BIO 1500: Plant Physiological Ecology (previously known as Plant Ecology)

Lectures: Tuesdays and Thursdays, 9 – 10:20am (H hour), Smith-Buonanno Hall rm 207

Laboratory: Labs will be held on Thursdays in the Environmental Science Center (greenhouses). One or two lab sections will be available (TBD)

Instructor: Prof. Erika Edwards
Office: 303 Walter Hall
Phone: 863-2081
Email: erika_edwards@brown.edu
Office hours: Wednesday, 1-3 pm

Teaching assistant: Matt Ogburn, mogburn@brown.edu, office hours TBD

Course Overview

This is an advanced botany course, preferably for students that have taken either BIO43 or BIO44 in addition to BIO20; otherwise permission must be obtained from the instructor. A keen interest in plants is a must.

Aims and objectives: The primary aim of BIO 1500 is to examine the role of the environment in shaping the anatomical, physiological, and ecological diversity of vascular plants. Lectures will provide an overview of plant-environment interactions, focusing on anatomical and physiological adaptations of leaves, stems, and roots to different habitats. A comparative, phylogenetic approach will be emphasized. This is a hybrid lecture/seminar course, where classes will consist of both chalkboard lectures by the professor as well as discussions of articles from the primary literature. **In addition, BIO 1500 is designed to be a hands-on course, and lectures are viewed mostly as supplements to the semester-long greenhouse project that will provide students with first-hand experience in measuring and interpreting plant functional traits.** Students will work on a set of group projects that are designed to test long-standing assumptions about the evolution and adaptive nature of certain plant traits. Projects will differ from year to year, but will be chosen by the professor based on outstanding questions in the current literature. See page 6 for an overview of Spring 2011 projects. Students will leave the class with a solid foundation both in plant functional ecology and in applying a phylogenetic comparative approach to studies of organismal biology. Furthermore, they will gather first hand experience in data collection, experimental design, data analysis, and the presentation of a scientific study.

Reading assignments: All of the reading assignments for the course are in-depth research or review articles from the primary literature. Students who enroll in this course should already be comfortable with reading scientific journal articles. Several textbooks will be on reserve at the Science Library- these can provide additional background information as students need it.

Lectures and preparing for discussion: Lectures will be primarily informal chalkboard talks and very occasional slide shows. Discussion and questioning in lectures is especially encouraged and is an explicit component of student performance evaluations. After the first two weeks of class we will switch to a format consisting of lectures interspersed with occasional discussion sessions. These discussion sessions should be really fun, **but only if everyone reads the assignment before class.** This is an absolute requirement of this course. To encourage this, students must write short response papers (2 paragraphs long) to be submitted
at the beginning of the class period. Response papers handed in after class will not be accepted. The first paragraph should be a concise summary of the paper, and the second paragraph should be your own personal critique of the study- this can include not only an evaluation of what was accomplished in the paper, but what else it might inspire you to do next. Your opinion must be justified- if you loved the paper, you must explain why. If you found the study to be flawed, what should they have done instead? These response papers will be evaluated for content, as well as writing style. We will return them with comments intended to specifically improve the clarity and succinctness of your prose, with the intention that you will use these comments to improve the quality of your writing throughout the semester. This course is currently being evaluated as a (W) writing-intensive course.

Labs: There is a weekly lab that will mostly consist of continued work on a group project. Students will be split into teams of 3-5, and will work together to collect data for whichever project they sign up for: comparative physiology of C3/C4 grasses; drought-induced CAM photosynthesis in a C4 plant; anatomical and ecological preconditions for the evolution of CAM and C4 photosynthesis. There will be a poster session at the end of the semester where the groups present their findings to the broader EEB community at Brown.

Student evaluation: Course grading will consist of four components: two in-class midterm exams (20% each), a take-home final exam (20%), a group project (20%), and class participation (10%). Group project grades will be based 50% on lab participation and 50% on the poster presentation.

Recommended supplemental texts:

- Plant Physiological Ecology; Lambers, Chapin and Pons
- Plant Physiology 4th edition; Taiz/Zeigler
- Biology of Plants 7th edition; Raven

These texts are on reserve at the Science Library.

Required reading is listed below, and available on MyCourses.

Bio 1500 Course Schedule

27 Jan. Introduction to the course and the lab; organizational meeting

1 Feb. A review of plant anatomy: looking inside the leaf, stem, and root

 Sadava chap. 4

3 Feb. Photosynthesis, the basics

 Raven chap. 7, pp. 115-130

8 Feb. Photosynthesis and adaptation to light

 Lambers pp. 25-42

10 Feb. Photosynthesis, CO₂, and the evolution of CAM and C4 pathways

Lab: get to know your plants; form project groups; introduction to equipment

15 Feb. Plant Photosynthesis and Plasticity Discussion (response papers due at start of class):

17 Feb. Portulacineae, Molluginaceae, CAM, and C4- TA Matt leads- Prof E out of town

Lab: group projects

22 Feb. holiday- no class

24 Feb. Plant water potential and the soil-plant-atmosphere-continuum

Lambers pp. 154-172

Lab: group projects

1 Mar. MIDTERM EXAM (covering 1 feb through 24 feb)

3 Mar. Xylem and phloem long distance transport; design and function

Lambers pp. 140-153

Lab: group projects

8 Mar. Plant Hydraulics Discussion (response papers due at start of class):

Brodribb, Feild, and Jordan. 2007. Leaf maximum photosynthetetic rate and venation are linked by hydraulics. Plant Physiology 144: 1890-1898.

10 Mar. Water stress, succulence, and the avoidance-tolerance continuum

Lab: group projects

15 Mar. Drought adaptation discussion (response papers due at start of class):

17 Mar. Nutrient limitations to plant growth

Lab: group projects

22 Mar. Plants and nutrients discussion (response papers due at start of class):

24 Mar. Plants and temperature

Lambers pp 210-220

Lab: group projects

29 Mar. Spring break
31 Mar. Spring break

5 Apr. Plants and temperature discussion (response papers due at start of class):

7 Apr. Plant phenology and life history: linking development and environmental cues

Lab: group projects

12 Apr. Plant phenology discussion (response papers due at start of class):

14 Apr. MIDTERM EXAM (covering 8 mar through 12 april)

Lab: data analysis

19 Apr. Plants on the defense

21 Apr. Scaling up to ecosystems discussion (response papers due at start of class)

Lab: group project class presentations/critique

26 Apr. Ecological patterns and adaptation discussion (response papers due at start of class):

28 Apr. Ecological traits, phylogeny, and community assembly

Lab: poster session with the EEB department!!

3 May TAKE-HOME FINAL DUE, 5 PM

OVERVIEW OF LAB GROUP PROJECTS

Each limited to 5 students- sign up during first week of lectures. All projects this year revolve around the ecology and evolution of C4 and CAM photosynthetic pathways.

1. Name That Photosynthetic Pathway

Grasses with C4 photosynthesis are fundamentally important to global ecology and ecosystem function; they are responsible for ~ 25% of terrestrial primary productivity, and C4 grasslands cover ~20% of the land surface. In the past the functional repercussions of the C4 pathway in grasses have been assessed by comparing their physiological characteristics with those of very distantly related C3 grasses; recent work has shown that these studies may have been misleading, as many perceived C3/C4 differences break down when looking at more closely related C3/C4 species pairs. In this experiment, you will be responsible for characterizing various aspects of plant function in an assortment of ~20 C3 and C4 grass species (unlabeled), and inferring their photosynthetic pathway via their physiological performance. How correct will you be?? Additionally, you will collect data to test the accuracy of C3 and C4 functional type parameterization for global vegetation models.

2. The Unique Photosynthetic Properties of *Portulaca oleracea*, a Worldwide Weed

Portulaca is an extremely unusual lineage of plants. Most members exhibit C4 photosynthesis, although they are slightly to extremely succulent and sit squarely within a large clade of other succulent plants that utilize the CAM photosynthetic pathway. Interestingly, several species of *Portulaca* can switch from C4 to CAM photosynthesis in response to drought stress, making them the only known plant species to exhibit both C4 and CAM pathways. In this project you will attempt to induce a CAM response in *Portulaca oleracea*, using a set of seed collected from various locations in Afghanistan, Saudi Arabia, and Syria. What level of drought was required to induce CAM? What happens upon re-watering? Do plants from different populations respond differently? You will also be instrumental in collecting tissue for future molecular work that will characterize the different isoforms of PEP Carboxylase expressed in C4 and CAM pathways.

3. Reconstructing Developmental Enablers of CAM and C4 evolution

CAM and C4 photosynthetic pathways have much in common: they employ a shared biochemical pathway that enables the concentration of CO2 inside plant cells, they are both considered to be adaptations to stressful environments, and they are both arguably among the most convergent of complex traits, having each evolved multiple times in various plant lineages. Historically, however, they have largely been investigated as separate and unrelated adaptations, which has led us to mostly focus on the differences between CAM and C4 plants, rather than their similarities. The Portulacineae and relatives (Caryophyllales), contain multiple origins of both CAM and C4 pathways in a relatively small group of ~ 2200 species. You will collect data on vein spacing, quantitative measures of tissue succulence, ecological habitat, and
life history in C3, CAM, and C4 lineages in the Portulacineae and Molluginaceae to begin to
reconstruct the various steps in the evolution of both syndromes, and to identify any potential
'no turning back' scenarios, where a certain assemblage of precursor traits strongly favors the
evolution of one syndrome over the other.