EN221 - Fall2008 - HW # 9 Solutions

Prof. Vivek Shenoy

1.) Consider the observer transformation discussed in class is defined by the relation

\[x^* = c(t) + Q(t)x \]

where \(Q \) is an orthogonal tensor. (a) Show that

\[\text{div}_x^* \mathbf{T}^*(x^*, t) = Q(t) \text{div}_x \mathbf{T}(x, t) \]

(b) Show that the acceleration transforms according to

\[\dot{v}^*(x^*, t) = Q(t) \dot{v}(x, t) + \ddot{c}(t) + 2Q(t)v(x, t) + Q(t)x \]

(c) Show further that if the body force transforms according to

\[b^*(x^*, t) = Q(t)b(x, t) \]

then the equation of motion is given by

\[\text{div}_x^* \mathbf{T}^* + \rho^* b^* + k = \rho^* \dot{v}^* \]

where \(\rho^*(x^*) = \rho(x, t) \) and determine a relation for \(k \)

(d) because of the additional term \(k \), the equation of motion is not not invariant under all changes in observer. Show that \(k \) vanishes for observer for whom \(Q \) and \(\dot{c} \) are constant. Such observer are called Galilean and have the property of being accelerationless with respect to the underlying inertial observer.

Soln.
The observer transformation is

\[x^* = c(t) + Q(t)x \]

(a) \[\text{div}_x^* \mathbf{T}^* = \frac{\partial T^*_{ij}}{\partial x^*_i} e^*_j \]

\[T^*_{ij}(x^*, t) = T_{ij}(x, t) \]

\[\frac{\partial T^*_{ij}(x^*, t)}{\partial x} = \frac{\partial T_{ij}(x, t)}{\partial x} \]
\[
\begin{align*}
\text{div}_x \cdot T^* &= \frac{\partial T_{ij}}{\partial x_i} e_j \\
&= \frac{\partial T_{ij}}{\partial x_i} Q(t) e_j \\
&= Q(t) \frac{\partial T_{ij}}{\partial x_i} e_j \\
&= Q(t) \text{div}_x T
\end{align*}
\]

(b)
\[
\begin{align*}
\text{div}_x \cdot T^* &= Q(t) \text{div}_x T \\
&= Q(t)(-\rho b + \rho \dot{v}) \\
&= -\rho Q(t)b + \rho Q(t)\dot{v}
\end{align*}
\]

But,
\[
\begin{align*}
x^* &= c(t) + Q(t)x \\
\dot{x}^* &= \dot{v}^* = \ddot{c}(t) + Q(t)\ddot{x} + \dot{Q}(t)x \\
\ddot{x}^* &= \dddot{v}^* = \dddot{c}(t) + Q(t)\dddot{x} + \ddot{Q}(t)x + 2\dot{Q}(t)\dot{x} \\
&= \dddot{c}(t) + Q(t)\dddot{v} + \dot{Q}(t)x + 2\dot{Q}(t)v
\end{align*}
\]

Thus,
\[
\begin{align*}
\text{div}_x \cdot T^* &= -\rho Q(t)b + \rho Q(t)\dot{v} \\
&= -\rho Q(t)b + \rho \left[\dddot{v}^* - \dddot{c}(t) - \dot{Q}(t)x - 2\dot{Q}(t)v \right] \\
\end{align*}
\]

using \(\rho^* = \rho \)
\[
\begin{align*}
\text{div}_x \cdot T^* + \rho^* b^* + \rho^* \left[\dddot{c}(t) + \dddot{Q}(t)x + 2\dot{Q}(t)v \right] &= \rho^* \dddot{v}^* \\
\end{align*}
\]

where Internal body force in the accelerating frame is
\[
k = \dddot{c}(t) + \dddot{Q}(t)x + 2\dot{Q}(t)v \text{ if } Q \text{ and } c \text{ are constant then } k = 0
2.) The Transformation rule for the Cauchy stress tensor \mathbf{T} for relative motion of observers is

$$ T^* = QTQ^T \quad (10) $$

Tensors that transform in this manner are called objective tensors. Is the material rate of change (or material derivative) of Cauchy stress \dot{T} objective?, i.e., is $\dot{T}^* = Q\dot{T}Q^T$?

(b) Show that if the Cauchy stress tensor is objective, then the Jaumann stress rate defined by

$$ \dot{T} = \dot{T} - WT + TW \quad (11) $$

is objective. Note that W in the above equation represents the spin tensor, $\frac{1}{2}(L - L^T)$. This stress rate is also called the co-rotational rate of Cauchy stress. Why is this a reasonable name for this stress rate?

Soln.

(a)

$$ T^* = QTQ^T $$
$$ \dot{T}^* = \dot{QTQ}^T + QT \dot{Q}^T + Q\dot{T}Q^T \quad (12) $$

Additional terms $\dot{QTQ}^T + QT \dot{Q}^T$, so \dot{T} is not objective

(b)

$$ \dot{T} = \dot{T} - WT + TW $$
$$ \dot{T}^* = \dot{T}^* - W^*T^* + T^*W^* \quad (13) $$

$$ \Omega^* = \dot{Q}Q^T = -Q\dot{Q}^T \quad (14) $$
$$ W^* = QWQ^T + \Omega \quad (15) $$

Substituting Eqn(12 and 15) in Eqn(13)

$$ \ddot{T}^* = \dot{QTQ}^T + QT \dot{Q}^T + Q\dot{T}Q^T - QWQ^T T^* - \dot{Q}Q^T T^* + T^*QWQ^T - T^*Q\dot{Q}^T $$

$$ = \dot{QTQ}^T + QT \dot{Q}^T + Q\dot{T}Q^T - QWQ^T QTQ^T - \dot{Q}Q^T QTQ^T + QTQ^T QWQ^T - QTQ^T Q\dot{Q}^T $$

$$ = \dot{QTQ}^T + QT \dot{Q}^T + Q\dot{T}Q^T - QWTQ^T - \dot{QTQ}^T + QTWQ^T - QTQ^T $$

$$ = Q(\dot{T} - WT + TW)Q^T \quad (16) $$

Thus Jaumann stress rate is frame independent.

This is the rate of change of \mathbf{T} relative to a basis rotating with the local body spin Ω.

3
3. For each of the following constitutive equations decide whether or not the principle of objectivity is satisfied. (α and β are scalar constants, p a scalar valued function and f a symmetric tensor-valued function.)

(i) \[\sigma = -p(t)I \]
(ii) \[\sigma = \alpha(F + F^T) \]
(iii) \[\sigma = f(v) \]
(iv) \[\sigma = \alpha \{ \text{grad} \ a + (\text{grad} \ a)^T + 2L^T L \} \]
(v) \[\sigma = f(b) \]
(vi) \[\dot{\sigma} = W\sigma - \sigma W + (\alpha \text{ tr } D)I + \beta D \]

Soln.

(i)
\[
\sigma = -p(t)I \\
\sigma^*(x^*, t^*) = -p(t^*)I \\
= -p(t - t_0^*)I
\]

(17)

\[t^* = t - t_0^*; \ t = t_0^* \] is origin for \(t^* \) (There is some origin in time \(t_0(t_0^*) = 0 \) but, \(t - t_0^* = t \)
\[\Rightarrow \sigma(x^*, t^*) = -p(t)I = \sigma(x, t) \]

(ii)
\[
\sigma = \alpha(F + F^T) \\
\sigma^* = \alpha(F^* + F^{*T}) \\
F^* = *QF \\
\Rightarrow \sigma^* = \alpha(QF + F^{T}Q^{T}) \\
= \alpha(Q(F + F^{T})Q^{T} - \alpha QFQ^T - Q
\]

so, \(\sigma^* \) is not objective

(iii)
\[
\sigma = f(v) \\
\sigma^* = f(v^*) \\
= f(\dot{c} + \dot{Q}x + Qv) \\
= Qf(v)Q^T \text{ for the relation to be objectivet} \quad (18) \\
\Leftrightarrow f(\dot{c} + \dot{Q}x + Qv) = Qf(v)Q^T \quad (19)
\]

putting \(v = 0 \) and \(Q = I \)
\[
f(\dot{c}) = f(0) \quad \forall \dot{c} \quad (20)
\]
⇒ \(f(v) \) is a constant = \(C \)

\[
f(\ddot{c} + \dot{Q}x + Qv) = Qf(v)Q^T
\]

(21)

putting \(c = 0 \) and \(\dot{Q} = 0 \)

\[
⇒ f(Qv) = C = QCQ^T \quad \forall Q
\]

(22)

putting a few values of \(Q \) we will obtain

\(C = pI \); where \(p \) is a constant is a necessary and sufficient for objectivity

(iv)

\[
σ = α\{\text{grad } a + (\text{grad } a)^{T} + 2L^{T}L\}
\]

(23)

Let \(A_2 = \text{grad } a + (\text{grad } a)^{T} + 2L^{T}L \) from problem 4.1 Chadwick

From the hint given on pg. 169 and problem 4.1

\[
A_2 = A_1 \quad (A_1 = 2D) \\
A_1 = \dot{A}_1 + L^T A_1 + A_1 L
\]

\[
= 2 \left(\frac{\dot{L} + L^T}{2} \right) + L^T 2 \left(\frac{L + L^T}{2} \right) + 2 \left(\frac{L + L^T}{2} \right) L
\]

\[
= \dot{L} + \dot{L}^T + L^2 + L^T L + 2L^T L
\]

(24)

\[
⇒ σ = αA_2
\]

(25)

\(A_1 \) is \(2D \) and clearly objective (pg. 134 Chadwick)

\(A_2 = A_1 \)

and from problem 4 (pg. 134)

Since \(A_1 \) is objective \(A_2 \) is objective

Thus \(σ = αA_2 \) is objective

(v)

\[
σ = f(b)
\]

(26)

Using Problem 1 of the HW

\[
b^* = b + (\ddot{c} + 2\dot{Q}v + \ddot{Q}x)
\]

\[
⇒ σ^* = f(b^*)
\]

\[
= f(b + \ddot{c} + 2\dot{Q}v + \ddot{Q}x)
\]

(27)

\[
σ^* = QσQ^T
\]

(28)

\[
⇔ f(b + \ddot{c} + 2\dot{Q}v + \ddot{Q}x) = Qf(b)Q^T
\]

(29)

Making \(\dot{Q} = 0, \ddot{Q} = 0, b = 0, Q = I \)

\[
f(\ddot{c}) = Qf(0)Q^T = f(0) \quad \forall e
\]

(30)
Thus, \(f(\ddot{c}) = f(0) = C(\text{constant}) \) Putting \(\ddot{c} = \ddot{Q} = \dddot{Q} = 0 \)

\[
f(b) = C = QCQ^T
\]

(31)

Thus, by the same argument as in (iii) \(c = bI \), where \(b \) is some constant, is necessary and sufficient for objectivity.

(vi)

\[
\dot{\sigma} = W\sigma - \sigma W + (\alpha \text{ tr } D)I + \beta D
\]

\[
\dot{\sigma}^* = W^*\sigma^* - \sigma^* W^* + (\alpha \text{ tr } D^*)I + \beta D^*
\]

\[
W^* = QWQ^T + \Omega
\]

\[
\Omega = \dot{Q}Q^T
\]

\[
\sigma^* = Q\sigma Q^T
\]

\[
D^* = QDQ^T
\]

\[
\Rightarrow \text{ tr } D^* = \text{ tr } (QDQ^T) = \text{ tr } (Q^TQD) = \text{ tr } D
\]

(32)

\[
\dot{\sigma}^* = (QWQ^T + \Omega)Q\sigma Q^T - Q\sigma Q^T(QWQ^T + \Omega) + \alpha \text{ tr } D + \beta Q\sigma Q^T
\]

\[
= QW\sigma Q^T + \dot{Q}Q^TQ\sigma Q^T - Q\sigma WQ^T + Q\sigma Q^TQ^T\sigma Q^T + Q^T\alpha \text{ tr } (D)IQ^T + \beta(QDQ^T)
\]

\[
= Q(W\sigma + \sigma W + \alpha \text{ tr } (D)I + \beta D)Q^T + \dot{Q}\sigma Q^T + Q\dot{\sigma} Q^T
\]

\[
= Q\dot{\sigma} Q^T + \dot{Q}\sigma Q^T + Q\sigma Q^T
\]

\[
= (Q\sigma Q^T)
\]

(33)

\[
\Rightarrow \dot{\sigma} \text{ is objective.}
\]
4). The stress response of a certain type of material which exhibits both elastic and viscous properties is described by the consecutive equation

\[\sigma = f(F, \dot{F}) \] (34)

\(f \) being a symmetric tensor-valued function. Investigate the restriction imposed on \(f \) by the principle of objectivity and hence show that the most general form of Eqn (34) is

\[F^* = QF \] (35)

\[\Rightarrow \sigma^* = f(F^*, \dot{F}^*) = Qf(F, \dot{F})Q^T \] (for objectivity)

\[\Rightarrow f(QF, (QF)) = Qf(F, \dot{F})Q^T \]

writing \(F = RU \), we get

\[f(QRU, (QRU\dot{)}) = Qf(F, \dot{F})Q^T \]

\[(QRU\dot{)} = \dot{QRU} + Q\dot{RU} + QR\dot{U} \] (36)

Since \(Q \) is arbitrary, on putting \(Q = R^T \)

\[(QRU\dot{)} = \dot{R}^T RU + R^T \dot{R}U + R^T R\dot{U} \]

\[= (\dot{R}^T R + R^T \dot{R})U + \dot{U} \]

but \(R^T R = I \) and

\(\dot{R}^T R + R^T \dot{R} = 0 \)

hence

\[(QRU\dot{)} = \dot{U} \]

\[\Rightarrow f(U, \dot{U}) = Qf(F, \dot{F})Q^T = R^T f(F, \dot{F})R \]

\[\Rightarrow f(U, \dot{U}) = \sigma = R^T f(U, \dot{U})R \] (37)