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Econometrica, Vol. 42, No. 1 (January, 1974)
RECONTRACTING STABILITY
By ALLAN M. FELDMAN

This paper contains a relatively simple proof for the stability of Edgeworthian recon-
tracting. It also applies that proof to a random recontracting process in an economy with a
finite number of utility vectors, in which the recontracting process is a Markov chain and
all non-core utility vectors correspond to transient states.

1. INTRODUCTION

THE BASIC economic act is exchange. Since exchange need not be constrained by
prices, barter exchange is in a sense more fundamental than price exchange.
A typical barter economy has a set of distributions of goods or utilities which
cannot be upset by further bartering. This equilibrium set is called the core.

In this paper we will be concerned with the stability of the bartering, or recon-
tracting, process ; we want to know whether it actually carries the economy to a
core distribution. Our point of view is analogous to that of economists such as
Negishi [4] who have investigated the stability of the price adjustment, or tatonne-
ment, process. Jerry Green has treated the stability of recontracting in several
papers [2 and 3]; his first treatment has been extended by Neuefeind in [5]. We
will elaborate on the similarities and differences between these approaches and
ours below. Other work (see, e.g., [1]) has been done on the stability of solution
searching procedures for n-person games. Scarf’s [6] proof of existence of the
core is constructive, and its algorithm for finding the core could be called “‘stable,”
but, of course, that algorithm is not recontracting.

Recontracting is a process of proposal, challenge, and counterproposal, in
which no exchanges are actually made outside the core. At each stage of the
process an allocation of goods or utilities is put before the economy. If some
group of traders finds that it can do better on its own, it challenges or blocks the
proposal. It then proposes an alternative allocation, which it prefers, and which
it can somehow -achieve by itself, but which may make its non-members worse
off than they were before. Two types of recontracting stability can be defined. First,
if for any allocation which can be blocked by some group, there exists a sequence of
recontracts which leads to an allocation which cannot be blocked by any group
(or is in the core), the recontracting process is stable in a potential sense. Second,
if we specify a random mechanism for choosing blocking groups and blocking
proposals, and if that choice mechanism leads from any allocation to the core
with probability one, then the process is stable in a probabilistic sense. We will
prove two theorems which provide relatively simple sufficient conditions for each
sort of recontracting stability.

2. THE MODEL

It is possible to discuss recontracting and the core from two points of view.
The first considers simultaneously a set of allocations of goods and a corresponding
35



36 ALLAN M. FELDMAN

set of utility vectors. The second abstracts from the allocations and considers
only the utility vectors. The latter approach is notationally much simpler, and
we will adopt it in this paper.

We will suppose that there are n individuals in the economy, and we will let
N be defined as the set of all members of the economy. A coalition is a non-empty
subset of N. If S is a coalition, we will let V(S) denote the set of all utility vectors
attainable by S. Whenever S and T are coalitions, S = T, and ue V(T), we will
write u® for the projection of u onto RS, the Euclidean subspace whose coordinates
are indexed by the members of S. If, for example, S = {1,2}, T = {1, 2,3}, and
u = (8,0,4), then u5 = (8,0). We will also let I denote the set of integers:
I={..-2,-1,0,1,2,...}; I" will denote the n-fold Cartesian product of I,
whose coordinates are indexed by the members of N, and IS will denote the sub-
space of I whose coordinates are indexed by the members of S.

If ue V(S), and there is no v € V(S) such that u < v, we will say that u is Pareto
optimal for S.' If u e V(N), and there exists a v € V(S) such that u5 < v, then we will
say that S blocks u, or S blocks u with v. The core is the set of all utility vectors in
WN) which are blocked by no coalitions.

We will make the following assumptions about the attainable utility sets.

AssUMPTION 1 (Finiteness): For every S = N, V(S) is a finite set. Without loss
of generality, we will assume that V(S) < I5.

ASSUMPTION 2: Fori = 1,2,...,n, V({i}) = 0.

AsSSUMPTION 3 (Superadditivity): If S, and S, are disjoint coalitions, and if
v, € V(S,) and v, € V(S,), then (v, v,)e V(S; U S,).

AsSSUMPTION 4 (Very strong superadditivity for pairs): If S has two members,
there exists a vector (a, b) € V(S) such that (0, 0) < (a, b).

AssuMpTION 5 (Free disposal of utility): If ve V(S),0 S u S v, and ue IS, then
ueV(S).

Assumption 1 is somewhat unusual in economic and game theoretic work
because it typically makes analysis rather difficult. The assumption of finiteness,
however, makes our task much more tractable, and so it is perhaps appropriate
to justify it. There are two possible justifications. First, in the real world, most
goods are traded in indivisible units, and there can be only a finite number of
allocations of indivisible goods in finite supply. Second, utility itself is probably
not a psychological continuum ; individuals may only have a finite number of
stages of happiness, even if there are an infinity of allocations. In either case, it is

'If xe R* and y € R¥, we will write x=y whenever x; = y;fori = 1,...,k; x < y whenever x; < y;
fori=1,...,k; x < y whenever x § y and x # y;and x < y whenever x; < y;fori =1,...,k.
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reasonable to assume that V(S)is finite. There is no loss of generality in the assump-
tion that V(S) = I®, because any finite set of real valued utility vectors can be
transformed into a set of integer valued utility vectors without changing the
relative sizes of any coordinates, and the relative sizes are all that interest us.

Assumptions 2 and 3 are innocuous ; Assumption 2 is assumed for notational
convenience, and Assumption 3 holds in any exchange economy in which there are
no externalities of consumption. Assumption 4, which requires that every pair of
traders be able to make some mutually profitable trade, is rather strong in the
context of a finite utility space model. Assumption 5 is one variant of a common
free disposal assumption ; we have restricted it to preserve the finite character of
the model. This is again a rather strong assumption in a finite model since it
requires that individuals be able to dispose of units of utility. It is clear that if the
real world is “very” finite (or indivisibilities are very important), Assumptions 4
and 5 are unrealistic. However, if the real world is full of large indivisibilities, the
standard continuous utility space and continuous free disposal assumptions are
also unrealistic.

3. THE PARTIALLY SPECIFIED RECONTRACTING PROCESS

We will suppose that there are R vectors, v,,v,,...,vgin V(N). By Assumption
1,R < oo0,and by repeated applications of Assumptions 2and 3,(0, 0, ..., 0) € V(N),
sol £ R.

We willlet @ = 2" — 1 be the number of coalitions in the economy, and we will
label a typical coalition S,, where g€ {1,2,..., Q}. When the context makes our
meaning clear, we will drop the subscript ¢, and we will often use u or v without
a subscript to denote an element of V(N).

Ifve V(N)and S is a coalition, we will define

B¥(v) = {u*e V(S):u* > 15},
and?

Bs(v) = { {u* o> d u* e B¥(v)}
V) =3Uu:u = ana u™ e V).
s 0 onN — S, s

By Assumptions 2 and 3, Bg(v) = V(N). The set of blocking vectors for the
coalition S is B¥(v) and the set of extended blocking vectors is Bg(v).

Recontracting is a process of movement from proposal to proposal. Starting
from a particular utility vector, a possible blocking coalition is chosen. If in fact
that coalition can block, a blocking vector is chosen from among those vectors
that are feasible for it, and extended by the assignment of zeros to non-members
ofthe coalition. If the coalition cannot block, no movement is made. This completes
ong iteration. More formally, we will make the following assumption.

2 The symbol 0 is used for the zero vector of the appropriate dimension, and N — § is a set-theoretic
difference: N — S = {icie Nand i¢ S}.
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ASSUMPTION 6: The recontracting process works as follows. Suppose we are at
vin V(N). An S is chosen. Then a u in Bg(v) is chosen if Bg(v) is not empty. If Bg(v)
is empty, we stay at v. This completes one iteration, and the process continues ad
infinitum.

We will call the process described by Assumption 6 a partially specified re-
contracting process (p.s.r.p.). It is “partially specified”’ because we have not said
how S is chosen, or how a vector in Bg(v) is chosen. We will leave that specification
to the next section.

Let us remark that v e V(N) is in the core if and only if the partially specified
recontracting process cannot move away from it. This is clearly the case, for if
v is in the core, then no matter what S we choose, By(v) is empty, and, conversely,
if Bg(v) is empty for all S, v cannot be blocked. The truth of this remark depends
only on Assumption 6, which in turn depends on Assumptions 2 and 3. It does not
depend on Assumptions 1, 4, and 5, and it is vacuously true if the core is empty.
Since recontracting cannot leave the core once it has arrived, the question of
recontracting stability reduces to the question of whether or not the process will
in fact lead to the core.

We will say that the partially specified recontracting process is stable if it is
possible to recontract from any non-core utility vector in V(N) to a core vector, in
a finite number of steps. The process is not stable if it can get trapped in a set of
non-core allocations ; in the final section of this paper we provide an example of
an unstable p.s.r.p. in an economy with a non-empty core. It is clear from the
definition of stability that the p.s.r.p. cannot be stable if the core is empty. We
can now proceed to prove that if Assumptions 1-6 hold, non-emptiness of the
core implies stability of the p.s.r.p.

THEOREM 1: Under Assumptions 1-6, the partially specified recontracting process
is stable if and only if the core is non-empty.

ProOF : The proof of Theorem 1 will depend on the following lemma.

LEMMA : Under Assumptions 1-6, if ve V(N) is not in the core, then it is possible
to recontract from v to a core utility vector or to a utility vector with 2 ones and
n — 2 zeros.

ProOF oF THE LEMMA : (For notational convenience we will write “S,” and
“v,” for “*S,,” and “v;” respectively, and so on. Also, we will call a blocking
coalition minimal if none of its proper subsets can block a proposed utility vector.)

By assumption, v is not in the core. Choose a minimal blocking coalition, say
S, to block it. If S; = N, then S, can block v with a ue V(N) which is Pareto
optimal for N and, therefore, clearly in the core, and we are finished. Suppose,
then, that S; # N.

Now choose vf € V(S,) so that v} is Pareto optimal for S, , and so that v5* < v¥.
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Let

vionS,,
vy =
0 onN-—3S,.

By Assumptions 2 and 3, v, € V(N). If v, is in the core we are finished. Assume,
therefore, that it is not in the core.

Case 1: S| has n — 2 members or fewer. Now let S, be any pair of traders in
N — S,. Therefore, v = (0,0). By Assumptions 1, 4, and 5, S, can block v, with
" (1, 1). Extend (1, 1) to a utility vector for the whole economy by assigning zeros
to nonmembers of S, . The result is a vector with 2 ones and n — 2 zeros.

Case 2: S, has n — 1 members. Suppose individual i is the single trader who is
not in S, . Since v, is not in the core, it can be blocked by a minimal coalition S5.
Because S; was chosen so that none of its proper subsets could block v, because
v5* < 0§, and because v¥ = v}' was chosen Pareto optimal for S;, S; < S, is
impossible. Therefore, i€ S;.

Case 2a: S5 = N. S5 can block v, with v, which is Pareto optimal for N. Now
v, must be in the core, since S5 is a minimat blocking coalition for v, and v; < v,.

Case 2b: S; has n — 1 or fewer members. Choose a vector to block v, which
gives individual i not more than one unit of utility. This can be done by Assump-
tions 1 and 5. Now extend the blocking vector by assigning zeros to non-members
of §;. Call the result vy. Suppose je N — S;. By construction, v £ (1,0).
By Assumptions 1, 4, and 5, {i, j} can block v; with (1,1). Extend (1, 1) to a utility
vector for the whole economy by assigning zeros to non-members of {i,j}. The
result is a vector with 2 ones and n — 2 zeros, which completes the proof of the
lemma.

PrOOF OF THEOREM 1: The “only if”’ part of the theorem is obvious. Suppose
then that the core is non-empty.

By the lemma, if v € V(N) is not in the core, it is possible to recontract from v
to a core utility vector or to a utility vector with 2 ones and n — 2 zeros. We now
claim that if v has 2 ones and n — 2 zeros and v is not in the core, it is possible to
recontract from v to a core utility vector. If n = 2, this is obvious. If n 2 3 and if
u is any core vector, then 0 § u by Assumption 2, and by Assumption 4, u has no
more than one zero. Therefore, u has two positive, integer valued, coordinates;
without loss of generality we will assume its first two coordinates are positive.
Therefore, u = (1, 1,0,...,0).

Now if v = (1,1,0,...,0), we can recontract from v to u via a block by N.
If v # (1,1,0,...,0), then v'*# = (0, 0), or (1,0), or (0, 1). Therefore, by Assump-
tions 1, 4, and 5, coalition {1,2} can block v with (1, 1); the extended blocking
vector (1,1,0,...,0) is in V(N) by Assumptions 2 and 3, and we can recontract,
via a block by N, from (1,1,0,...,0) to u Q.E.D.

At this point we will make an observation about our use of Assumption 1 in
Theorem 1. What we have used is not the fundamental notion that V(S) is finite,
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but the secondary assumption that utility vectors are integer valued. The theorem
could easily be generalized by changing Assumption 1 to 1': V(S) is closed and
bounded for every S = N;and 5to 5': If ve V(S), and 0 § u < v, then ue V(S).
Now we could define ¢ = miny ;cy ¢; ;, Where ¢ ; = min {a, b} > 0 comes from
Assumption 4, and we could replace the “‘units’ of utility used throughout the
proof of the theorem by ¢&’s.

The assumption of finiteness is useful, however, when a random choice mech-
anism is overlaid on the partially specified recontracting process.

4. THE RANDOM RECONTRACTING PROCESS

We will now suppose that a positive probability p, is associated with each
utility vector v, € V(N). We will assume that X, p, = 1. We will also suppose
that a positive probability p, is associated with each coalition S,, and, of course,
that Z2_, p, = 1.

Let us specify a random mechanism for choosing blocking coalitions and
blocking vectors: Suppose the recontracting process is at v; € V(N). Choose a
coalition S, according to the probability assigned to it, p,.

If S, can blocgv,., clzoose v; € Bg (v;) according to the conditional probability

p Jj p m:*

{m: UmeBSq(vx)}

If S, cannot block, stay at v;. This completes one iteration.

If we define
P 5o ifv€ By v) and By (o) #
{m:vmeBs 4(v))}
X .
pqij = 0 lf Uj ¢ Bsq(l),-) and Bsq(vi) ?é Q,
1 if i = jand Bg, (v) = &,
0 if i # jand B (v) = &,

and let p;; = X, p,p,;, the random recontracting process as we have specified it
is a finite Markov chain, where the transition probability for moving from state i
(that is, v;) to state j (that is, v;) is given by p;;. Moreover, v; is an element of core
if and only if p;; = 1, or state i is absorbing.

We can now give a probabilistic definition for recontracting stability : We will
say that a random recontracting process is stable if, from any v; € V(N), it carries
the economy to a point in the core, in a finite number of steps, with probability
one. Theorem 2 is a straightforward consequence of Theorem 1.

THEOREM 2: Under Assumptions 1-6 and our positivity assumptions on the p,’s
and p,’s, the random recontracting process is stable if and only if the core is non-
empty.
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PROOF: “Only if” is again obvious. Suppose then that the core is non-empty.
Suppose v; is not in the core. By Theorem 1, given any v; € V(N), it is possible to
recontract from v; to a point in the core ; moreover, it requires no more than five
iterations to do so. By our specification of the random recontracting process,
there is a positive probability attached to that possibility. But core points are
absorbing. Therefore, state i of the Markov chain is transient. Since the probability
is zero that a finite Markov chain stays forever in its set of transient states, the
random recontracting process carries the economy from v; to a point in the core,
after a finite number of steps, with probability one. Therefore, it is stable, as
claimed. Q.ED.

5. ALTERNATIVE APPROACHES AND EXAMPLES

In [2 and 3] Jerry Green analyzes random recontracting stability in economies
with closed utility possibility sets, and in [5] Neuefeind clarifies and extends the
analysis of [2]. In several respects all of our approaches are similar. Any proof of
global recontracting stability must rule out the possibility of a cycle of non-core
allocations which recontracting cannot escape. This is in a sense the barter analog
of the exclusion, in a titonnement stability analysis, of non-damped price oscilla-
tions. We all show that it is always possible to escape cycles and to recontract to
a core allocation. Any proof of random recontracting stability must bound the
probabilities of reaching the core, or some neighborhood of the core, away from
zero; Green does this with his “‘strong-superadditivity” assumption [3, Assump-
tion 4] and his assumptions on the probability measure which dictates the choice
of blocking utility vectors. We do the same thing by requiring that each element
of V(N) and each coalition be assigned a positive p, or P, In Green’s and
Neuefeind’s papers and our own, the core is assumed non-empty.

The single most striking difference between the Green-Neuefeind approaches
on one hand and ours on the other is our assumption of finite utility possibility
sets. This greatly simplifies the technical analysis, because finite Markov chains
are transparent compared to infinite state-space Markov processes. There are,
however, a number of other differences between Green’s analysis and our own.
First, in [3] (but not in [2]) it is assumed that the blocking coalition is assigned a
utility vector which is Pareto optimal for it and the complement of the blocking
coalition is also assigned a Pareto optimal utility vector. We assume that the
blocking coalition is assigned a blocking utility vector which need not be Pareto
optimal, and its complement is assigned a ‘“no-trade’ utility vector. Second,
Green assumes [3, Assumption 1] that individuals can (with positive probability)
be assigned non-individually-rational utilities; in fact, the singleton coalition is
a key blocking unit in the proof of stability in [3]. Our recontracting process, on
the other hand, can be entirely restricted to individually rational (i.., non-
negative) utility vectors, since the key blocking unit in our proof is the pair.
Third, Green assumes [3, Assumption 2] that any coalition of size 2 or larger
can achieve a utility vector which makes all of its members better off than they
are without trade ; we make this assumption for coalitions of size 2 only. Fourth,
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a monotonicity type of assumption is made in [3, Assumption 3]; such an assump-
tion is unnecessary for our purposes. Fifth and finally, the continuous probability
structure of his model makes it necessary for Green to assume [3, Assumption 4]
that there is a core utility vector which is *large” in the sense that its projections
cannot be achieved by any proper subset of N ; the discrete probability structure
of our model makes such an assumption unnecessary for us.

It is useful to consider an example to highlight the differences between the
Green assumptions on the utility possibility sets and our own. Suppose there are
three traders in the economy, and assume that

V{i}))=0 for i=123,

I“ﬁJD=={uwg)§lt§(iyueI%

for any pair {i, j}, and

0 2 1 0
V({1,2,3}) = {utue*;|0|Su;andu < |2|orus |0)orus |1
0 0 1 1

These sets meet all our assumptions, and partially specified recontracting is
stable in this economy since the core is non-empty ;

2
2
0

cannot be blocked. But the economy does not meet Green’s Assumptions 1-4.
(Assumption 3 fails because of finiteness, but the others are meaningful for discrete
utility economies.)

In [3] (but not in [2], or in [5]), it is assumed that a blocking coalition receives
a utility vector that is Pareto optimal for it. The distinction between such Pareto-
optimal blocking and non-Pareto-optimal blocking is not insubstantial; in fact,
Pareto-optimal blocking can be destabilizing. A final example (in a non-finite
utility space economy) will throw some light on this difference between the approach
of [3] and the approach of this paper.

Let V({i}) = Ofori = 1,2,3,

wu¢»={w@ §u§f

V(L3 = {(
|

V({2,3}) = {u:

(=)

V/A\

<

Y/

(S I
—— e~

==
—
w
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and
0 31 0\ /1
V(N) = {u:[0| S u<v,whereve <|1],13],10],{2
0 0/ \1 2
Note that

SN SN

cannot be blocked. These utility possibility sets satisfy our assumptions 1', 2, 3, 4,
and 5, and a partially specified non-Pareto-optimal blocking recontracting
process is stable in this economy. Assumptions 1 and 3 of [3] are not met, however,
and it is easy to see that Pareto-optimal blocking recontracting will not be stable.
Suppose, for example, that we start at

0
0
0

and coalition {1,2} blocks. We must then move to
3

(=}

But
3
1
0
can only be blocked by coalition {2, 3} and the result is
0
3
1
When this vector is blocked, we go to
1
0],
3
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and then, completing the cycle, to
3
1]
0

In short, the process never reaches the core. Now this example is really perfectly
intuitive. The fundamental barrier to recontracting stability is the cycle of noncore
utility vectors, and the essence of a recontracting stability proof is the step that
allows the economy to slip out of a possible cycle. It is clearly easiest to slip out
if the economy is not required to move along the highest ridges in utility space.

Brown University
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