

Figure 6: Bootstrap Distribution of Structural Parameters and Direct Price Reductions

uncertainty regarding e. This is consistent with the non-negligible standard errors reported in Table 2. We conclude that it is the variation in e which induces most of the variation in Λ and therefore in the consumer price gains from input trade reported in Tables 5-6 and shown in Figure 5.

A.4 General equilibrium and Welfare in the Model of Section 4.1

Consider the setup of Section 4.1. We now consider the aggregate allocations in this economy. An equilibrium has the usual definition:

Definition 1. An equilibrium is a set of prices $w, [p_i]$, labor demands for production and fixed costs $[l_i, l_i^F]$, differentiated product quantities, consumption levels and foreign demands $[y_i, c_i, y_i^{ROW}]$, domestic and international input demands by local firms $[y_{ci}], [z_{ci}]$ and sourcing strategies $[n_i]$ such that:

1. **Firms maximize profits given by (36)-(37),**

2. **Consumers maximize utility given by (12) and (13) subject to their budget constraint**

$$\int_i p_i c_idi = wL + \int_i \pi_idi,$$

(83)
3. Trade is balanced (39),

4. Labor and good markets clear

\[
L = \int_{i} \left(l_i + l_i^F \right) di \\
y_i = c_i + y_i^{ROW} + \int_{v} y_{vi} dv.
\]

We first characterize the general equilibrium in a multi-sector version of the economy of Section 4.1. In particular, we consider the multi-sector structure of Section 2.2. We derive a generalization of (40). We do not impose any assumptions on how firms’ determine their extensive margin. That is, we allow for an arbitrary mapping \(l_{\Sigma_i} \) which gives the labor resources that firm \(i \) needs to spend in order to attain the sourcing strategy \(\Sigma_i \). We assume that trade is balanced and that the value of exports in sector \(s \) is given by \(\alpha_s^{ROW} \times IM \), where \(IM \) denotes the value of total spending on imported inputs.

Proposition 4. Let \(W, I \) and \(S \) denote welfare, consumer income and total spending, respectively. Then, the change in welfare relative to input autarky is given by

\[
\frac{W}{W^{Aut}} = \frac{I}{I^{Aut}} \times \frac{P^{Aut}}{P},
\]

where \(I \) and \(I^{Aut} \) are given by

\[
I = L + \sum_{s=1}^{S} S_s \left(\sigma_s - \sigma \right) - \sum_{s=1}^{S} \left(\int_{0}^{N_s} l_{\Sigma_i} \, di \right),
\]

(84)

\[
I^{Aut} = L + \sum_{s=1}^{S} \frac{S_s^{Aut}}{\sigma_s},
\]

(85)

and \([S_j]\) and \([S_{j}^{Aut}]\) solve

\[
S_s = \alpha_s \left(L - \sum_{j=1}^{S} \left(\int_{0}^{N_j} l_{\Sigma_i} \, di \right) + \sum_{j=1}^{S} \frac{1 + \zeta_j \gamma_j (\sigma_j - 1)}{\sigma_j} S_j \right) + \sum_{j=1}^{S} \left[\alpha_s^{ROW} - \zeta_j \right] \gamma_j \frac{\sigma_j - 1}{\sigma_j} S_j \int_{0}^{N_j} (1 - s_{Di}) \omega_i \, di,
\]

(86)

and

\[
S_{s}^{Aut} = \alpha_s \left(L + \sum_{j=1}^{S} \frac{1 + \zeta_j \gamma_j (\sigma_j - 1) / \alpha_s}{\sigma_j} S_{j}^{Aut} \right),
\]

(87)

Furthermore, \(G = \frac{P^{Aut}}{P} \) is given in Proposition 2.

Proof. As labor is the only factor of production, consumer welfare is given by real income \(W = I/P \),
consumer income is given by

\[I = L + \sum_{s=1}^{S} \left(\int_{0}^{N_s} \pi_i di \right). \]

Note that \(L \) represents total labor income and \(\pi_i \) denotes firm \(i \)'s profits. To derive \(\pi_i \), recall that firms in sector \(s \) have a mark-up of \(\sigma_s/(\sigma_s - 1) \) so that variable profits gross of any extensive margin resource loss are given by

\[\pi^V_i = (p_i - u_i) y_i = p_i y_i / \sigma_s. \] (88)

Total revenue for firm \(i \) is given by

\[p_i y_i = \left(\frac{p_i}{P^s} \right)^{1-\sigma_s} S^s, \] (89)

where \(P^s \) is the consumer price index for sector \(s \) and \(S^s \) denotes total spending for sector \(s \) goods. Hence,

\[\pi_i = p_i y_i / \sigma_s - l_{s_i} = \frac{1}{\sigma_s} \left(\frac{p_i}{P^s} \right)^{1-\sigma_s} S^s - l_{s_i}, \]

so that

\[I = L + \sum_{s=1}^{S} \frac{1}{\sigma_s} S^s - \sum_{s=1}^{S} \left(\int_{0}^{N_s} l_{s_i} di \right). \] (90)

Hence, given \([S^s]\) and \([l_{s_i}]\), total income \(I \) is fully determined. Now consider \([S^s]_s\). Note that

\[S^s = S^C_s + S^X_s + S^{ROW}_s, \] (91)

where \(S^C_s, S^X_s \) and \(S^{ROW}_s \) denote total spending by consumers, intermediary producers and the rest of the world, respectively. For our economy, we have that \(S^C_s = \alpha_s I \) and \(S^{ROW}_s = \alpha^{ROW}_s Im \) as consumers spend a fraction \(\alpha_s \) of their income \(I \) on sector \(s \) products and balanced trade requires that total spending by the rest of the world is equal to the value of imports \(Im \), a fraction \(\alpha^{ROW}_s \) of which is spent on sector \(s \) products. To derive \(S^X_s \), let total domestic intermediary purchases in sector \(j \) be given by \(X_j \). Then

\[S^X_s = \sum_{j=1}^{S} \xi^j_s X_j. \] (92)

Letting \(m_i \) be total material spending by firm \(i \) and \(s_i \) be total spending by firm \(i \), we know that

\[X_j = \int_{0}^{N_j} s_{Di} m_i di = \int_{0}^{N_j} s_{Di} \gamma_j s_{i} di = \int_{0}^{N_j} s_{Di} \gamma_j s_{i} di - \int_{0}^{N_j} s_{Di} \gamma_j s_{i} di \]

\[= \gamma_j \frac{\sigma_j - 1}{\sigma_j} S^j \int_{0}^{N_j} s_{Di} \left(\frac{p_i}{P_j} \right)^{1-\sigma_j} di, \] (93)

where we used that firms in sector \(j \) spend a fraction \(\gamma_j \) of their total input spending \(s_i \) on materials and that total spending \(s_i \) accounts for a fraction \((\sigma_j - 1)/\sigma_j \) of revenue. Hence, (92) and (93) imply
that
\[S_s^X = \sum_{j=1}^{S} \zeta_j \gamma_j \frac{\sigma_j - 1}{\sigma_j} S_j \int_{0}^{N_j} s_{Di} \left(\frac{p_i}{P_s} \right)^{1-\sigma_s} \, di. \]

(94)

Similarly, total import spending is equal to
\[Im = \sum_{j=1}^{S} Im_j = \sum_{j=1}^{S} \int_{0}^{N_j} (1-s_{Di}) m_{i} \, di \]
\[= \sum_{j=1}^{S} \gamma_j \frac{\sigma_j - 1}{\sigma_j} S_j \int_{0}^{N_j} (1-s_{Di}) \left(\frac{p_i}{P_s} \right)^{1-\sigma_s} \, di. \]

(95)

Hence (94) and (95) imply that
\[S_s = \alpha_s I + \alpha_s^{ROW} \left(\sum_{j=1}^{S} \gamma_j \frac{\sigma_j - 1}{\sigma_j} S_j \int_{0}^{N_j} (1-s_{Di}) \left(\frac{p_i}{P_s} \right)^{1-\sigma_s} \, di \right) + \sum_{j=1}^{S} \zeta_j \gamma_j \frac{\sigma_j - 1}{\sigma_j} S_j \int_{0}^{N_j} s_{Di} \left(\frac{p_i}{P_s} \right)^{1-\sigma_s} \, di. \]
\[= \alpha_s I + \sum_{j=1}^{S} \zeta_j \gamma_j \frac{\sigma_j - 1}{\sigma_j} S_j + \sum_{j=1}^{S} \left[\alpha_s^{ROW} - \zeta_j \right] \gamma_j \frac{\sigma_j - 1}{\sigma_j} S_j \int_{0}^{N_j} (1-s_{Di}) \left(\frac{p_i}{P_s} \right)^{1-\sigma_s} \, di. \]

Using (90), we get that
\[S_s = \alpha_s \left(L - \sum_{j=1}^{S} \left(\int_{0}^{N_j} l_{\Sigma_i} \, di \right) + \sum_{j=1}^{S} \frac{1 + \zeta_j \gamma_j (\sigma_j - 1)}{\sigma_j} \int_{0}^{N_j} S_i \, di \right) + \sum_{j=1}^{S} \left[\alpha_s^{ROW} - \zeta_j \right] \gamma_j \frac{\sigma_j - 1}{\sigma_j} S_j \int_{0}^{N_j} (1-s_{Di}) \left(\frac{p_i}{P_s} \right)^{1-\sigma_s} \, di. \]

Now note that
\[\frac{va_i}{\int_{0}^{N_s} va_i \, di} = \frac{p_i y_i}{\int_{0}^{N_s} p_i y_i \, di} = \frac{(p_i / P_s)^{1-\sigma_s} S_s}{\int_{0}^{N_s} (p_i / P_s)^{1-\sigma_s} S_s \, di} = \left(\frac{p_i}{P_s} \right)^{1-\sigma_s}. \]

Hence,
\[S_s = \alpha_s \left(L - \sum_{j=1}^{S} \left(\int_{0}^{N_j} l_{\Sigma_i} \, di \right) + \sum_{j=1}^{S} \frac{1 + \zeta_j \gamma_j (\sigma_j - 1)}{\sigma_j} \int_{0}^{N_j} S_i \, di \right) + \sum_{j=1}^{S} \left[\alpha_s^{ROW} - \zeta_j \right] \gamma_j \frac{\sigma_j - 1}{\sigma_j} S_j \int_{0}^{N_j} (1-s_{Di}) \omega_i (96) \]
where \(\omega_i = \int_{0}^{N_s} va_i \, di. \) Given \(L^{NET} = L - \sum_{j=1}^{S} \left(\int_{0}^{N_j} l_{\Sigma_i} \, di \right) \), (96) are \(S \) equations in \(S \) unknowns \(S_s \), which we can easily solve. Now consider the case of autarky. There we have \(l_{\Sigma_i} = 0 \) and \(s_{Di} = 1 \). Hence, (96) yields
\[S_s^{Aut} = \alpha_s \left(L + \sum_{j=1}^{S} \frac{1 + \zeta_j \gamma_j (\sigma_j - 1)}{\sigma_j} S_j^{Aut} \right). \]

In the case of a single sector (i.e. \(S = 1 \)) it has to be the case that
\[\alpha_S = \alpha_S^{ROW} = \zeta_S = 1. \]

Hence,
\[S^{Aut} = L + \frac{1 + \gamma (\sigma - 1)}{\sigma} S^{Aut} = \frac{\sigma}{(1-\gamma)(\sigma-1)} L. \]
Substituting this in (90) yields

\[I^{Aut} = L + \frac{1}{\sigma} S = \frac{1 + (1 - \gamma) (\sigma - 1)}{(1 - \gamma) (\sigma - 1)} L. \]

Similarly, we get from (96) that

\[
\sum_{j=1}^{S} [\alpha^j_{s} - \zeta^j_{s}] \gamma_j \frac{\sigma_j - 1}{\sigma_j} S_j \int_{0}^{N_j} (1 - s_{Di}) \omega_idi = 0
\]

so that

\[
S = \frac{\sigma}{(1 - \gamma) (\sigma - 1)} \left(L - \left(\int_{i}^{N} l_{\Sigma_i} di \right) \right)
\]

\[
I = \frac{1 + (1 - \gamma) (\sigma - 1)}{(1 - \gamma) (\sigma - 1)} \left(L - \left(\int_{i}^{N} l_{\Sigma_i} di \right) \right)
\]

This implies directly (40). This concludes the proof of Proposition 4. \(\square \)

A.5 Calibrating the Model of Section 4

We adopt a solution algorithm that allows us to bypass the computation of the general equilibrium variables within the calibration. Intuitively, we work with a normalized version of fixed costs, where these are scaled by an appropriate transformation of the general equilibrium variables. Because the equilibrium variables depend on firms’ import behavior only through the domestic shares, which are itself a calibration target, we can compute them after the calibration. That is, we can first ensure that the moments of the joint distribution of value added and domestic shares are matched\(^{77}\), and then back out the underlying general equilibrium variables required to compute welfare. We also show that the parameter \(z \) is not required for the calibration.

We first start with three aggregate variables, which are determined in equilibrium. In the single-sector version of the model, characterized in Section A.4 in the Online Appendix, we have that aggregate spending \(S \) and the price level (which is also equal to the price of domestic varieties) is given by

\[
S = \frac{\sigma}{(1 - \gamma) (\sigma - 1)} \left(L - \left(\int_{i}^{N} l_{\Sigma_i} di \right) \right)
\]

\[
P = \left(\frac{\sigma}{\sigma - 1} \left(\frac{1}{\gamma} \right) \gamma \left(\frac{1}{\sigma} \right)^{1-\gamma} \left(\frac{1}{qD} \right)^{\gamma} \right)^{\frac{1}{1-\gamma}},
\]

where

\[
Y = \left(\int_{i=0}^{\gamma} \left(\frac{1}{s_{Di}} \right)^{\gamma/(\varepsilon - 1)} \right)^{\frac{1}{1-\sigma}} di.
\]

\(^{77}\)For this step, it is important that the dispersion and correlation moments are in logs. See below.
We start by noting that the firm’s optimality conditions from the profit maximization problem, contained in Section 7.6, can be expressed in terms of s_D instead of n. To see this, note that (8) and (35) imply

$$n^{\eta(\varepsilon-1)} = \left(\frac{1 - s_D}{s_D}\right) \left(\frac{\beta}{1 - \beta}\right)^{\varepsilon} \left(\frac{q_D}{p_D}\right)^{\varepsilon-1}. \tag{102}$$

Substituting (102) into the firm’s first order condition (73), we obtain

$$\frac{1 - \gamma(\sigma-1)\eta}{s_D^{\eta(\varepsilon-1)}} \left(1 - s_D\right)^{-\frac{1}{\eta(\varepsilon-1)}} = \left(\frac{\beta}{1 - \beta}\right)^{\varepsilon} \frac{\varepsilon}{\eta - 1} \frac{\tilde{f}}{\varphi^{\varepsilon-1}}, \tag{103}$$

where

$$\tilde{f} \equiv f \times (zq_D)^{1/\eta} \frac{1}{\eta\gamma(\sigma - 1)} \frac{1}{\Theta} \times \frac{1}{P^{1/\eta}}, \tag{104}$$

where

$$\Theta = \frac{1}{\sigma} \left(\frac{\sigma}{\sigma - 1}\right)^{1-\sigma} \left(\frac{1}{1 - \gamma} \left(\frac{1}{\gamma} \left(\frac{1}{q_D}\right)\right)\right)^{1-\sigma}, \tag{105}$$

$$\Gamma = \frac{S}{P^{(1-\gamma)(1-\sigma)}}. \tag{106}$$

Similarly, (102) and the import status condition (79) imply that the firm is an importer as long as

$$\left[\frac{1}{s_D^{\eta(\varepsilon-1)}} \left(1 - s_D\right)^{-\frac{1}{\eta(\varepsilon-1)}} \right] \varphi^{\varepsilon-1} - \left(\frac{1 - s_D}{s_D}\right) \left(\frac{\beta}{1 - \beta}\right)^{\varepsilon} \frac{\varepsilon}{\eta - 1} \left(\frac{\beta_i}{1 - \beta_i}\right)^{\varepsilon} \tilde{f} - \tilde{f}_I > 0, \tag{107}$$

where

$$\tilde{f}_I = \frac{1}{\Gamma} \Theta \times f_I. \tag{108}$$

(103) and (107) show that we can solve for firms’ optimal domestic share and import status with knowledge of $\varphi^{\varepsilon-1}, \tilde{f}$ and \tilde{f}_I only. Thus, we can work with the joint distribution of (φ, \tilde{f}) to match the moments of the joint distribution of domestic shares and value added. We can then back out the exogenous component of fixed costs f_I and f from \tilde{f}_I and \tilde{f} using the equilibrium variables S and P and (106).

To solve for S, we require the aggregate resource loss of fixed costs (see (99)). To do so, note that

$$l_{\Sigma_i} = l_i(s_{Di}) = f_i \times \left(\frac{s_{Di}}{1 - s_{Di}}\right) \left(\frac{1}{P}\right)^{1/\eta} \left(\frac{\beta_i}{1 - \beta_i}\right)^{\varepsilon} \frac{\varepsilon}{\eta} + f_I$$

$$= \Gamma \Theta \left\{\eta\gamma(\sigma - 1) \times \tilde{f_i} \times \left(\frac{s_{Di}}{1 - s_{Di}}\right) \left(\frac{\beta_i}{1 - \beta_i}\right)^{\varepsilon} \frac{\varepsilon}{\eta} + \tilde{f}_I\right\}.$$

Hence,

$$\int_i^N l_{\Sigma_i} di = \Gamma \Theta \left\{\eta\gamma(\sigma - 1) \times \int_i^N \tilde{f_i} \left(\frac{s_{Di}}{1 - s_{Di}}\right) \left(\frac{\beta_i}{1 - \beta_i}\right)^{\varepsilon} \frac{\varepsilon}{\eta} \right\} di + \int_i^N \tilde{f}_I \left[s_{Di} \right] di. \tag{109}$$
The key is now to argue that Γ is known given the calibration. If so, we can calculate $\int_N l_{\Sigma_i} di$ from (109) given the calibrated \tilde{f} and \tilde{f}_I and parameters, as

$$\int_N l_{\Sigma_i} di = \Gamma \times \Theta \times \Delta,$$

where

$$\Delta \equiv \eta \gamma (\sigma - 1) \times \int_N \frac{\tilde{f}_i}{1 - s_{Di}} \left(\frac{s_{Di}}{1 - s_{Di}} \right) ^{\frac{1}{\gamma(1 - \epsilon)}} \left(\frac{\beta_i}{1 - \beta_i} \right) ^{\frac{1}{\epsilon - 1}} \eta \frac{1}{\gamma} \, di + \int_N \tilde{f}_I [s_{Di}] \, di. \quad (110)$$

Recall that (106) and (99) imply that

$$\Gamma = \frac{S}{P^{(1 - \gamma)(1 - \sigma)}} = \frac{1}{P^{(1 - \gamma)(1 - \sigma)} (1 - \gamma) (\sigma - 1)} \left(L - \left(\int l_{\Sigma_i} di \right) \right)$$

$$= \frac{1}{P^{(1 - \gamma)(1 - \sigma)} (1 - \gamma) (\sigma - 1)} L - \frac{1}{P^{(1 - \gamma)(1 - \sigma)} (1 - \gamma) (\sigma - 1)} \Gamma \Theta \Delta.$$

Solving for Γ yields

$$\Gamma = \frac{1}{1 + \frac{1}{P^{(1 - \gamma)(1 - \sigma)} (1 - \gamma) (\sigma - 1)} \Theta \Delta} L. \quad (111)$$

As L is a normalization (see below), (111) shows that Γ is fully determined as P can be evaluated from the calibrated data on domestic shares (see (100) and (101)). Hence,

$$\int_N l_{\Sigma_i} di = \Gamma \Theta \Delta = \frac{1}{1 + \frac{1}{P^{(1 - \gamma)(1 - \sigma)} (1 - \gamma) (\sigma - 1)} \Theta \Delta} \frac{1}{P^{(1 - \gamma)(1 - \sigma)} (1 - \gamma) (\sigma - 1)} \Theta \Delta L.$$

This implies that

$$\frac{L - \int_N l_{\Sigma_i} di}{L} = \frac{1}{1 + \frac{1}{P^{(1 - \gamma)(1 - \sigma)} (1 - \gamma) (\sigma - 1)} \Theta \Delta} \frac{1}{P^{(1 - \gamma)(1 - \sigma)} (1 - \gamma) (\sigma - 1)} \Theta \Delta L.$$

so that L is indeed a normalization. Finally we only have to show that (112) does not depend on q_D, even though Θ does (see (105)). However, it can easily be shown that

$$\Theta P^{(1 - \gamma)(\sigma - 1)} = \gamma^{\sigma - 1} \frac{1}{\sigma}.$$

Hence, the quality of domestic varieties q_D and the foreign price level z can be normalized for the calibration.

The five models we consider fit in this framework as follows:

1. The aggregate model assumes that $\beta_i = \beta$ and $f_i = f_I = 0$. Hence, $\int_N l_{\Sigma_i} di = 0$ and $s_{Di} = s_D$ can be solved from (102) using that $n = 1$ (as all firms are importers and import from every country). The level of β is chosen to match the aggregate domestic share. The dispersion in productivity σ_{ϕ} is chosen to match the dispersion in value added.

2. The homogenous bias model assumes that $\beta_i = \beta$ and $f_i = 0 < f_I$. Hence, conditional on
importing, we have that \(s_{Di} = s_D \), which can be solved from (102) using that \(n = 1 \). The required level \(\tilde{f}_I \) in (107) is chosen to match the share of importers. Given a distribution of productivity [\(\tilde{\varphi}_i \)] we can then calculate \(\Delta \) from (110), \(P \) from (100) and (101) and hence \(\Gamma \) from (111). This is sufficient to calculate welfare using (112) and \(P^{Aut}/P \).

3. The heterogeneous bias model assumes that \(\beta_i \) varies across firms and \(f_i = 0 < f_I \). As for the case with fixed costs, it is useful to consider a scaled version of the home-bias \(\tilde{\beta}_i = \frac{\beta_i}{1 - \beta_i} \). In particular, (102) shows that \(s_D \) only depends on \(\beta^* = \left(\tilde{\beta} \right)^{\frac{\varepsilon}{1 - \frac{1}{p}}} \) (again, we have \(n = 1 \) as there are no fixed costs per country). Hence, we draw \((\tilde{\varphi}, \beta^*) \) from a joint log-normal distribution. Using (102), this generates a joint distribution of \((\tilde{\varphi}_i, s_{Di}) \). We can then calibrate \(\tilde{f}_I \) from (107) to match the share of importers. Like for the case of the homogenous bias model, we can then use (110), \(P \) and (111) to compute all equilibrium objects.

4. For the heterogeneous fixed cost model, we draw \((\tilde{\varphi}_i, \tilde{f}_i) \) from a joint log-normal distribution. Using the (103), this implies a joint distribution of \((\tilde{\varphi}_i, s_{Di}) \). We can then calibrate \(\tilde{f}_I \) from (107) to match the share of importers. As above, we can then use (110), \(P \) and (111) to compute all equilibrium objects.

5. The homogenous fixed cost model, is a special case of the heterogenous fixed cost model where \(\tilde{f}_i = \tilde{f} \). Hence, the procedure is exactly the same given a marginal distribution for \(\tilde{\varphi}_i \).