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I. Introduction

The purpose of this paper is to develop a simple value of life model in which a rational

individual decides how much to spend to increase his lifespan. This paper is about “buying

time.” The model is partly based on that of Ehrlich and Chuma (1990). In contrast to

the standard value of life model of Schelling (1987), Jones-Lee (1974, 1976, 1980, 1984,

1992), Mishan (1982a,b), Viscusi (1992, 1993) and many others, the model of this paper

has no uncertainty. The story here is not about risk of death, it is about length of life.

The standard willingness-to-pay-to-avoid-risk model may relate well to real world quandries

about how much to spend to reduce the likelihood of, say, automobile accidents, which are

highly uncertain events. The model of this paper relates well to real world quandries about

how much to spend on medical care to prolong the lives of patients (all of us, ultimately)

who can be kept alive, but who cannot be cured. Death is certain, but if we spend more it

will be delayed. We can buy time.

Some of the paradoxes of the standard willingness-to-pay-to-avoid-risk model may arise

because of the probabilistic nature of that model. In the standard model, value-of-life (VOL)

is usually defined as willingness-to-pay for an increment in survival probability; per unit of

additional survival probability. One paradox that arises under fairly general conditions is

that VOL depends on the survival probability. Given a survival probability of .95, my life

is worth $X, but given a survival probability of .05, my life is worth $Y, with X and Y

vastly different. Another paradox, related to the first, and again very general, is what I

call the Broome paradox (Broome (1978). Also see Buchanen and Faith (1979), Jones-Lee

(1979), and Williams (1979)). This is the observation that, with small death probabilties,

individuals may act as if they value their (statistical) lives at modest and finite amounts.

Based on these valuations, a government may use cost-benefit analysis to decide to undertake

a project, like a tunnel, that will, on average, result in the loss of some lives. But if the

government knew whose lives were to be lost, and queried those individuals as to what money
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compensation they would need to accept death, they would likely answer with very large,

possibly infinite amounts. Were these valuations inserted in the cost-benefit calculation, the

project would be soundly rejected. The Broome paradox itself may be viewed as a special case

of a general paradoxical inconsistency between social welfare as calculated ex ante (before

the fact), and social welfare as calculated ex post (after the fact). Ulph (1982) shows this

nicely, and points out that only utilitarianism is ex ante and ex post consistent. Thus the

standard willingness-to-pay-money-to-reduce-risk model is inescapably inconsistent. (See

also Blackorby and Donaldson (1986) for devastating criticism of the consistency of the

willingness-to-pay model of VOL.)

So the model of this paper is not about reducing risk in a world of uncertainty; rather,

it is about buying time in a world of certainty. Since we will all certainly die, and since we

can often buy some extra days, months, or years by, for example, using medical care, the

model does relate to interesting real questions.

II. The Model

What follows is a greatly simplified and slightly restructured version of a model set out

in Ehrlich and Chuma (1990). (See also Moore and Viscusi (1988), Kenyon and McCandless

(1984), and Jones-Lee (1976) for somewhat similar models.)

I use the following notation:

LU = lifetime utility
x = rate of spending on consumption, assumed constant over the lifetime
y = money spent by the subject on precaution (e.g., medical care),

assumed spent in one lump sum at time zero
s = subsidy rate on precaution expenditure, 0 ≤ s < 1
z = bequest, made in one lump sum at time of death
x = x+ y + z = cash endowment
A = a bequest parameter. A = 0 indicates the individual has no interest

in the size of his bequest, whereas A > 0 indicates the individual
gets utility from his bequest.

T = length of life.
u(x) = instantaneous utility function.
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I assume in this paper that the instantaneous utility function u(·) is constant over

the lifetime and has the usual nice properties. The expression u(x) represents the rate

of flow of utility from consumption. For simplicity, consumption x is also assumed to be

undertaken at a constant rate over the lifetime. Therefore, it is not necessary to include a

time variable or subscript in either u(·) or x. Again for simplicity, the individual’s discount

rate is assumed to be zero. Therefore, lifetime utility from consumption is given by

Z T

t=0
u(x)dt = Tu(x).

To make the model easy to solve, I assume that utility from the bequest z at death

is simply Au(z).

The subject’s objective function is now:

(1) LU =
Z T

0
u(x)dt+ Au(z) = Tu(x) + Au(z).

The choice variables to this point are x, y and z. There are two constraints. First

is a more-or-less standard budget constraint. Consumption takes place at a rate x over a

lifetime of length T. Precaution expenditure y is made at one moment, at time 0. The

bequest z is made at one moment, the time of death. For simplicity, there is no discounting

in the budget, just as there is no discounting in the utility function. Therefore, the budget

constraint is:

(2) x = xT + y + z.

The second constraint is the crucial ingredient of the model. I assume that greater

expenditure on precaution (e.g., medical expenditures) will result in longer life. That is,

increasing y will increase T. Consequently, T is also a choice variable.
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Furthermore, I assume that precaution expenditure may be subsidized. That is, the

government may pay a fraction of the total spent on precaution (as it does, for instance, in

the enormous Medicare and Medicaid programs). The variable y represents the subject’s

own precaution expenditure. Let s be the government subsidy rate, so, for example, s = .5

if the government matches each dollar spent by the subject with one dollar of its own, and

s = .9 if the government matches each dollar spent by the subject with nine of its own.

Then total precaution expenditure on behalf of the subject is y
1−s ; his own expenditure on

his behalf is y; and the government’s expenditure on his behalf is y
1−s − y =

sy
1−s . I assume

that the individual takes s as a parameter. I assume further that the length of life T is a

function of total precaution expenditure y
1−s made on behalf of this individual. Therefore,

the second constraint is:

(3) T = f
µ

y

1− s

¶
.

The subject is assumed to maximize lifetime utility LU (in equation (1)), subject to

the constraints of equations (2) and (3).

III. Maximization Conditions and the Value of Time

The Lagrangian first-order conditions for an interior maximum are as follows:

(A)
h
d
dy
f
³

y
1−s

´i−1
= u(x)

u0(x) − x

(B) Au0(z) = u0(x)

(C) x = xT + y + z

(D) T = f
³

y
1−s

´
.

Let x∗, y∗, z∗, T ∗ denote a solution to these equations.

It is useful to interpret the left-hand side of equation (A). Note first that:

d

dy
f
µ

y

1− s

¶
=

Extra length of life

Extra own expenditure on precaution
.
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Therefore, inverting both sides gives:

"
d

dy
f
µ

y

1− s

¶#−1
=
Extra own expenditure on precaution

Extra length of life
.

The expression on the right-hand side is the subject’s (marginal) value of an extra unit of

lifetime, e.g., a dollar value (in terms of his own dollars) for an extra year of life. This will

be called the individual’s value of time, private, or VOTP. Hence:

(4) V OTP =

"
d

dy
f
µ

y

1− s

¶#−1
.

V OTP is the individual’s willingness-to-pay, out of his own pocket, for an extra time unit

of life.

At this point it is useful to start to put some structure on the f(·) function. I will

assume that an individual who spends zero on precaution will live a life of length Tmin ≥ 0,

and that the length of life T = f(·) asymptotically approaches a maximum Tmax > Tmin.

Figure 1 below illustrates a length-of-life function, plotted against y/(1−s) on the horizontal

axis.

Insert Figure 1 here.

In Figure 1, it is assumed that Tmin = 40 years, Tmax = 90 years, s = 0.5, y varies

between 0 and 20, and f(·) is the nicely behaved function given by equation (8) below.

Assume that y∗ = 5. The line L in the figure is tangent to the f(·) function at y∗ = 5

and T ∗ = 73. The inverse of the slope of L is equal to 1
1−s V OTP, as a consequence of

equation (4).

The value of time, private, is the natural measure of an individual’s extra year of life.

However, if his own outlay is VOTP for an extra unit of his lifetime, that outlay brings forth
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an additional government expenditure of V OTP × s/(1 − s) for the extra unit of time.

The total extra expenditure, private plus public, for this individual’s extra year of life will

be called the value of time, social, and it is given by:

(5) V OTS =
1

1− sV OTP.

Referring back to Figure 1, the inverse of the slope of the line L is evidently VOTS.

The terminology “value of time, social” may be misleading. In this model the private

agent does the choosing of x∗, y∗, z∗ and T ∗; his choice is made subject to a given exogenous

subsidy rate s. The subsidy rate exists, for whatever reason, and I do not presume to imply

that “society” has “decided” an extra year of his life would have a certain value. It is simply

the case that society, wisely or unwisely, is paying VOTS for an extra year of this agent’s

life.

Both VOTP and VOTS are marginal value of time measures; they represent the value

of, e.g., an additional year of life. There are two ways to approach the value of the entire

lifespan. Consider VOTP. The first way to measure the value of the lifespan would be to

multiply VOTP by T ∗. But this is mathematical nonsense; it makes little sense to multiply

the value of the marginal unit of time by the total number of units. The second way would

be to integrate VOTP from t = 0 to t = T ∗. That is, sum all the (differing) VOTP’s over

the all the additional time units the subject has chosen to buy. Call the result total value

of time, private, or TVOTP. This is the aggregate willingness-to-pay for all those additional

time units beyond Tmin. It is a simple mathematical exercise to show that:

(6) TV OTP =
Z T∗

t=0

"
d

dy
f
µ

y

1− s

¶#−1
dt = y∗.

That is, the subject’s aggregate willingness-to-pay for extra years of life, above and

beyond Tmin, equals what he does in fact choose to pay for those extra years of life. Your

years of life, like your car, are worth to you what you pay for them.
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The above may seem like an obvious conclusion. But it stands in stark contrast to

the usual value of life theorizing in the uncertainty context, where many authors find that

the value of a statistical life far exceeds total lifetime income or endowment. (See, e.g.,

Bergstrom (1982), Conley (1982), Jones-Lee (1984), Smith (1990), Viscusi (1993), among

many others. The common view is that the willingness-to-pay-to-reduce-risk value of life is

around an order of magnitude larger than the human capital value of life.)

IV. Special Assumptions

I will now focus the model by making some specific assumptions about functional forms

and parameter values. The purpose is to allow computation of solutions.

Assumption (1) (Power Utility Function).

(7) u(x) = xα, where 0 < α < 1.

Assumption (1) is convenient because it simplifies first-order conditions (A) and (B)

into:

(A1) V OTP =
h
d
dy
f
³

y
1−s

´i−1
= x

³
1−α
α

´
(B1) z = xA

1
1−α .

Next I introduce a somewhat special but computationally easy length-of-life function:

Assumption 2 (Length of Life).

(8) f
µ

y

1− s

¶
= Tmax −

Tmax − Tmin
1 + β

³
y
1−s

´ , where β > 0.

In this formula, β is a parameter that scales the effect of total precaution expenditure

y/(1− s) on the length of life. Note that the function in equation (8) is graphed in Figure
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1 above; where, f(0) = Tmin = 40 and f approaches Tmax = 90 asymptotically as y

approaches infinity. Assumption (2) can be combined with the definitions of the value of

time, private and social, to get:

(9) V OTP =
1

β(Tmax − Tmin)

Ã
1 +

βy

1− s

!2
(1− s), and

(10) V OTS =
1

β(Tmax − Tmin)

Ã
1 +

βy

1− s

!2
.

At this stage the model can be solved analytically for y∗. Equation (9) is substituted

into first-order condition (A1), condition (B1) is used as it stands, and the length of life

assumption in equation (8) is substituted into first-order conditions (C) and (D). The result

is a quadratic equation involving the choice variable y∗ and the various parameters. The

next assumption has the effect of getting rid of the linear term in the quadratic equation for

y∗, and thereby making the computations especially easy:

Assumption 3 (An easy value for α).

Let α = 1
2
.

With assumption (3), it is easy to show that the optimal precaution expenditure is the

solution to the following equation:

(11) 1 +
βy∗

1− s =
"
Tmax − Tmin
Tmax + A2

Ã
1 +

βx

1− s

!# 1
2

.

It is also easy to show that:

(12) V OTP = x∗ =
(1−s

β
)(1 + βx

1−s)

Tmax + A2
.
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Using equations (11) and (12), as well as appropriate preceding equations, all the

interesting variables in the model (including z∗, T ∗, V OTS, lifetime utility, and so on) can

be calculated.

The next two sections of this paper present graphs computed from the solved model of

this section. Computations and graphs are contained in Quattro Pro for Windows spread-

sheets, which are available upon request.

V. Simulations

One of the most interesting issues raised by any discussion of the value of life, or the

value of time, is the efficiency, or lack thereof, of a policy that subsidizes the individual’s

expenditures on precaution. In the model of this paper, every subsidy rate s results in a

subsidy amount sy
1−s . Were the subject given

sy
1−s in cash, as an addition to his endowment

x, instead of as a subsidy to his consumption of one good, he would be better off. This

is standard microeconomics welfare analysis, and what follows largely elaborates on the

standard result.

For the purpose of examining the efficiency question in detail, I calculate several vari-

ables. First is lifetime utility contingent on the precaution subsidy, i.e., the LU of the model.

Second is lifetime utility if a subsidy at rate s were replaced with a program where s = 0

but the associated subsidy cost sy
1−s were added as a cash grant to the individual’s wealth.

This produces the variable “lifetime utility if the subsidy were replaced by a cash grant,” or

LU If, for short.

Third, for any given subsidy rate s, there is a gain in utility, when compared to no

subsidy and no cash grant. This will be called LU Gain in what follows. Then, for a given

subsidy rate s and a resulting LU Gain, one can ask this question: what cash grant, in the

absence of a subsidy, would produce the same LU gain? This is the compensating variation

measure of consumer’s surplus which corresponds to the subsidy s. It will be abbreviated

CS in the graphs below. It represents the minimum the subject would demand to give up a
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subsidy at rate s on precaution expenditure. It is thus a willingness-to-accept measure of

the value of the subsidy.

Fourth and finally, a subsidy at rate s produces a cost of sy/(1− s), but would be

traded by the individual for the corresponding consumer’s surplus. I will call the ratio of

the consumer’s surplus to the subsidy cost sy/(1− s) the “efficiency” of the subsidy.

With these observations we can turn to some simulations. In what follows I use these

parameter values:

x = 100 (money units)
Tmax = 90 (time units — years)
Tmin = 40 (time units — years)
β = 0.2.

The x value assumption can be interpreted as meaning that one money unit corresponds to

one percent of an average person’s lifetime endowment. Tmax is set at a plausible value for

maximum average human lifespan with very high expenditures on precaution. Tmin is set

at a plausible minimum lifespan with no expenditure on precaution. (These numbers are of

course arguable. There is evidence that humans are genetically programmed with a maximum

lifespan of around 115 years (Nesse and Williams (1994), chapter 8). Life expectancy at birth

in Massachusetts in the year 1850 was around 40 years (Historical Statistics of the U.S.).

So this Tmax may be slightly low, but Tmin may be close to “right.” However, even large

changes in the Tmax and Tmin assumptions would have no effect on the qualitative results

below.) The β parameter is chosen to get plausible variability in length of life as the subsidy

rate changes. Figures 2 through 6 below are calculated from the solved model under the

assumptions listed above.

For notational simplicity I drop the * superscripts in the rest of this section.

I first consider the effect of the A parameter. (For other relevant discussions of bequest

motives, see Jones-Lee (1974) and Bernheim (1991), among others.) Intuitively, as the

bequest parameter increases, all else held constant, one expects spending on consumption

x to decline, spending on precaution y to decline, and the bequest z to rise. Figure 2
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illustrates this, for A variable between 0 and 3.0, and for s fixed at 0.5. Note that as A

increases, x declines very marginally, y declines noticeably, and z increases dramatically.

For instance, at A = 0, the subject is spending around 1.1 money units per year on

consumption x; he is spending around 9.4 money units, one time only, on precaution y;

and he is bequeathing 0. At A = 3, he is spending around 1.0 money units per year on

consumption x; he is spending around 8.9 money units, one time only, on precaution y;

and he is bequeathing 9.3 money units.

Insert Figures 2 and 3 around here.

The change in expenditure pattern as we go from A = 0 to A = 3 results in a small

change in lifespan T. This is shown in Figure 3. When A = 0, the subject chooses to

live around 79.5 years. When A = 3, he chooses to live 79.0 years. Note that as A rises

from 0 to 3, although the subject is planning to bequeath much more (z rising from 0 to 9.3

money units), and is planning to live a shorter life, his (marginal) value of an extra year of

life (VOTP) decline only slightly. Under assumption (2), V OTP = x, which, as was noted

above, declines from around 1.1 to around 1.0.

Next I turn to the crucial subsidy rate parameter. For the Figure 4 through 7 simula-

tions I assume A is fixed at 2.0. (With a 50 percent subsidy on precaution, this would result

in a bequest of around four times per-year consumption, a plausible “ball-park” number.)

The purpose of a subsidy on precaution is of course to increase life, to buy more time.

Figure 4 shows the effect. As s rises from 0 to .99, the chosen lifespan rises from 75.0 years

to 86.5 years. However, the extra lifespan is bought at considerable cost.

Insert Figures 4 and 5 around here.

Figure 5 shows the subject’s three expenditure variables x, y and z. Note first that

x is almost constant as the subsidy rate rises from 0 to .99. (In fact, it falls slightly, from
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around 1.12 to around 1.06.) Note second that the desired bequest z is also almost constant.

(In fact, it falls slightly, from around 4.47 to around 4.26.)

But note third that there is a striking decline in the subject’s own precaution expen-

diture y : It falls from around 11.7 to around 1.6. It falls because of the subsidy. The

subsidy program is replacing the subject’s own precaution expenditure; in fact, much more

than replacing it. Total precaution expenditure on behalf of the subject is y/(1− s), and,

as Figure 5 shows, that rises dramatically. It rises from around 11.7 to around 158.1 (off the

graph), as s rises from 0 to .99. (In this simulation, lifetime expenditure on consumption,

or xT, equals total precaution expenditure y/(1 − s) when s = .97. That is, at a 97

percent subsidy rate, subject’s lifetime consumption equals social spending on increasing his

lifespan.) The recipient of the subsidy is of course better off as the subsidy rate increases,

and in Figure 5 the consumer’s surplus CS is also shown. It rises from 0 at s = 0 to 26.6

at s = .99.

Next, consider the value of time measures, private and social, that is VOTP and VOTS.

Based on the simplifying assumption that α = 1/2, we already know that

V OTP = x, and

V OTS = x/(1− s).

In the simulation at hand, x is almost constant as s varies, and, therefore, so is VOTP. The

individual’s willingness-to-pay for an additional years of life is virtually flat. However, the

value of life, social, increases dramatically. If one naively assumed that VOTS represented

“society’s” willingness-to-pay for an additional year of life, it would appear that “society” is

willing to pay more and more for additional years, as s gets large. In fact, as s rises from

0 to .99, VOTS rises from around 1.1 money units (= VOTP) to around 106 money units

(= 100 times VOTP). Figure 6 shows VOTP, VOTS, and also the subsidy sy/(1− s) that

is being paid toward the subject’s precaution.
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Insert Figures 6 and 7 around here.

Finally, consider a cost-benefit assessment of the subsidy. As noted above, the “effi-

ciency” of the subsidy is defined in this section as consumer’s surplus CS divided by subsidy

cost sy/(1− s). Figure 7 shows efficiency in this simulation. Note that it starts at 1, when

the subsidy is least. (This is a limiting value, since it is actually not defined for s = 0.) It

approaches 0 as the subsidy approaches 1. (This is another limiting value.)

The conclusion is that high subsidy rates on expenditures to prolong life create sig-

nificant inefficiency. The cash required to buy the same utility increment soon becomes a

small fraction of the precaution subsidy. (See K. K. Fung (1993) for a related (and unpolitic)

proposal, to bribe the terminally ill to forego treatment.)

VI. Pareto Optimality, Miscellaneous Paradoxes, and Time-Consistency

I turn to some thoughts on Pareto optimality, various potential welfare economics

paradoxes, and related issues. I will assume for now that there are two individuals, each of

whom has a utility function, length of life function, and budget of the type discussed above.

(Generalization to three or more people is straightforward.)

I will now drop the assumption that α = 1
2
, and I will drop the values assumed for

x, A, α, β, Tmax, and Tmin used in the simulations of section V. However, for ease of

analysis in this section, I will now assume, for both individuals, that A = 0. That is, there

is no bequest motive.

Therefore, we now have persons 1 and 2, with given (and possibly differing) xi, αi, βi,

Ti,max, and Ti,min. Government subsidy rates si lurk in the wings, as does a government

budget constraint. For the time being, however, assume si = 0.

This model is somewhat similar to a standard pure exchange economy model. Each

person has an endowment xi (of money, a single good). Each one has a complex budget

(equations (2) and (8) together) that relates his endowment to the utility producing “goods”

xi and Ti. There are no externalities; i’s utility does not depend on xj or Tj.
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On the other hand, this differs from a standard exchange model because (1) years of

life cannot be traded between i and j, and (2) even xi cannot be directly shifted into

xj, because the xi’s are rates of consumption per year and the Ti’s may differ between i

and j. Thus one natural Edgeworth box diagram, which has xi’s on one axis and Ti’s on

the other, is not useful.

To create a usable Edgeworth box diagram, we proceed as follows: First, consider our

basic optimization problem:

maxx,y,T x
αT, subject to

x = xT + y and

T = Tmax − Tmax−Tmin
1+βy

.

It is easy to show this is equivalent to:

maxy,xT xT (x− y)α−1
³
Tmax − ∆T

1+βy

´−α+1
,

subject to x = y + xT.

Now the function being maximized depends on y, lifetime precaution expenditure,

and xT, lifetime consumption expenditure, with those two variables appearing in a single

very simple linear constraint. We can easily calculate indifference curves, budget constraint,

expansion paths, and competitive equilibria, all in a convenient y vs. xT space.

Figure 8 is calculated assuming x1 = 100, T1,max = 115, T1,min = 40, A1 = 0,α1 =

.4, β1 = .2, and s1 = 0. It shows three indifference curves in y vs. xT space, as well

as the subject’s expansion path, i.e., the locus of y and xT combinations he chooses as

x rises. Note that along the expansion path, the indifference curves are tangent to budget

lines (not drawn), with slopes of −1. Note also that the farthest-out indifference curve,

with utility level LU = 91.7, happens to be the equilibrium level for this individual with

endowment = 100.
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Insert Figures 8 and 9 around here.

Next, we add a second person to show an equilibrium for the economy. Let person 1 be

the individual illustrated in Figure 8. Assume the following for person 2: x2 = 50, T2,max =

80, T2,min = 30, A2 = 0, α2 = .6, β2 = .2 and s2 = 0.

Figure 9 is the resulting useful Edgeworth box diagram. Two of person 1’s indifference

curves are drawn, these are the higher two from Figure 8. Two of person 2’s indifference

curves are also now shown. The graph is scaled so that the total y dimension equals y∗1

plus y∗2, and so that the total xT dimension equals x∗1T
∗
1 plus x∗2T

∗
2 . The equilibrium

occurs at E, where the two expansion paths cross and where the indifference curves of

persons 1 and 2 are tangent. Note that at E, each person’s marginal rate of substitution

(of xT for y) must equal 1.

Figure 9 thus shows a computed equilibrium outcome when each person, given his xi

and his other parameters, chooses a y∗i and an x∗iT
∗
i . Each one is starting with a certain

quantity of money (xi). So the interpretation of Figure 9 is not exactly like that of a typical

exchange economy Edgeworth box diagram, wherein two people are endowed with quantities

of two distinct goods. However, with the figure we can visualize potential Pareto improving

trades. For instance, from Z the two could trade to E (with 1 giving up some lifetime

consumption expenditure, in exchange for some of 2’s precaution expenditure).

Figure 9 illustrates a general result:

An interior equilibrium in the buying time economy is Pareto optimal if si = 0 for

all i.

This general result can be demonstrated fairly easily for interior equilibria, and I will,

therefore, omit the demonstration.

Now consider the subsidy rates. The discussion of “efficiency” in the last section

indicates that whenever s > 0, the consumer’s surplus corresponding to a given subsidy

rate is less than the subsidy amount. Therefore, replacing a subsidy at rate s and associated
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cost to the government of sy
1−s , by a cash grant of

sy
1−s , will make the subject better off.

From this we have the next general result:

An equilibrium in the buying time economy is not Pareto optimal if si > 0 for any i.

Next consider some of the standard welfare economics paradoxes. First is the Boadway

(1974) paradox, the essence of which is the following: Suppose there are two competitive

equilibria x and y in a two-person two-goods exchange economy. Suppose the price ratio

at x differs from the price ratio at y. Consider a move from x to y. If consumers’ surplus

is defined in terms of the equilibrium x price ratio, the move from x to y may result

in an increase in total consumers’ surplus, but if it is defined in terms of the equilibrium y

price ratio, the move may result in a decrease in total consumers’ surplus. Thus, measured

one way, x is better than y, but measured the other way, y is better than x. It should

be noted that the Boadway paradox depends crucially on different price ratios (or marginal

rates of substitution) at x and y; without such differences there can be no such paradox.

Now consider an equilibrium in the buying time economy, and assume that si = 0 for all

i. Since in y vs. xT space the price ratio must be 1, we have the following result:

For interior equilibria in the buying time economy, if si = 0 for all i, there are no

Boadway paradoxes.

The Boadway paradox is, of course, only one version of inconsistency of the Kaldor

(1939) welfare improvement criterion. Other versions of Kaldor inconsistency can be con-

structed, in which non-Pareto optimal points are compared (see, e.g., Feldman (1980), chap-

ter 7). The buying time model is subject to such paradoxes based on comparisons of non-

Pareto optimal points. But since buying time equilibria will be optimal if si = 0 for all i,

we need to worry about these paradoxes if and only if there are subsidies.

Next consider the ex ante and ex post paradoxes of Broome (1978), Ulph (1982), and

others.

Since there is no ex ante and ex post in the buying time economy, there are no ex
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ante/ex post paradoxes in it either.

To conclude this section, I shall consider another potential paradox in this type of

model, namely time-consistency. I now focus again on one individual, so the i subscript is

dropped.

Assume for simplicity that s = 0, and, as above, that A = 0. Suppose the subject,

given his endowment x, has chosen x∗, y∗ and T ∗ to maximize his utility. That is, he

has solved the problem:

max
x,y,T

xαT, subject to

x = xT + y and

T = Tmax −
Tmax − Tmin
1 + βy

.

To lighten the notation, I again drop the ∗ superscripts from x, y and T. From equations

(A1) and (9), we know that the following must hold for the optimal point:

(13)
(1 + βy)2

β∆T
= x

µ
1− α

α

¶
.

Let us say that the lifetime choices are made at time zero. Assume that at some later

time t < T, the subject has an opportunity to re-examine his choice and possibly change

it. Would he choose to buy more time?

At time 0 he spent y on precaution. He now has an opportunity to spend more. If

he follows the original plan, he will live T − t more years, and his cash on hand (to pay for

consumption over those years) is x(T − t). His remaining utility is xα(T − t).

Suppose he were to transfer a small increment ² > 0 of money from consumption to

additional precaution. Then y would increase by the increment ². Therefore, his remaining

lifetime would increase. It is possible to show that x would then have to decline by the

following increment, approximately, and exactly in the limit as ²→ 0:

17



(14) dx = − ²

(1− α)(T − t) .

Taking the total differential of remaining utility xα(T − t) gives

(15) d (remaining utility) = αxα−1(T − t) · dx+ xα β∆T

(1− βy)2
· dy.

substituting from (14) and (15) then gives d (remaining utility) = 0. This is a first order

condition for the maximization of remaining utility. So he will not transfer ².

In short, having chosen x, y and T at time zero, the subject will stick by his choice,

even if he has a later opportunity to shift funds between consumption and precaution. For

instance, consider a 90-year old subject with one month to live. If he has an opportunity to

modify his precaution/consumption decision, so as to live a little longer (white consuming

low), or so as to live less long (white consuming more), he will not make either change.

The general result is:

There are no regrets in the buying time model. Choices made at time zero are still

optimal at time t < T.

Conclusions

To briefly summarize, the purpose of this paper is to develop a simple model of the

value of extra years of life, a model that can be easily solved, manipulated and analyzed.

Some of the important results include:

(1) TV OTP = y∗. The individual’s total value of time, private, equals what he chooses

to pay for precaution. Over the entire chosen lifespan, his willingness to pay for extra years

of life equals what he pays.

(2) V OTP = (1−α
α
)x. The value of time, private (at the margin) is proportional to

the rate of consumption expenditure. When α = 1/2, it equals consumption expenditure.
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(3) V OTS = ( 1
1−s)(

1−α
α
)x. The value of time, social (at the margin), exceeds V OTP,

and as the subsidy rate approaches 1, V OTS grows without bounds.

The following results are from the simulations:

(4) As the bequest parameter A rises, consumption x declines slightly, precaution y

declines, planned bequest z rises markedly, and the planned lifespan declines.

(5) As the subsidy rate s rises, the value of time, private, stays almost constant, but

the subject’s own precaution expenditure falls substantially, and value of time, social, rises

dramatically.

(6) As the subsidy rate s rises, efficiency drops sharply. That is, as s gets larger,

the cash grant required to buy the same utility level becomes a sharply smaller fraction of

the money spent on subsidizing precaution.

The following results are independent of the simulations, and are related to broader

welfare economics issues:

(7) An interior equilibrium in a buying time economy is Pareto optimal if and only if

the subsidy rate is zero for everyone.

(8) There is no Boadway paradox in the buying time economy, nor are there ex ante/ex

post paradoxes.

(9) There are no time-inconsistency paradoxes in the buying time economy. Subjects

approach the end of life believing they have made the right decisions about the lengths of

their lives.
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