MANIPULATING VOTING PROCEDURES

ALLAN FELDMAN*

A voting procedure can be manipulated if, by misrepresent-
ing his preferences, some individual can secure an outcome
which he prefers to the outcome he gets when he is honest.

This is an expository paper on the theory of voting manipu-
lation. Section I is an historical sketch of the contributions of
Condorcet, de Borda; Arrow, and others. Section II provides
a set of examples of manipulation: of plurality voting, of
majority voting, of exhaustive voting, of the single transferable
vote procedure, and of approval voting. It also contains an
example of a nonmanipulable random voting scheme. Section
III provides a simple proof of the Gibbard-Satterthwaite
manipulation theorem.

1. INTRODUCTION

The French Enlightment left Western Civilization with, among other
things, the first systematic analyses of the properties of elections. These
analyses grew out of the then blossoming interest in democratic institu-
tions and the democratic or egalitarian state. However, French political
philosophers, particularly Rousseau, de Borda, and Condorcet, may have
raised as many questions as they answered about the nature of elections
as expressions of the general will. The questions they raised are with us
still, because, unfortunately, elections are logically imperfect. The
purpose of this paper is to discuss in a relatively nontechnical way the
nature of logical imperfections of elections.

Let us begin near the beginning, with the Marquis de Condorcet
(1743-1794). (For a detailed exposition ‘of Condorcet’s theory, as well
as most other historically important voting theories, see Duncan Black
(1958).) In the Essai sur I’Application de UAnalyse a la Probabilité des
Decisions Rendues a la Pluralité des Voix (Paris, 1785) he set out to solve
the following problem in probability theory: A jury is to decide, by
voting, between two alternatives A and B (which might be, say, the guilt
or innocence of a defendant). One alternative is right, and the other is
wrong. The members of the jury, however, are imperfect. When they
vote they may err. Given particular probabilities of each member’s
voting correctly or incorrectly, what is the probability that the jury’s
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decision is right? This is not difficult to calculate; naturally it depends
on the numbers of jury members voting for A and B. However, the
analysis becomes more complicated when there are three (or more)
alternatives, say, A, B and C. Again, one alternative is right, and the
others are wrong. If votes are taken by the jury between pairs of alter-
natives, what is the probability that the jury’s decision is correct?
The question is meaningful when the voting results are consistent, for
example, if A gets more votes than B in a contest between the two, if B
gets more votes than C in a contest between those two, and if A gets more
votes than C in a contest between those two. In this case the jury’s
decision is A, and the probability that this decision is right can be
calculated in a straightforward manner.

However, there are cases in which the voting between pairs of alter-
natives cycles. In such cases there do exist straightforward ways to
calculate the probabilities of correctness of each of the alternatives, but
these might all be distressingly small. In fact, the cycling cases prompted
Condorcet to switch from obvious probability calculations to a some-
what an ad hoc judgment, the essence of which is this: if an alternative X
is decisively defeated by another alternative Y, X cannot be the right
alternative. This judgment is not terribly satisfactory and will not play an
important role in what follows. However, the cycling or “paradoxical”
cases of Condorcet still provide the simplest examples of voting imper-
fections, so we turn to one now:

Assume there are seven voters of three types, and three alternatives,
A, B and C. There are three type one voters, and each type one voter
prefers A to B to C. There are two type two voters, each of whom prefers
B to C to A. There are two type three voters, each of whom prefers C to
A to B. These assumptions are illustrated below:

Type 1 Type 2 Type 3
Order A B C
of B C A
Preference C A B
(3 voters) (2 voters) (2 voters)

In a vote between A and B, A wins, five votes (from type 1 and 3 voters)
to two (from type 2 voters). In a vote between B and C, B gets five votes
(from type 1 and 2 voters) and C gets two (from type 3 voters). In a vote
between A and C, however, C gets four votes (from type 2 and 3 voters)
and A gets three (from type 1 voters). Thus there is a cycle in the voting
results: A defeats B, B defeats C, but C defeats A. In terms of the jury
problem, a cyclical structure like this might result in unacceptably small
(correctly calculated) probabilities of rightness for every alternative.
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Condorcet’s ad hoc judgment would be to discard B and C, since each
of these is defeated five to two, while A is (at worst) defeated four to three.

But if this judgment strikes us as unacceptably arbitrary, or if the
probability analysis is fundamentally unacceptable because a “correct”
choice is unknown, unknowable and/or non-existent, then majority
voting between pairs fails as a method for making social choices.

There are, however, other methods. Jean-Charles de Borda (1733-1799)
published his Memoire sur les Elections au Scrutin (see De Grazia (1953))
four years before Condorcet’s Essai. In it de Borda developed a ‘““method
of marks.” Each elector ranks the alternatives according to his order of
preference (ignoring the possibility of ties). If there are k alternatives,
an elector’s first choice is assigned k points, his second k-1 points, and
so on down to his last choice, which is assigned one point. The total vote
for an alternative is the sum of the points assigned it by the various
electors, and the winner (barring ties) is the alternative with the highest
sum, ‘

For the example above, the de Borda votes are:

3x3+2x1+2x2 = 15 for A,
3x2 + 2x3 +2x1 = 14 for B,
3x1 +2x2+2x3 = 13 for C,

so A wins. Clearly, de Borda’s method escapes the cycling possibility of
pairwise majority voting, since the vote totals of the alternatives cannot
cycle. However, the method is problematic.

The problem we focus on, which is relayed secondhand by Black
(1958, p. 182) and noted by Satterthwaite (1975), is that of deliberate
misrepresentation of their preferences by the electors. De Borda is quoted
as saying “‘my scheme is only intended for honest men.” To illustrate just
how appropriate this remark is, we modify the example by adding two
alternatives, D and E, and assuming the following structure of preferences:

Type 1 Type 2 Type 3
A B C
B C A
C A B
D D D
E E E
(3 voters) (2 voters) (2 voters) .

Now the de Borda counts are:
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3x5 + 2x3 + 2x4 = 29 for A,
3x4 + 2x5 + 2x3 = 28 for B, -
3x3 + 2x4 + 2x5 = 27 for C,
3x2 + 2x2 + 2x2 = 14 for D,

3x1 + 2x1 + 2x1 = 7 for E,

and A wins again. However, if one of the type 2 electors had falsely
declared

> m o0 O w

as his preference ordering, the de Borda counts would have been 28 for B,
27 for C and 27 for A, and B would have won. This elector would have
been better off than when he voted honestly: the method provides a
temptation for misrepresentation of preferences, or “strategic” voting.
The possibility of manipulating the result of an election through the
misrepresentation of preferences was not seriously considered by either
de Borda or Condorcet. The Rev. C. L. Dodgson gave it some passing
consideration almost a century later, especially in Chapter I, Section 5
of “A Discussion of the Various Methods of Procedure in Conducting
Elections™ (1873), reprinted in Black (1958). Dodgson’s ‘““method of
marks” procedure (which differs from de Borda’s) works as follows:

“a certain number of marks is fixed, which each elector shall have
at his disposal; he may assign them all to one candidate, or divide
them among several candidates, in proportion of their eligibility;
and the candidate who gets the greatest total of marks is the winner.”

Dodgson writes the method would

“be absolutely perfect, if only each elector wished to do all in his
power to secure that candidate who should be the most generally
acceptable” »

(his italics); however,

“we are not sufficiently unselfish and public-spirited to give any
hope of this result being attained.”
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Each elector would attempt to manipulate the results by assigning all
of his votes to his own favorite candidate. In fact, this is not quite correct,
as a voter might assign all his marks to his second choice if he thought
his first could not win, but the method is obviously easily manipulable.
Although Dodgson was aware of the potential of election manipulation
through voter misrepresentation of preferences, there is no reason to
believe he thought the problem inescapable, and the question lay
dormant for most of yet another century.

The modern surge in interest in properties of voting procedures began
in the late 1940’s and early 1950’s with two results, one modest and
one profound. In 1948 Duncan Black ‘‘solved™ the cyclical voting para-
dox by deriving conditions under which pairwise majority voting cannot
cycle. However, this interesting result had limited ultimate bearing on
the question of election manipulation, or strategic voting. (Limited
bearing is not no bearing; see Blin and Satterthwaite (1976).) The pro-
found result, which ultimately did bear heavily on the question of mani-
pulability of elections, was Kenneth Arrow’s 1951 impossibility theorem
for preference aggregation procedures (Arrow (1963)).

At least in its early incarnations, Arrow’s theorem was not technically
about voting procedures. Voting procedures generate single alternatives
(winners) from among sets of alternatives; Arrow’s theorem is on its
surface about procedures which generate orderings of the entire set of
alternatives. To be more precise, we need to introduce some terminology.
It is assumed that each person in society has an ordering, or ranking, of
the set of alternatives. A specification of all people’s orderings is called a
preference profile. For example, in the Condorcet voting paradox example,

Type 1 Type 2 Type 3
A B C
B C A
C A B
(3 voters) (2 voters) (2 voters)

is a preference profile.

What we have called voting procedures are rules for transforming
preference profiles into winners, or mappings from the set of possible
preference profiles into the set of alternatives. For each preference profile
the mapping produces a single winning alternative. Technically such a
mapping is called a social decision function, or SDF. An SDF takes a
preference profile, digests it, and produces a winning alternative. (A more
generally defined SDF maps preference profiles into sets of winning
alternatives, rather than single winners. See, e.g., Sen (1970) and (1977).
This paper, however, is only about single-winner SDF’s.) In contrast,
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the rules Arrow first studied, which are now called social welfare
functions, or SWF’s, are rules for transforming preference profiles into
social preference orderings or rankings. An SWF takes a preference
profile, digests the list, and produces a social ordering. Obviously, there
are procedures which can be viewed as either SWF’s or as SDF’s;
de Borda voting is one.

*  The question Arrow asked is whether or not there exists a “‘satisfac-
tory” SWF. The answer naturally depends on what is incorporated into
“satisfactory,” or what properties one wants the SWF to have. Arrow’s
criteria, which have been somewhat modified and refined over the years,
were basically as follows:

(1) The SWF must-produce a social ordering, that is a complete,
reflexive and transitive social preference relation. This require-
ment excludes majority voting between pairs, which can give rise
to (intransitive) cycles.

(2) The SWF must always work, no matter what (finite) set of alter-
natives and preference profiles are given to it.

(3) The SWF must respond positively to individual preferences.
Loosely speaking, if x is socially preferred to y at the start, and
x gains support, x must remain preferred to y at the end.

(4) The SWF cannot be imposed. That is, if all individuals prefer x
to y, the SWF must yield a social ordering which ranks x above y.

(5) The SWF must show “independence of irrelevant alternatives.”
This means that the social ranking of x vis-a-vis y must depend
only on individual rankings of x vis-a-vis y, not on the strengths
of feelings, not on rankings of x vs. z or y vs. w or z vs. w, or any
other such “irrelevancy.” It is not difficult to see that de Borda’s
method violates independence, as does Dodgson’s method of marks.

(6) There must be no dictator, no single person whose individual
preference ordering always defines the social preference ordering.

In his remarkable theorem, Arrow showed that no “satisfactory” SWF
exists.

This negative answer might seem to shadow the search for a perfect
voting procedure, or SDF. If there is no satisfactory way to aggregate
individual preferences into a social preference ordering, perhaps there
is no satisfactory way to aggregate individual preferences into an election
winner. But the connection is really not so obvious. In its original
form, Arrow’s theorem is about generating social preference relations.
Although the theorem can be, and has been, translated into a collection
of theorems about what we would call generally-defined SDF’s (see, e.g.,
Sen (1977), pp. 71-75), there are hurdles in the translation. For example,
it is not immediately clear that an SDF, a procedure which merely
generates winners, can be adapted in some way that accommodates




458 ECONOMIC INQUIRY

Arrow’s requirements (1), (3), (4) or (5), or that those requirements can
be adapted in a way which makes sense for SDE’s. Moreover, it seems
intuitively reasonable that generating single alternatives (winners) ought
to be less of a strain on a decision procedure than generating whole lists,
or orderings, of the alternatives, so if the latter is impossible the former
might not be.

In fact, Arrow’s theorem profoundly affected the search for an ideal
SDF in three ways. First, its negative conclusion (there is no satisfactory
SWF) generated an enormous intellectual storm, prompting some to try
to show what Arrow did wrong, and others to show how the results could
be generalized. Some of the storm’s electricity leaked to the analysis of
SDF’s. Second, Arrow’s theorem was actually used as a tool by some in
proving the impossibility theorem concerning SDF’s which will occupy
us below (Gibbard (1973); and Schmeidler and Sonnenschein (forth-
coming), proof I). Third, and perhaps most important, Arrow’s theorem
suggests two questions about SDF’s which are analogous to the questions
Arrow raised about SWF’s: What is a “satisfactory” SDF? Does a “‘satis-
factory” SDF exist?

What then is a “satisfactory”” SDF? The remarks about manipulation
of the de Borda and Dodgson rules suggests one possible criterion: An
SDF ought to be immune to manipulation through the misrepresentation
of preferences. Moreover, common sense suggests that a “‘satisfactory”
SDF shouldn’t be a dictatorship. These two requirements may not seem
like much in light of the six occasionally complex requirements Arrow
imposes on SWE’s. In fact, however, several authors conjectured around
1960 (Dummett and Farquharson (1961) and Vickrey (1960)) that any
nondictatorial voting procedure is manipulable, and finally in the
1970’s Allan Gibbard (1973) and Mark Allen Satterthwaite (1973, 1975)
independently proved this is the case. If a satisfactory social decision
function is one which is always immune to manipulation and which is
nondictatorial, there is no satisfactory social decision function.

This paper provides, in Section II, a number of detailed examples
of manipulation, and in Section III, a nontechnical discussion of the
Gibbard-Satterthwaite result and a heuristic version of the proof of their
theorem.

Il. MORE EXAMPLES OF MANIPULABILITY AND NON-MANIPULABILITY

In this section several voting procedures are analyzed to discover
whether or not they are manipulable. The first four procedures fit the
technical definition for SDF’s: each takes every voter’s preference order-
ing (the preference profile) as inputs, and produces a single, certain
winner as its output. The fifth is not a SDF; it takes every voter’s set of
acceptable or approved alternatives as inputs, and produces a certain
winner as its output. (A voter’s acknowledgement that “X, Y and Z are
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acceptable, whereas W, U, V, ... are unacceptable” is not quite the

same thing as his declaring as his preference ordering.)

e e e T COMNN

The sixth procedure is a lottery type mechanism. It takes every voter’s
preference ordering as its inputs, and produces odds for the alternatives
as an output. The actual winner is then chosen randomly. Now to the
examples: ‘

The first procedure is the plurality voting rule. There are many candi-
dates or alternatives. Each elector casts one vote for one candidate. The
candidate with the highest total wins.

This is a common practice, typically used in U.S. party primary and
general elections, for example. It also is common that a voter would like
to see a candidate with an extreme or “‘pure’” position win, but does not
vote for that candidate because to do so would be tantamount to “‘throw-
ing his vote away.”” To make one’s vote count, one votes for a candidate
who has a good chance of winning. However, the reluctance to throw
one’s vote away implies, in our terms, the desire to manipulate. For
example, suppose there are three types of voters with the following
preferences:

Type 1 Type 2 Type 3
A B - C
B C B
C A A
(10 voters) (9 voters) (2 voters) .

In a sincere election, type 3 voters cast their votes for C, but A wins
the plurality. If type 3 voters anticipate this result, they can vote for
B
B instead; that is, they can vote as if their preferences were C, and by so
A
doing guarantee that B, whom they prefer to A, is elected. Naturally,
type 3 voters would be apt to deny that they are “‘manipulating” any-
thing; they would say that they are simply not wasting their votes.
Let me note at this point that two voters are manipulating here.
Manipulation by a group rather than a single individual is technically
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called coalitional manipulation, and this and several subsequent
examples involve coalitional manipulation. In all these examples of
coalitional manipulation, however, it is possible to make modifications to
transform them into cases of mampulatlon by individuals. Unfortunately,
the modified examples are slightly inelegant, as they involve tie votes
and the resolution of ties by chairmen. (For example, in the case above,
if there were 10 type 1 voters and 10 type 2 voters, and if one of the type 1
voters were chairman, then a sincere election would entail 10 votes for A,
10 for B, and 2 for C, and the chairman would break the A-B tie in favor
of A. One type 3 voter could then manipulate the election by casting his
vote for B, in which case A would get 10, B would get 11, and B would
win.) The Gibbard-Satterthwaite theorem of Section III will establish
that it is impossible to devise a nondictatorial SDF which is immune to
manipulation by individuals, and it clearly follows that it is impossible
to devise a nondictatorial SDF which is immune to manipulation by
coalitions.

The second procedure to look at is majority voting, modified by the
introduction of an agenda. Because of the possibility of cycling, majority
voting between pairs may not give an unambiguous winner, unless the
pairwise comparisons are restricted through the use of agendas or other
_devices. With the preference profile of the voting cycling example, that is,

Type 1 Type 2 Type 3
A B C
B C A
C A B

(3 voters) (2 voters) (2 voters)

it has already observed that sincere pairwise majority voting produces

a cycle: A defeats B; B defeats C; but C defeats A. Now suppose that A

is the “status quo,” while B is a motion to change the status quo and

C is an amended version of that motion. A typical committee practice

(called Procedure a in Black (1958)) is to hold a vote between B and C

(the motion and the amended version), and place the winner of that vote

against A (the status quo). If voters are sincere, Procedure a produces B

on the first round (the amendment is defeated) and A on the second

(the bill is defeated).

But under these circumstances, type 2 voters could misrepresent their

C

preferences as B . If they did, C would win the first round (the amend-
A :

ment would pass) and then C would defeat A (the amended bill would be

adopted). This outcome would be preferred by type 2 voters to A, so they
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could manipulate the procedure to their benefit.

A second committee practice (called Procedure  in Black (1958)) pits
each motion against the status quo, and then selects from among those
which defeat the status quo one which defeats the others. In our example,
C defeats the status quo while B does not, so C is adopted, provided the
voters vote sincerely. But under Procedure 3, type 1 voters have an oppor-
tunity to gain by misrepresentation. If they vote as if their preferences

were A, both B and C would defeat the status quo in the first round. In
C

the second, B would defeat C, and type 1 voters would have manipulated

the choice of B, which they prefer, over C.

Now we turn to somewhat more complex and less often used election
rules. The third procedure we consider is the method of exhaustive voting,
which works in $tages. In stage 1, each elector casts a vote for his least
preferred candidate. The candidate with the largest number of (no-
confidence) votes is eliminated from the list. In stage 2, each elector votes
for his least-preferred candidate, from the list of remaining candidates.
The candidate with the largest number of (no-confidence) votes is again
eliminated. The process continues until only one candidate remains, and
the one remaining candidate (barring ties) is the winner. For example,
suppose the preferences of the electors are as follows:

Type 1 Type 2 Type 3 Type 4 Type 5
A B D C D
C C C B C
B A B D A
D D A A B
((10 voters) (7 voters) (5 voters) (3 voters) (4 voters)

The voting goes this way: In stage 1, D is eliminated. In stage 2, A is
eliminated. In stage 3, B is eliminated. Therefore, C wins the election
when everyone votes sincerely. ~
The voting could be manipulated by type 1 electors. If they voted as if
A

their preferences were 7, , then in stage 1, C would be eliminated, in stage

B ’
C
2, B would be eliminated, and in stage 3, D would be eliminated. A would
be left as the social choice, making type 1 voters better off than they are
when they are honest.

The fourth procedure to consider is the method of the single transfer-
able vote. This is another staged procedure, in which, at each stage,




462 ECONOMIC INQUIRY

voters cast votes for their most preferred candidates. In stage 1, each
voter casts one vote for his favorite. Then the candidate with the fewest
votes is eliminated. In stage 2, each elector casts a single vote for his
favorite among the remaining candidates. The candidate with the fewest
votes is eliminated. The process continues until one candidate remains;
the last remaining candidate is the winner.

With the preferences above, the process works as follows: In stage 1,
C, with 3 votes, is eliminated. In stage 2, D, with 9 votes, is eliminated.
In stage 3, A, with 14 votes, is eliminated, and B is the ultimate winner.
However, the procedure could be manipulated by the type 5 voters. If
they voted as if their preferences were

C
D
A
B7

in stage 1, D would be eliminated. In stage 2, B would be eliminated.
In stage 3, A would be eliminated, and C would be the winner. And
type 5 voters prefer C to B.

The fifth procedure is approval voting. (For a detailed analysis, the
interested reader should see Brams and Fishburn (1977).) Approval
voting works this way: each voter is faced with m candidates, say A, B,
C,D,....He maycast 0, 1, 2, ..., or even m votes, by assigning a
single vote to each candidate he approves, and none to each candidate
he disapproves. The candidate with the highest total wins. For example,

consider a simple voting paradox case with three electors. Assume that
person 1 is the chairman: if there are ties for first place, he breaks them.

1 (Chairman) 2 3
A B C
B C A
C A B.

Each elector may cast 0, 1, 2, or 3 votes. Casting votes for none or
all of the candidates are equally foolish options, which may safely be
ignored. Elector 1 might cast one vote for A, one vote for B, and none
for C, or one vote for B and none for A or C; and so on. The first two
voting strategies involve voicing approval for the top one third or top
two thirds of his list by person 1, whereas the third strategy involves his
approving B but not approving A, whom he really prefers to B. The
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first strategies are, therefore, analogous to SDF electors declaring true
preferences, and the last is analogous to SDF electors declaring false
preferences. Consequently the first two strategies are called sincere by
Brams and Fishburn. Person 2’s sincere strategies are one vofe for B and
none for C and A; and one vote for B, one vote for C, and none for A.
Person 3’s sincere strategies are one for C, none for A or B; and one for C,
one for A, and none for B.

The question asked about each of the first four procedures was this:
Can an example be constructed in which it is advantageous for some
person(s) to falsely represent his (their) preferences, given what the other
people are doingP Let us ask the analogous question for approval voting:
Can an example be constructed in which it is advantageous for some
person(s) to vote insincerely, given what the other people are doing? The
answer is obviously yes. Using the above preferences, suppose each voter
casts one vote for his favorite. The results are: one for A, one for B, and
one for C. The chairman (person 1) breaks the tie in favor of A. If 2 voted
insincerely here, by casting one vote for C and none for B or A, the results
would be: one for A, and two for C. So C would win, and two prefers
CtoA. :

In this sense, approval voting is manipulable. On the other hand, 2
could also adopt a sincere strategy to secure the desired outcome: if he
were to cast one vote for B, one for C and none for A, the results would be:
one for A, two for C, one for B, so C would again win. In fact, the follow-
ing proposition is rather obvious: Suppose all voters but i have declared
their strategies. Then there exists a sincere strategy that will produce the
best outcome for i possible, given the strategies of the others. In this sense,
approval voting is not manipulable.

(Brams and Fishburn discuss manipulability in yet another sense.
Given that a voter does not know what the other voters’ strategies are,
might he vote insincerely in order to hedge, or minimize the risk of an
especially bad election outcome? In general, when there are four or more
alternatives, the answer is yes.)

Our sixth election procedure is a random one. Given a preference
profile, an SDF chooses a single, certain winner. It is a deterministic rule.
If a SDF decides twice with the same preference profile, it will produce
the same winner both times. Suppose determinism is abandoned. What
can be said of a lottery-type social decision mechanism?

Such mechanisms are called mixed decision schemes, and the simplest
MDS, mentioned, for example, in Gibbard (1973), is a probabilist version
of plurality voting: Each voter casts one vote (for his favorite candidate,
if he is sincere). Let p, = the fraction of the vote received by alternative j.
Then the winner is randomly drawn, with the probability that j wins

equal to p;.
As an example, let the preference profile again be:
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Type 1 Type 2 Type 3
A B (Z_
B C B
C A A
((3 voters) (2 voters) (2 voters).

Now p, = 3/7, ps = 2/7, and p. = 2/7. A random drawing is performed,
in which A’s probability of winning is 3/7, B’s is 2/7 and C’s is 2/7.

That the randomized plurality scheme is immune to manipulation by
individuals can be seen as follows: Each voter attempts to maximize an
expected utility function

EU = p,UA) + psUB) + ...,

where U(A) is the utility to the voter of outcome A, and so on. When the
voter casts his vote he affects EU by increasing the relative size of one
of the probabilities, and it is clear that EU is increased most when the
voter casts his vote for the outcome X for which U(X) is largest. But this
implies sincere voting; U(X) is largest for the X the voter likes best.

There is then at least one MDS which is “satisfactory,” in the sense
that it precludes manipulation. But an MDS won’t do, for randomness
per se might be objectionable. Do we want an election procedure which
produces an outcome by a roll of dice? Often not. (Peter Fishburn (1976)
has a rather nice discussion, with examples, of unobjectionable social
choice lotteries; e.g., the following verse is from the Book of Proverbs in
the Bible: ““The lot puts an end to disputes and decides between powerful
contenders” (18:18). Also see Barberd (1977) and Gibbard (1977) for
technical approaches). -

Moreover, the particular MDS discussed above has some other
problems: It assigns the largest likelihood of choice to A, even though
in a pairwise election A would be defeated either by B or by C, and in a
de Borda election A would be defeated by B. '

This completes our casual survey of some manipulable (and non-
manipulable) voting procedures. The first four procedures, all genuine
SDF’s, are all occasionally liable to manipulation through misrepre-
sentation of preferences. The fifth procedure, approval voting, might
or might not be liable to manipulation, depending on the definition of
manipulation one adopts. But this procedure is not a genuine SDF. The
sixth procedure cannot be manipulated by individuals, but it is a random
procedure, and therefore, not a true SDF.

The purpose of this section has been twofold: First, to flesh out the
idea ‘of manipulating voting procedures, and second, to show that well-
known (and not-so-well-known) SDF’s are at least occasionally liable
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to manipulation through misrepresentation of preferences. Now it is
possible to turn to the theorem that explains why: One can construct
manipulation examples for every sensible nondictatorial SDF, well-
known, not-so-well-known, or not-yet-invented, because all such SDF’s
must be manipulable.

li. A SIMPLE VERSION OF THE MANIPULATION THEOREM

In this section I will use a very primitive and simple model of society,
in which there are only two people and three alternatives (A, B, C). I also
suppose that no individual is ever indifferent between two alternatives.
(This is essentially the model used by Arrow in a preliminary argument
(1963, pp. 48-51), and by me in a simplified proof of Arrow’s theorem
(Feldman (1974)). An approach similar to what follows is also taken by
Schmeidler and Sonnenschein (forthcoming, proof II)).

Person 1 might have any of the following rank orderings of the
alternatives:

A A B B C C
B C A C A B
C B C A B A.

The same is true of person 2. Since each of the two can have six
preference orderings, there are 6 x 6 = 36 preference profiles possible
in this society. They are illustrated in Figure 1.

Each cell in this figure shows a preference profile. For example, the
cell in the first row, second column,

1 2
A A B
B C

c B,

has person 1 preferring A to B and B to C, and person 2 preferring A to C
and Cto B.

A social decision function for this little society is a rule which takes
every cell of Figure 1, or every preference profile, and transforms it into
a winner, or a social choice. For each of the 36 preference profiles in
Figure 1, there are three possible social choices. Therefore, the number
of conceivable SDF’s is 3%, or (approximately) 1.5 x 10", or a hundred
and fifty thousand trillion. Any one of these can be represented by
another 6 x 6 matrix, whose entries are the winners (or social choices)
corresponding to the preference profiles of Figure 1.
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FIGURE 1

Individuals

Rank

1

Order

A

C

B

C

A

B

C B

A

C

c Cc|C C

A

B

B C

C C|C A

Cc C

B

C

A

B

B C

A

B

C Cc|C A

A

C

A

C

B C

B

C

A

B

B C

B

C A

B

A

B

cC C|{C B

A

C

A C

st

2nd

3rd

Ist

2nd

3rd

Ist

2nd

3rd

Ist

2nd

3rd

Ist

2nd

3rd

1st

2nd

3rd




FELDMAN: VOTING PROCEDURES 467
Figure 2 represents one such SDF:

FIGURE 2

Social Choices

O|O|lw|=m ]| > | »
Ol | = |= | > | >
Ol |=m|=m | >» | »
Ol 0O|m | = » | »
O|O0|=m (= >» ]| »
Olo|lw|wm ]| > ]| »

In each cell of Figure 2 is the social choice or social decision derived
from the preference profile of the corresponding cell of Figure 1. For
example, if the preference profile is

1 2
A A
B C
C B[,

(the first row, second column cell of Figure 1), then the social decision,
the winner, is alternative A. :

Now Figure 2 represents a very special SDF, for each choice in it is
person 1’s most preferred alternative! This is a dictatorial SDF; it makes 1
a dictator. There is, of course, one other dictatorial SDF; it would be
represented by the transpose of the Figure 2 matrix, and it would make 2
a dictator.

The property of SDF’s that is of interest here is manipulability. How
can manipulation be represented in terms of these figures?

Suppose one knows some of the social choices for the preference
profiles of row 1 of Figure 1:

Social Choices

A A B C ? I4
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(This is part of one possible SDF.) That is, for the preference profiles of
row 1, column 1, one knows that A wins; for the preference profile of
column 2 A wins; for the preference profile of column 3 B wins; for the
preference profile of column 4 C wins, and nothing more is known. If this
is the case, person 2 has an opportunity to profitably misrepresent his

preferences. Suppose his real preferences are C (column 4 in Figure 1). If

A
he reports this honestly (and 1 is also honest), the SDF outcome is C.
B
However, if he (falsely) claims his preferences are A, the SDF outcome is
C

B, which he (truly) prefers to C. In short, person 2 can profitably manipu-
late the SDF when the preference profile is

-

1 2
A B
B C
C A

If there is any opportunity for 1 (or 2) to secure a preferred outcome
by misrepresenting his preferences, the SDF is said to be manipulable.
If it is never possible for 1 or 2 to secure a preferred outcome by mis-
representation, the SDF is nonmanipulable, or cheatproof.

The SDF partly illustrated above is evidently manipulable. What
about the dictatorial SDF of Figure 2? Clearly 2 cannot manipulate it
since his preferences never affect the outcome. Misrepresenting them
must be useless. Nor can 1 manipulate it, since he always gets his (true)
- first choice. He can never secure a preferred outcome by lying. Dictator-
ship is, therefore, nonmanipulable. :

What of an SDF that is wholly unresponsive to individual preferences?
For example, what if an SDF chooses A as the outcome for every prefer-
ence profile? It obviously would be nonmanipulable. But such SDF’s are
clearly uninteresting, and we will ignore them by confining our attention
to nondegenerate SDF’s: a social decision function is nondegenerate if
" each of the three outcomes is chosen for at least one preference profile.

Since there are 150 thousand trillion possible SDF’s conceivable in
this simple model, it is obviously impossible to systematically examine all
of them to discover which, if any, are nonmanipulable. Nonetheless, an
unambiguous result is possible, a profound, inescapable, “‘impossibility”
theorem:

Theorem (Gibbard and Satterthwaite): There is no nondegenerate,
nondictatorial cheatproof social decision function.
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Proof: The proof of the theorem will rely on an intuitively appealing
proposition which is proved in the appendix:

Proposition: For a nondegenerate cheatproof SDF if for some X both
persons prefer X to Y, Y cannot be the social choice.

The proposition implies that any nondegenerate nonmanipulable SDF
must be consistent with the following figure:

FIGURE 3
Social Choices
A A not C not C not B
A A not C not B not B
notC’ | notC B B not A
not C B B not A not A
not B not B not A C C
not B notA | notA C C

For example, for the first row, second column preference profile of
Figure 1, that is,

1 2

A A 3
B C

C B |,

A is preferred by both persons to B and C. By the proposition neither B
nor C can be the social choice. Therefore, the social choice must be A.
Again, for the first row, third column preference profile of Figure 1,
that is,

O W >
O > TN
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A is preferred by both persons to C, so by the proposition C cannot be
the social choice.
Now let us focus on the entire first row of Figure 1:

1 2 1 2 1 2 1 2 1 2 I 2
A A|l|A A|lA B|A B|A C|A C
B B|B C|B A|B C[{B A|B B
c c|lc B|C c|]C A|C B|C A

Thus far, this much is known about the corresponding social choices:

Social Choices

.

A A not C not C not B

To get the machinery cranking, an assumption must be made: Suppose
that the social choice for the third column cell (which cannot be C) is A.
It follows that:

Social Choices

A A A not C not B

Now if the social choice in column 4, 5 or 6 were B, person 2 would

have an opportunity to manipulate in column 3. That is, he could force
: B

the choice of B instead of A, when his real preferences are A, by pretend-

ing his preferences are as in 4, S, or 6. Therefore, for any nonmanipulable
SDF, one must have:

Social Choices

A A A A not B not B

Next, if the social choice in column 5 or 6 were C, person 2 would have

an opportunity to manipulate in column 4. That is, he could force the
B

choice of C instead of A, when his real preferences are C, by pretending
A
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his preferences are as in S or 6. Therefore, for any nonmanipulable SDF,
one must have: -

Social Choices

A A A A A A

Similarly reasoning forces particular social choices as one drops down
rows and fills out all 36 cells in Figure 3. The rest of the filling out
process is left to the interested puzzle solver. When all 36 cells are filled
out, the result is:

Social Choices

Olo|lwm|wm | > | >
OO0 | == ]| » | »

A
A
B
B
C
C

OO | || > | >»
OO0 |W | = | > | »
OO0 |m|E=|>]»

This is a replica of Figure 2: Person 1 is a dictator.

This outcome became inevitable when it was assumed that the social
choice for the first row, third column cell was A. Had B been assumed,
person 2 would have been the dictator.

In either case, a nondegenerate nonmanipulable SDF must be dicta-
torial. Therefore, there is no nondegenerate, nondlctatonal cheatproof
SDF. This completes the proof of the theorem.

Before finishing this section I should remark on the special case nature
of the proof: Here there are two individuals, three alternatives and no
indifference. Using more sophisticated tools the theorem is generalizable
to two or more individuals, three or more alternatives, and indifference
permissible. Original proofs are in Gibbard (1973) and Satterthwaite
(1973, 1975) and two refined second generation proofs can be found in
Schmeidler and Sonnenschein (1974, forthcoming).

In any case, the result generalizes: A nondegenerate, nondictatorial
cheatproof SDF does not exist.
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IV. CONCLUSION

The impossibility theorem of Gibbard and Satterthwaite is so defini-
tive that it ought to cap a 200-year-old search for an ideal voting pro-
cedure: There is no ideal voting procedure. However, it will not stop the
search. It will raise and is raising hosts of questions just as Arrow’s
theorem did: What non-SDF procedures (like random plurality voting)
are not manipulable (Barberd (1977), Fishburn (1976), Gibbard (1977))?
What restrictions might be placed on allowable preference profiles
and/or ballots to escape the theorem (Blin and Satterthwaite (1976))?
What about the sizes of manipulating coalitions? What happens when
the number of voters is very large (Pazner and Wesley (1978)) (in which
case the probability that one person’s manipulation will affect the
outcome is effectively zero)?> What can be said about the manipulation
of those more general SDF’s that map preference profiles into sets of
best alternatives, rather than singleton winners (Kelly (1977))?

The questions will go on and on, because at issue is the fundamental
nature of democratic decision processes, and this issue is obviously pro-
found. But the result that it is logically impossible to escape deficiencies
in voting procedures, which first surfaced in Condorcet and de Borda,
will, inevitably, remain.

APPENDIX

The notation and spirit of the proof of the proposition are borrowed
from Schmeidler and Sonnenschein (1974). Let F represent an SDF,
(P,, P,, ..., P,) a preference profile (for n persons). XP.Y then means
person i prefers X to Y. F maps preference profiles into alternatives;
we can write, for example, F(P,, P,, ..., P.) = X. If this is the case for
some preference profile, alternative X is said to be in the range of F.

Proposition: Suppose the SDF F is cheatproof, and X is in the range
of F. If XP.Y foralli,then F(P,,P,,...,P,) # Y.

Proof: Define P/ from P, by moving {X, Y} to the top of i’s list,
preserving the {X, Y} ordering (XP;Y for all i), and preserving the
ordering among all elements other than X and Y.

First, I claim that F(P,, P;, ..., P.) = X. Suppose to the contrary
that F(P,, P;, ..., P.) # X, and let (P;, P;, ..., P.) be a preference
profile which does give rise to the choice of X.

Define X, = F(P{,P;,...,P) (= X)

Xl = F(Pl’aP;a""P:)
X, = F(P,,P;,...,P)

.

.

X, =F(P,P,...,P) (# X).
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Let j be the smallest number for which X; # X. Then

F®P;,...,P.,P,...,P) =X but
F(P,, ... P P.....P) =X # X
By the construction of P;, XP;X;. This implies F is manipulable by j at

(P.,... P, Pn....,PJ), acontradiction. Therefore, F(Py, ..., P,) = X,
as claimed.

Next, suppose that F(P,, P;, ..., P.) = Y. Define
Y0=F(Pl"P2’,""Pﬂl) (=X)
Y, = F(P,,P;,...,P.)
Y2=¢F(P11P2a"'7Pn’)

3

YN=F(P17P21"'1P!I) (= Y)-
Let k be the largest number for which Y, # Y. Then

F(Pl,---,Pk,Pkloh”-an,) =Y, # Y, and
F(P,...,Pi,Peus,..- . P) = Y.

There are two cases to consider. (i) If Y, = X, then XP.,,Y by assump.
tion, and F is manipulable by k+1 at (P, ..., Py, . . ., P)), a contra:
diction. (ii) If Y, # X, then YP.,Y: by the construction of Py,,, anc
F is manipulable by k+1 at (P,, . . ., P, Pius, -. ., P.), again a contra
diction. In either case the supposition that F(P,, ..., P,) = Y i
untenable, which completes the proof of the proposition.
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