Brown Logo

The News Service
38 Brown Street / Box R
Providence RI 02912

401 863-2476
Fax 863-9595

Distributed May 3, 2004
Contact Mark Nickel

Data from deep underground experiment narrows sights on dark matter

Weakly Interacting Massive Particles may explain the largest, smallest structures in the universe

Richard Gaitskell, assistant professor of physics at Brown University and head of Brown’s particle astrophysics group, is a leading member of a U.S. research collaboration that is trying to directly detect particle “dark matter.” The collaboration’s detectors, cooled to less than one-tenth of a degree above absolute zero, operate half a mile beneath the earth’s surface in an historic iron mine in Northern Minnesota.

Editors: See below for media contacts and Web sources for information and photographs.

PROVIDENCE, R.I. — With the first data from their “underground observatory” in Northern Minnesota, scientists of the Cryogenic Dark Matter Search (CDMS II) have peered with greater sensitivity than ever before into the suspected realm of the Weakly Interacting Massive Particles (WIMPs). A sighting of WIMPs could answer the double-mystery of dark matter on the cosmic scale of astrophysics, and of supersymmetry on the subatomic scale of particle physics.


Particle physicists at work
Richard Gaitskell, head of Brown’s particle astrophysics group, is part of a research team working half a mile under the surface of northern Minnesota, trying to achieve direct detection of a dark matter particle.

The results released today by the collaboration at the American Physical Society meeting in Denver represent a significant increase in sensitivity compared to other experiments by research groups worldwide, which are racing to directly detect dark matter particles. Despite the major improvement in sensitivity announced in Denver, the collaboration has a result which sees no events that have the expected signature for dark matter. This negative result is significant because it rules out a number of current theoretical predictions.

“While it is difficult to understand why physicists can be as excited about negative results as about positive ones, this data shows our experiment is working well and is in a leading position to make a clear observation of dark matter events when the necessary sensitivity is reached,” Gaitskell said. “Theorists predict that at our current level of sensitivity, the events we are trying to detect – the occasional collision of dark matter particles with atomic nuclei in our detector – may occur once every three weeks or so.

“By running our detectors far below the earth’s surface, we dramatically reduce the radiation from cosmic rays which represent background noise,” Gaitskell said. “Our experiment is now the world’s most sensitive detection facility and we expect to continue to make significant improvements in the sensitivity in the next few years.”

The CDMS II results, described in a paper submitted to Physical Review Letters, are being presented at the April Meeting of the American Physical Society on May 3 and 4 in Denver by Harry Nelson and graduate student Joel Sanders of the University of California-Santa Barbara, and by Gensheng Wang and Sharmila Kamat of Case Western Reserve University.

“We know that neither our Standard Model of particle physics, nor our model of the cosmos, is complete,” said CDMS II spokesperson Bernard Sadoulet of the University of California–Berkeley. “This particular missing piece seems to fit both puzzles, in particle physics and in astrophysics. We are seeing the same shape from two different directions.”

WIMPs, which carry no charge, are a study in contradictions. While physicists expect them to have about 100 times the mass of protons, their ghostly nature allows them to slip through ordinary matter while leaving barely a trace. The term “weakly interacting” refers not to the amount of energy deposited when they interact with normal matter, but rather to the fact that they interact extremely infrequently. In fact, as many as a 100 billion WIMPs may stream through a reader’s body undetected in the time it takes to read a few sentences.

With 48 scientists from 13 institutions, plus another 28 engineering, technical and administrative staffers, CDMS II operates with funding from the Office of Science of the U.S. Department of Energy, from the Astronomy and Physics Divisions of the National Science Foundation and from member institutions. The DOE’s Fermi National Accelerator Laboratory provides the project management for CDMS II.

Michael Turner, assistant director for math and physical sciences at NSF, described “identifying the constituent of the dark matter” as one of the great challenges in both astrophysics and particle physics.

“Dark matter holds together all structures in the universe – including our own Milky Way – and we still do not know what the dark matter is made of,” Turner said. “The working hypothesis is that it is a new form of matter – which if correct will shed light on the inner workings of the elementary forces and particles. In pursuing the solution to this important puzzle, CDMS is now at the head of the pack, with another factor of 20 in sensitivity still to come.”

The presence of dark matter in the universe is detected through its gravitational effects on all cosmic scales, from the growth of structure in the early universe to the stability of galaxies today. Most astrophysicists believe that dark matter cannot be made of the ordinary matter forming the stars, planets and other objects in the visible universe. Cosmological observations have determined that dark matter constitutes as much as seven times more total mass than ordinary matter. WIMPs produced in the early universe are a major contender for this mysterious component.

“Something out there formed the galaxies and holds them together today, and it neither emits nor absorbs light,” said CDMS II co-spokesperson Blas Cabrera of Stanford University. “The mass of the stars in a galaxy is only 10 percent of the mass of the entire galaxy, so the stars are like Christmas tree lights decorating the living room of a large dark house.”

Physicists also believe WIMPs could be the as-yet unobserved subatomic particles called neutralinos. These would be evidence for the theory of supersymmetry, introducing intriguing new physics beyond today’s Standard Model of fundamental particles and forces.

Supersymmetry predicts that every known particle has a supersymmetric partner with complementary properties, although none of these partners has yet been observed. However, many models of supersymmetry predict that the lightest supersymmetric particle, called the neutralino, has a mass about one hundred times that of the proton.

“Theorists came up with all of these so-called ‘supersymmetric partners’ of the known particles to explain problems on the tiniest distance scales,” said Dan Akerib of Case Western Reserve University. “In one of those fascinating connections of the very large and the very small, the lightest of these superpartners could be the missing piece of the puzzle for explaining what we observe on the very largest distance scales.”

The CDMS II team practices “underground astronomy,” with particle detectors located nearly a half-mile below the earth’s surface in a former iron mine in Soudan, Minn. The 2,341 feet of the earth’s crust shields out cosmic rays and the background particles produced by them. The detectors are made of germanium and of silicon, important semiconductor crystals with similar properties (germanium is two and half times as dense as silicon). The detectors are chilled to within one-tenth of a degree of absolute zero, a temperature where molecular motion becomes negligible. These unique detectors simultaneously measure the both the charge and vibration produced by particle interactions within the crystals. WIMPS will signal their presence by releasing less charge than most background particles produce for the same amount of vibration.

Physicist Earl Peterson of the University Minnesota oversees the Soudan Underground Laboratory, also home to Fermilab’s long-baseline neutrino experiment, the Main Injector Neutrino Oscillation Search.

“I’m excited about the significant new result from CDMS II, and I congratulate the collaboration,” Peterson said. “I’m pleased that the facilities of the Soudan Laboratory contributed to the success of CDMS II. And I’m especially pleased that the work of Fermilab and the University of Minnesota in expanding the Soudan Laboratory has resulted in superb new physics.”

This new region in the search for dark matter WIMPs will be explored by CDMS II for the first time in the next few years. Many supersymmetric models predict neutralinos with just the right properties to make up the dark matter. So either the dominant mass of our universe will be discovered, or a large range of supersymmetric models will be excluded from possibility. Either way, the CDMS II experiment will play a major role in advancing our understanding of particle physics and of the cosmos.

The CDMS II collaborating institutions include Brown University, Case Western Reserve University, Fermi National Accelerator Laboratory, Lawrence Berkeley National Laboratory, the National Institutes of Standards and Technology, Princeton University, Santa Clara University, Stanford University, the University of California-Berkeley, the University of California-Santa Barbara, the University of Colorado at Denver, the University of Florida, and the University of Minnesota.

Fermilab is a DOE Office of Science national laboratory operated under contract by Universities Research Association, Inc.

Media contacts:

Collaborating institution media contacts:

Photos are available at:

Background information is available at:

CDMS home page:


News Service Home  |  Top of File  |  e-Subscribe  |  Brown Home Page