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Abstract

This paper experimentally evaluates a recently developed methodology for
Bayesian inference in dynamic discrete choice models. It shows how to con-
struct a Markov Chain Monte Carlo estimation procedure that can handle
high-dimensional integration in the likelihood function of these models. It also
describes several strategies for improving the efficiency of an algorithm for
solving the dynamic program, which is used in conjunction with the estima-
tion procedure. The paper provides a sequence of steps for implementation of
reliable and computationally efficient Bayesian inference in dynamic discrete
choice models. The experiments are conducted on a model with serially corre-
lated unobserved state variables.
Keywords: dynamic discrete choice models, Bayesian estimation, MCMC,
random grids, nearest neighbors.
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1 INTRODUCTION

A dynamic discrete choice model (DDCM) describes the behavior of a forward-looking

economic agent who chooses between several available alternatives repeatedly over

time. DDCMs are attractive for empirical research since they are grounded in eco-

nomic theory. Empirical work employing these models appears in labor economics,

industrial organization, international trade, health economics, and marketing litera-

ture; see Aguirregabiria and Mira (2007) for a recent survey. Estimation of DDCMs

is difficult computationally because the likelihood function of these models generally

contains high dimensional integrals and the agent’s dynamic optimization program

has to be solved on each iteration of an estimation procedure. Norets (2009) pro-

poses a methodology based on advances in Bayesian computational methods that

ameliorates these two problems. First, he shows that the Gibbs sampler, employing

data augmentation and the Metropolis-Hastings algorithm, can be used to handle

the problem of multidimensional integration in the likelihood of DDCMs. Second,

extending the work of Imai et al. (2005) he develops an algorithm for solving the

dynamic program suitable for use in conjunction with the Gibbs sampler estimation

procedure. The algorithm iterates the Bellman equation only once for each parameter

draw on a random grid over the state space. To approximate the expected value func-

tions on the current Gibbs sampler iteration, the algorithm uses importance sampling

over the value functions from the previous Gibbs sampler iterations that correspond

to the nearest neighbors of the current parameter draw. In this paper, I experimen-

tally evaluate the methodology of Norets (2009). I document implementation details
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and propose modifications that improve algorithm’s efficiency. I provide a sequence of

steps that an applied researcher can follow to construct a reliable and computationally

efficient Bayesian estimation procedure for a DDCM.

Rust (1987) model of optimal bus engine replacement is used in this paper for

illustration purposes. Model simplicity and availability of the data (http://gemini.

econ.umd.edu/jrust/nfxp.html) make Rust’s model very attractive for computa-

tional experiments. Several papers used this model for testing new methodologies for

estimation of DDCMs, see, for example, Aguirregabiria and Mira (2002) and Bajari

et al. (2007). In the original Rust’s dynamic logit formulation, the model employs

extreme value iid unobservables. The integration over the unobservables in the like-

lihood and in the solution of the DP in this case can be performed analytically,

which results in a logit like likelihood function and a simplified Bellman equation.

If, however, the assumption of serial independence in unobservables is relaxed Rust’s

model becomes more computationally challenging. The dimension of integrals in the

model’s likelihood function can reach several hundreds. Thus, Rust’s model extended

to included serially correlated unobservables is suitable for evaluating the estimation

method proposed in Norets (2009).

The approach explored in this paper is well suited for estimation of DDCMs with

different forms of heterogeneity such as individual specific parameters or serially corre-

lated unobservables. Although experiments on data from Rust (1987) confirm Rust’s

conclusion of weak evidence of the presence of serial correlation in the unobservables

for his model and dataset, experiments on artificial data show that the estimated

choice probabilities implied by a dynamic logit model and a model with serially cor-
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related unobservables can behave quite differently. More generally, the experiments

demonstrate that ignoring individual heterogeneity in estimable DDCMs can lead to

serious misspecification errors and that the methodology presented in this paper is a

valuable tool for DDCM estimation.

The theoretical framework in Norets (2009) is flexible and leaves room for exper-

imentation. Experiments with the algorithm for solving the DP led to a discovery

of modifications that provided increases in speed and precision beyond those antici-

pated directly by the theory. First, iterating the Bellman equation on several smaller

random grids and combining the results turns out to be a very efficient alternative to

iterating the Bellman equation on one larger random grid. Second, the approxima-

tion error for a difference of expected value functions is considerably smaller than the

error for an expected value function by itself (this can be taken into account in the

construction of the Gibbs sampler.) Finally, iterating the Bellman equation several

times for each parameter draw, using the Gauss-Seidel method and a direct search

procedure, also produces significant performance improvement. All these algorithm

improvements are carefully documented in the paper.

A verification of the algorithm implementation is provided in the paper. To as-

sess the accuracy of the DP solving algorithm I apply it to a dynamic multinomial

logit model, in which the exact DP solution can be quickly computed. The design

and implementation of the posterior, prior, and data simulators are checked by joint

distribution tests (see Geweke (2004).) Multiple posterior simulator runs are used to

check the convergence of the MCMC estimation procedure. The estimation algorithm

can be applied to dynamic multinomial logit models, for which an exact algorithm is
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also available. A comparison of the estimation results for the approximate algorithm

and the exact algorithm suggests that the estimation accuracy is excellent.

The rest of the paper is organized as follows. Section 2 sets up a general DDCM.

The presentation is illustrated by Rust (1987) model with added serially correlated

unobservables. Bayesian MCMC estimation procedure is described in Section 3. The

algorithm for approximation of the DP solution and its implementation for Rust

(1987) model are presented in Section 4. This section also describes experiments and

improvements for the DP solving algorithm. Tests checking the implementation of

the prior, posterior, and data simulators are discussed in Section 5.1. In Section 5.2,

the accuracy of the estimation algorithm is evaluated on the dynamic logit model

formulation, for which an exact algorithm is available. The role of serial correlation

in unobservables is explored in Section 5.3. Estimation results for Rust’s data are

presented in Section 5.4. The last section concludes with a summary and directions

for future work.

2 MODEL FORMULATION

2.1 General DDCM

A DDCM is a single agent dynamic optimization model with discrete control variables.

The per-period utility of the agent u(st, dt; θ) depends on current state variables

st ∈ S, the chosen alternative dt ∈ D(st), and a vector of parameters θ ∈ Θ. The

state variables are assumed to evolve according to a controlled first order Markov

process with a transition law denoted by f(st+1|st, dt; θ). Time is discounted with a
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factor β. In the recursive formulation, the lifetime utility of the agent or the value

function is given by the maximum of the alternative-specific value functions:

V (st; θ) = max
dt∈D(st)

V(st, dt; θ) (1)

V(st, dt; θ) = u(st, dt; θ) + βE{V (st+1; θ)|st, dt; θ} (2)

This formulation embraces a finite horizon case if time t is included in the vector of

the state variables.

2.2 Rust’s model

Rust (1987) used a binary choice model of optimal bus engine replacement to demon-

strate his dynamic logit model. In this model a maintenance superintendent of a bus

transportation company decides every time period whether to replace a bus engine.

The observed state variable is the bus mileage xt since the last engine replacement.

The control variable dt takes on two values: 2 if the engine is replaced at t and 1

otherwise. The per-period utility function of the superintendent is the negative of

per-period costs:

u(xt, εt, νt, dt; α) =

 α1xt + εt if dt = 1

α2 + νt if dt = 2

where εt and νt are the unobserved state variables (st = (xt, εt, νt),) α1 is the negative

of per-period maintenance costs per unit of mileage, α2 is the negative of the costs
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of engine replacement. Rust assumes that εt and νt are extreme value iid. I assume

νt is iid N(0, h−1
ν ) truncated to [−ν, ν], εt is N(ρεt−1, h

−1
ε ) truncated to E = [−ε, ε],

and ε0 = 0. A newly replaced engine is assumed to have no deffects initially and

thus εt is reset to zero if the engine is replaced at t. The bus mileage since the last

replacement is discretized into M intervals X = {1, . . . ,M}. The observed state xt

evolves according to

P (xt+1|xt, dt; η) =

 π(xt+1 − xt; η) if dt = 1

π(xt+1 − 1; η) if dt = 2
(3)

and

π(∆x; η) =



η1 if ∆x = 0

η2 if ∆x = 1

η3 if ∆x = 2

0 if ∆x ≥ 3

Rust assumes that if the mileage reaches the state M it stays in this state with

probability 1. I instead assume that the engine is replaced at t if xt exceeds M − 1,

which slightly simplifies the DP solution. In the recursive formulation, the life-time

utility for xt < M is given by

V (xt, εt, νt; θ) = max{ α1xt + εt + β
3∑

k=1

ηkE[V (xt + k − 1, ε′, ν ′; θ)|εt; θ],

α2 + νt + βEV2(θ) } (4)

7



where

EV2(θ) =
3∑

k=1

ηkE[V (k, ε′, ν ′; θ)|0; θ]

E[V (xt+1, ε
′, ν ′; θ)|εt; θ] =

∫
V (xt+1, ε

′, ν ′; θ)dP (ε′, ν ′|εt; θ)

For xt ≥ M :

V (xt, εt, νt; θ) = α2 + νt + βEV2(θ)

3 BAYESIAN ESTIMATION

In an estimable dynamic discrete choice model it is usually assumed that some state

variables are unobserved by econometricians. Let’s denote the unobserved part of the

state variables by yt and the observed part by xt. The set of the available alternatives

D(st) is assumed to depend only on the observed state variables. Hereafter, it will

be denoted by D to simplify the notation. This is without loss of generality since

we could set D = ∪xt∈XD(xt) and the alternatives unavailable at state xt could be

assigned a low per-period utility value.

A data set that is usually used for the estimation of a dynamic discrete choice

model consists of a panel of I individuals. The observed part of the state and the

decisions are known for each individual i ∈ {1, . . . , I} for Ti periods: {xt,i, dt,i}Ti
t=1.

Assuming that the state variables are independent for the individuals in the sample,
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the likelihood for the model can be written as

p({xt,i, dt,i}Ti
t=1, i ∈ {1, . . . , I}|θ) =

I∏
i=1

p(xTi,i, dTi,i, . . . , x1,i, d1,i|θ) = (5)

I∏
i=1

∫
p(yTi,i, xTi,i, dTi,i, . . . , y1,i, x1,i, d1,i|θ)dyTi,i, . . . , dy1,i

The joint density p(yTi,i, xTi,i, dTi,i, . . . , y1,i, x1,i, d1,i|θ) could be decomposed as follows

p(yTi,i, xt,i, dt,i, . . . , y1,i, x1,i, d1,i|θ) (6)

=
∏Ti

t=1 p(dt,i|yt,i, xt,i; θ)f(xt,i, yt,i|xt−1,i, yt−1,i, dt−1,i; θ)

where f(.|.; θ) is the state transition density, {x0,i, y0,i, d0,i} = ∅, and p(dt,i|yt,i, xt,i; θ)

is a choice probability conditional on all state variables.

In general, evaluation of the likelihood function in (5) involves computing multi-

dimensional integrals of an order equal to Ti times the number of components in yt,

which becomes very difficult for large Ti and/or multi-dimensional unobservables yt.

In a Bayesian framework, we do not need to perform the high dimensional integra-

tion over yt at each iteration of the estimation procedure. Instead, we can explore

the joint posterior distribution of the parameters and latent variables by a simulation

method called Gibbs sampling. In models with latent variables, the Gibbs sampler

simulates the parameters conditional on the data and the latent variables, and then

simulates the latent variables conditional on the data and the parameters. The result-

ing sequence of the simulated parameters and latent variables is a Markov chain with

the stationary distribution equal to the joint posterior distribution of the parameters
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and the latent variables. The marginal posterior distribution of the parameters and

parameter point estimates can be obtained from the output of this Markov chain.

Parameterizations of the Gibbs sampler that use all the state variables directly as

the latent variables is very inefficient or even infeasible. In this case densities for all

blocks of the Gibbs sampler are proportional to a product of expressions in (6) over

i multiplied by a prior density for parameters. Expression (6) includes

p(dt,i|xt,i, yt,i; θ) = 1{V(yt,i, xt,i, dt,i; θ) ≥ V(yt,i, xt,i, d; θ),∀d ∈ D}(yt,i, xt,i, dt,i; θ).

These indicator functions describe a set of inequalities that are nonlinear in param-

eters. Thus, densities of Gibbs sampler blocks for parameters will have support

determined by
∑

i Ti nonlinear inequalities. Simulating from such distributions is a

challenging problem (in experiments, draws from an acceptance sampling algorithm

were never accepted for I ≥ 100). Moreover, the Gibbs sampler might not be ergodic

in this case (see Section 3.2 below for a discussion of ergodicity).

The complicated truncated densities in the Gibbs sampler can be avoided if one

uses Vt,i = {Vt,d,i = V(st,i, d; θ), d ∈ D} or their differences as latent variables in the

sampler instead of some of the state variables. Construction of the Gibbs sampler

with such a parametrization for Rust’s model is described below in detail. MCMC

algorithms for other DDCMs can be constructed in a similar manner.
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3.1 Gibbs sampler for Rust’s model

The dataset includes observations on I buses. Each bus i is observed over Ti time

periods: {xt,i, dt,i}Ti
t=1 for i = 1, . . . , I. The parameters are θ = (α, η, ρ, hε); hν is

fixed for normalization. It is convenient to parameterize the Gibbs sampler in terms

of the alternative specific value functions rather than the unobserved state variables

(a detailed discussion of Gibbs sampler parameterization for DDCMs can be found

in Norets (2009), Section 2.) The latent variables used in the Gibbs sampler are

{∆Vt,i, εt,i}Ti
t=1, i = 1, . . . , I.

∆Vt,i = xt,iα1 − α2 + εt,i − νt,i + Ft,i(θ, εt,i)

where Ft,i(θ, ε) = β
∑3

j=1 ηj(E[V (xt,i + j − 1, ε′, ν ′; θ)|ε; θ]− EV2(θ)).

The compact space for parameters Θ is defined as follows: αi ∈ [−α, α], ρ ∈

[−ρ, ρ], hε ∈ [hl
ε, h

r
ε ], and η belongs to a three dimensional simplex. The joint distri-

bution of the data, the parameters, and the latent variables is

p(θ; {xt,i, dt,i; ∆Vt,i, εt,i}Ti
t=1; i = 1, . . . , I) =

p(θ)
I∏

i=1

Ti∏
t=1

[p(dt,i|∆Vt,i)p(∆Vt,i|xt,i, εt,i; θ)p(xt,i|xt−1,i; dt−1,i; η)p(εt,i|εt−1,i, ρ, hε)]

where p(θ) is a prior density for the parameters; p(xt,i|xt−1,i; dt−1,i; η) is given in (3)
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and p(x1,i|x0,i; d0,i; η) = 1{1}(x1,i)—all the buses start with a new engine;

p(dt,i|∆Vt,i) =

 1, if dt,i = 1, ∆Vt,i ≥ 0 or dt,i = 2, ∆Vt,i ≤ 0

0, if dt,i = 1, ∆Vt,i < 0 or dt,i = 2, ∆Vt,i > 0

p(∆Vt,i|xt,i, εt,i; θ) = exp {−0.5hν(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])
2} (7)

·1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)]) (8)

· h0.5
ν√

2π[Φ(νh0.5
ν )− Φ(−νh0.5

ν )]

p(εt,i|εt−1,i, θ) =
h

1/2
ε exp {−0.5hε(εt,i − ρεt−1,i)

2}√
2π[Φ([ε− ρεt−1,i]h0.5

ε )− Φ([−ε− ρεt−1,i]h0.5
ε )]

1E(εt,i)

Gibbs sampler blocks

The Gibbs sampler block for ∆Vt,i| . . . has a normal truncated distribution pro-

portional to (7) and (8), and also truncated to R+ if dt,i = 1 or to R− otherwise.

An algorithm from Geweke (1991) is used to simulate efficiently from the normal

distribution truncated to R+ (or R−.) Acceptance sampling handles the truncation

in (8).

The density for εt,i| . . . is proportional to

p(εt,i| . . .) ∝ exp {−0.5hν(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])
2}

Φ([ε− ρεt−1,i]h0.5
ε )− Φ([−ε− ρεt−1,i]h0.5

ε )

· 1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

· exp{−0.5hε(εt+1,i − ρεt,i)
2 − 0.5hε(εt,i − ρεt−1,i)

2} · 1E(εt,i) (9)
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This Gibbs sampler block uses a Metropolis step1 with a normal truncated transition

density proportional to (9). The blocks for εt,i with t = 0 and t = Ti will be similar.

Assuming a normal prior N(ρ, h−1
ρ ) truncated to [−ρ, ρ],

p(ρ| . . .) ∝
exp {−0.5hν

∑
i,t(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

2}∏
i,t Φ([ε− ρεt−1,i]h0.5

ε )− Φ([−ε− ρεt−1,i]h0.5
ε )

·
∏
i,t

1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

· exp{−0.5hρ(ρ− ρ)2} · 1[−ρ,ρ](ρ) (10)

where hρ = hρ +
∑

i

∑Ti

t=2 ε2
t−1,i and ρ = h

−1

ρ (hρρ+hε

∑
i

∑Ti

t=2 εt,iεt−1,i). A Metropolis

step with a normal truncated transition density proportional to (10) is used for this

block.

Assuming a gamma prior s2hε ∼ χ2(df), truncated to [hl
ε, h

r
ε ],

p(hε| . . .) ∝
exp {−0.5hν

∑
i,t(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

2}∏
i,t Φ([ε− ρεt−1,i]h0.5

ε )− Φ([−ε− ρεt−1,i]h0.5
ε )

·
∏
i,t

1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

· h(df−2)/2
ε exp {−0.5s2hε} · 1[hl

ε,h
r
ε ]
(hε) (11)

where df = df +
∑

i Ti and s2 = s2 +
∑

i

(∑Ti

t=2(εt,i − ρεt−1,i)
2 + ε2

1,i

)
. For this block,

I employ a Metropolis step with a truncated gamma transition density proportional

to (11); draws from the transition density are obtained by acceptance sampling.

1 To produce draws from some target distribution Metropolis or Metropolis-Hastings MCMC
algorithm only needs values of a kernel of the target density. The draws are simulated from a
transition density and they are accepted with probability that depends on the values of the target
density kernel and the transition density. For more details, see, e.g., Chib and Greenberg (1995).
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Assuming a Dirichlet prior with parameters (a1, a2, a3),

p(η| . . .) ∝ exp {−0.5hν

∑
i,t

(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])
2}

·
∏
i,t

1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

·
3∏

j=1

η
nj+aj−1
j (12)

where nj =
∑

i

∑Ti

t=2 1{j−1}(xt,i−xt−1,i). A Metropolis step with a Dirichlet transition

density proportional to (12) is used in this block.

p(α| . . .) ∝ p(α) exp {−0.5hν

∑
i,t

(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])
2}

· 1[−α,α]×[−α,α](α) ·
∏
i,t

1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

A Metropolis-Hastings random walk algorithm is used for this block. The proposal

density is normal truncated to [−α, α] × [−α, α] with a mean equal to the current

parameter draw and a fixed variance. The variance matrix is usually chosen so that

the acceptance probability would be between 0.2− 0.6.

Although the truncation bounds α, ρ, hl
ε, hr

ε , ν, ε are required for theoretical results

in the next section and Norets (2009), they are not used in experiments below. This

is equivalent to choosing the truncation regions to be equal to the ranges of floating

point numbers available on a computer used for calculations.
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3.2 Uniform ergodicity of Gibbs sampler

The draws from the Gibbs sampler are often used for approximating posterior expec-

tations by sample averages. Under certain conditions, the sample averages converge

almost surely to the posterior expectations and a corresponding central limit theo-

rem holds. Uniform ergodicity of the Gibbs sampler—a sufficient condition for these

results (see Tierney (1994))—is established by the following theorem for the Gibbs

sampler that uses the exact expected value functions. As shown in Section 4 of Norets

(2009), this result is also a part of sufficient conditions for the good behavior of the

estimation algorithm that uses DP solution approximations.

Theorem 1. Consider the Gibbs sampler with the following order of blocks at each

iteration:

1) (∆Ṽm+1
t,i |θm, εm, d, x), ∀t, i; 2) (ρm+1|θm, εm, ∆Ṽm+1, d, x), (αm+1| . . .), (ηm+1| . . .),

(hm+1
ε | . . .); 3) (εm+1

t,i |εm, θm+1, ∆Ṽm+1), ∀t, i; 4) (∆Vm+1
t,i |θm+1, εm+1, d, x), ∀t, i;

where the blocks were described above. Block 4) is redundant but simplifies the proof.

Assume that the support of νt,i is sufficiently large relative to the support of ε and

θ: Φ(−h0.5
ν ν) < 0.25 and ν > 2(u + ε + βEV ), where u is an upper bound on the

absolute value of the deterministic part of the per-period utility function, ε is an up-

per bound on the absolute value of εt,i, and EV = [u + ε + 1 + 2h−1
ε ]/(1 − β) is

an upper bound on the absolute value of the expected value function (see the proof.)

Then, the Gibbs sampler is uniformly ergodic. Thus, by Theorems 3 and 5 in Tierney

(1994), for any integrable (w.r.t. posterior) function z(∆V , θ, ε) the sample average

zn = 1/n
∑

m z(∆Vm, θm, εm) converges a.s. to the posterior expectation E(z|d, x). If
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E(z2|d, x) < ∞ then there exists a real number σ2(z) such that
√

n(zn − E(z|d, x))

converges in distribution to N(0, σ2(z)).

The theorem is proved in Appendix A.

4 DP SOLUTION

4.1 Algorithm

In this section I describe a DP solution algorithm that is suitable for use in conjunction

with a Bayesian estimation procedure. It was proposed in Norets (2009). The details

of the algorithm are presented for Rust’s model. The algorithm takes a sequence

of parameter draws θm, m = 1, 2, . . . as an input from the Gibbs sampler, where m

denotes the Gibbs sampler iteration. For each θm, the algorithm generates random

states sm,j ∈ S, j = 1, . . . , N̂(m). At each random state, the approximations of the

value functions V m(sm,j; θm) are computed by iterating the Bellman equation once.

At this one iteration of the Bellman equation, the future expected value functions

are computed by importance sampling over value functions from previous iterations

V k1(sk1,j; θk1), where k1 ∈ {m−N(m), . . . ,m−1} is the index of the nearest neighbor

for the current parameter vector θm:

k1 = arg mini∈{m−N(m),...,m−1}
∣∣∣∣θm − θi

∣∣∣∣
and N(m) is the size of the history the algorithm keeps track of. In contrast to

conventional value function iteration, this algorithm iterates the Bellman equation
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only once for each parameter draw and uses information from previous iterations of

the estimation procedure to approximate the expectations in the Bellman equation

and thus reduces the computational burden of the DP solution.

The random states sm,j are generated from a density g(.) > 0 on S. This density

g(.) is used as an importance sampling source density in approximating the expected

value functions. The collection of the random states {sm,j}N̂(m)
j=1 will be referred below

as the random grid. The number of points in the random grid at iteration m is

denoted by N̂(m) and it will be referred below as the size of the random grid (at

iteration m.)

For Rust’s model, the random grid {ym,j = (νm,j, εm,j)}N̂(m)
j=1 is generated from a

normal distribution: νm,j
d ∼ N(0, h−1

ν ) and εm,j ∼ g(.), where g(.) is a normal density.

For each point on the random grid ym,j, j = 1, . . . , N̂(m) and each x, the Bellman

equation is iterated once:

V m(x, ym,j; θm) = max{ αm
1 x + εm,j + β

3∑
k=1

ηkÊ
m[V (x + k − 1, y′; θm)|ym,j; θm],

αm
2 + νm,j + β ˆEV2

m
} (13)

where the expected value functions are computed by importance sampling,

Êm[V (x+k−1, y′; θm)|ym,j; θm] =

N̂(k1)∑
r=1

V k1(x+k−1, yk1,r; θk1)W (εk1,r, εk1,j, θm) (14)

ˆEV2
m

=
3∑

x=1

ηx

N̂(m)∑
r=1

V k1(x, yk1,r; θk1)W (εk1,r, 0, θm) (15)
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The importance sampling weights do not depend on νm,j because the target and the

importance sampling source densities coincide for νm,j:

W (εk1,r, ε, θ) =
f(εk1,r|ε; θ)/g(εk1,r)∑N̂(kr)

q=1 f(εk1,q|ε; θ)/g(εk1,q)
(16)

The iterations in (13) should be performed for x in descending order. Then, for k > 1

the value functions V m(x + k − 1, ym,r; θm) would be available when V m(x, ym,j; θm)

are being computed. Thus, for k > 1, k1 should be set to m in (14). This procedure

is somewhat analogous to the Gauss-Seidel method.

Norets (2009) shows that under weak regularity conditions on primitives of DDCM

(essentially, the compactness of the state and parameter spaces and the continuity

of the per-period utility function and transition density) and N(m) ∝ mγ1 , N̂(m) ∝

mγ2 , 1 > γ1 > γ2 > 0, the approximated expected value functions in (14) and (15)

converge uniformly almost surely to the true values. He also shows that the output

of the Gibbs sampler employing these DP solution approximations can be used to

obtain estimates of parameters and other quantities of interest.

4.2 Algorithm improvements

The algorithm described above is flexible and leaves room for experimentation. Ex-

periments led to a discovery of modifications that provided increases in speed and

precision beyond those anticipated directly by the theory. In practice, iterating (13)

several times in a row for one x before going to the next significantly improves the

convergence speed. It happens because the expression for the value function at the
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mileage x includes the expected value function at the same x. If the Bellman equa-

tion (13) is iterated several times the approximation error in V m(x, ym,j; θm) becomes

smaller and affects the value functions for {1, . . . , x−1} much less. Using only already

updated V m(x, ym,j; θm) in computing the expectations further improves the perfor-

mance. Thus, when (13) is iterated for the first time for a given x, the expectations

for k = 1 are approximated as follows:

Êm[V (x + k − 1, y′; θm)|ym,j; θm] =

j−1∑
r=1

V (x, ym,r; θm)W (ym,r, ym,j, θm)

For j = 1, Êm[V (x + 0, y′; θm)|ym,1; θm] is a solution of the following equation:

Êm[V (x + 0, y′; θm)|ym,1; θm] = max{αm
2 + βEV k1

2 (θk1),

αm
1 x + β(ηm

1 Êm[V (x + 0, y′; θm)|ym,1; θm]

+ηm
2 Êm[V (x + 1, y′; θm)|ym,1; θm] + ηm

3 Êm[V (x + 2, y′; θm)|ym,1; θm])}

This equation is obtained by interchanging the places of the expectation and the

max in the Bellman equation. After the first iteration on (13) for a given x, all the

expectations are computed according to (14) on the subsequent iterations.

The value function iteration algorithm has linear convergence rates and conver-

gence may slow down significantly near the fixed point. Employing a non-linear

optimization procedure helps in obtaining a good approximation precision at reduced

computational costs. An additional iteration of the Bellman equations in (13) for the

fixed parameter vector θm, the random grid {ym,j}N̂(m)
j=1 , and all x could be seen as a
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mapping that takes EV2 as an input and updates it. Iterating this mapping produces

a sequence of EV2’s that converges monotonically. Taking this into account improves

the performance. Appendix B presents a flowchart of a direct search procedure for

finding the mapping fixed point EV m
2 . This procedure is used in the experiments

presented below.

Since the Gibbs sampler changes only one or few components of the parameter

vector at a time, the previous parameter draw θm−1 turned out to be the nearest

neighbor of the current parameter θm in most cases. Taking advantage of this obser-

vation and keeping track only of one previous iteration saves a significant amount of

computer memory. In the estimation experiments presented below, the DP solving

algorithm starting from k1 = m − 1 required only 3-10 passages over (13) to find

the fixed point EV m
2 or, equivalently, to solve the DP for θm on the random grid

{ym,j}N̂(m)
j=1 .

4.3 Experiments with DP solution

To implement the algorithm I wrote a program in C. The program uses BACC inter-

face to libraries LAPACK, BLAS, and RANLIB for performing matrix operations and

random variates generation (BACC is an open source software for Bayesian Analysis,

Computation, and Communication available at www2.cirano.qc.ca/~bacc.) Higher

level interpreted languages like Matlab would not provide necessary computation

speed since the algorithm cannot be sufficiently vectorized. As a matter of future

work, the algorithm could be easily parallelized with very significant gains in speed.

A simulation study was conducted to assess the quality of the DP solution ap-

20

www2.cirano.qc.ca/~bacc


proximations. The study explores how the randomness of the grid affects the ap-

proximations for fixed parameters and how these effects change with the random

grid size. The parameter values for this experiment are θ = (α, ρ, hν , hε, η) =

(−.003,−10, .5, 6/π2, 6/π2, .34, .64, .02). First, I generated 1000 random grids {ym,j}N̂
j=1,

m = 1, . . . , 1000. Then, for each random grid m, I solved the DP as described in the

previous section and computed the approximation of EV m
2 (θ) and the approximation

of the difference in expectations Êm[V (80, y′; θ)|0; θ] − EV m
2 (θ). These approxima-

tions are measurable functions of the random grid realization {ym,j}N̂
j=1 and thus they

are random variables. Using kernel smoothing, I estimated densities of those approx-

imations. The estimated densities for N̂ = 100, 500, 1000 are presented in Figure 1.

Figure 1: Estimated densities of EV m
2 (θ) (panel (a)) and Êm[V (80, y′; θ)|0; θ] −

EV m
2 (θ) (panel (b).) The tightest density corresponds to N̂ = 1000, the most

widespread to N̂ = 100.

Visual inspection of the figure suggests that the approximations converge as the num-

ber of the points in the random grid increases. The mean of the distribution seems

to be the same for N̂ = 100, 500, 1000. The variances are roughly proportional to

N̂−1. The densities are also getting close to the fitted normal densities as the grid
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size increases. All this hints that an analog to a CLT might hold for this problem.

Comparison of the two figures shows that the maximal approximation error for the

expected value function is larger by 2–3 orders of magnitude than the maximal ap-

proximation error for the difference in the expected value functions. This result seems

to have a simple intuitive explanation. An approximate DP solution computed on a

random grid could be far from the actual solution. However, the errors resulting from

discretization and numerical integration very similarly affect the approximations of

the future expected value functions for the same current state but different decisions.

It probably happens because numerical integration over the future states is performed

on the same random grid no matter which alternative is chosen in the current period.

Thus, the approximations of the expected value functions have very high positive cor-

relation and their variances are of similar magnitude. This results in a small variance

for their difference. As I mentioned earlier, these findings motivate the choice of the

Gibbs sampler parameterization, in which only the differences of the expected value

functions are used.

To further verify that the method is implemented correctly I conducted a similar

simulation study using the extreme value iid unobservables instead of the serially

correlated unobservables. The results were analogous to the ones reported in the

figure. The actual DP solution for the iid extreme value unobservables can be easily

computed with a high precision as described in Rust (1994). As expected, the exact

solutions were right at the means of the distributions obtained from the simulation

study.

These experiments also suggest an improvement in the algorithm performance.
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Solving the DP on several small random grids and combining the results seems to be

a very efficient alternative to using one large grid. I separate the series of the approx-

imations of EV2 for N̂ = 100 into batches of size 10. For each batch I compute the

mean and then use these means in kernel smoothing to obtain the estimated density

for such approximations of EV2. The resulting density practically coincide with the

density obtained for N̂ = 1000 and no batching. Thus, the approximation precision

for these procedures is about the same. The time of iterating the Bellman equation

on a grid of size N̂ is roughly proportional to N̂2. Therefore, the time required for

iterating the Bellman equation on a grid of size N̂ = 100 for ten different grids will be

smaller by a factor of 10 than the time required for iterating the Bellman equation on

one grid of size N̂ = 1000. These experimental results are intriguing. Investigating

theoretical properties of this improved procedure, e.g. deriving complexity bounds,

seems to be of interest and is a subject of future work. This improvement has not

been incorporated into the estimation experiments in this paper. However, they are

employed in Norets (2007) that uses artificial neural networks to approximate the

expected value function as a function of the parameters θ and the state variables.

5 ESTIMATION EXPERIMENTS

5.1 Joint distribution tests

In order to produce error free reproducible results a researcher should subject an

estimation procedure to a number of tests. One such test is to apply the estimation

procedure to a large artificial dataset and check if parameter values used for data
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generation can be recovered. This is done below, e.g., in Section 5.3. Although it is

a useful procedure it often does not reveal subtle problems with simulators. Geweke

(2004) developed so called joint distribution tests, which I found to be very useful

for debugging and checking the simulator code. Geweke’s test (adopted to a model

with latent variables) explores the joint prior distribution of the parameters, latent

variables, and data by two different simulators. The first one, called marginal con-

ditional simulator, produces direct draws from the joint prior distribution. In the

context of the Rust’s model: θm ∼ p(θ) and xm, dm, ∆Vm, εm ∼ p(x, d, ∆V , ε|θm). In

the other simulator, called successive conditional, the posterior and data simulators

are used successively. In the context of the Rust’s model, first, a parameters and la-

tent variables draw θm, ∆Vm, εm is produced by the posterior simulator described in

Section 3.1 conditional on xm−1, dm−1. Second, the latent variables and the data are

updated by the data simulator: xm, dm, ∆Vm, εm ∼ p(x, d, ∆V , ε|θm). If the posterior

simulator produces direct draws then the successive conditional simulator is a Gibbs

sampler. If the posterior is an MCMC algorithm then the successive conditional sim-

ulator is a hybrid MCMC (see Geweke (2005) or Tierney (1994).) In either case the

invariant stationary distribution of this Markov chain is the joint prior distribution of

the parameters, latent variables, and data. If the prior, posterior and data simulators

are derived and implemented correctly, then, for example, the sample mean of θm for

both simulators should converge to the same values, which could be tested formally

using a central limit theorem and an equality of means test. The estimated marginal

densities for components of θ should also be the same. The results of the tests for

Rust’s model are given below.
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Table 1: Joint distribution test

Parameter α1 α2 ρ hε η1 η2

Mean, succ. cond. -0.003 -10.013 0.70086 0.599 0.3399 0.64043

SD, succ. cond. 0.00033 0.668 0.0497 0.0599 0.0473 0.0479

Mean, marg. cond. -0.003 -10.002 0.6999 0.6004 0.3399 0.64006

SD, marg. cond. 0.00034 0.6694 0.0503 0.0601 0.0470 0.0477

p-value, param. 0.86 0.49 0.48 0.23 0.81 0.48

p-value, param. sqrd. 0.74 0.50 0.49 0.23 0.88 0.46

The test uses 10000 draws from the marginal conditional simulator and 100000 draws

from the successive conditional simulator. Using smaller size of the artificial dataset

results in better mixing of the chain in the successive conditional simulator. In this

experiment I = 2. Tighter priors also increase the speed of convergence. The hypoth-

esis of means equality was not rejected by the standard means equality test performed

for the parameters and their squares. The means and standard deviations for both

simulators and the test p-values are reported in Table 1. The numerical standard

errors for the tests were computed by batching with a first order time series correc-

tion (the sequence of the draws is divided into batches, the means of the batches are

assumed to follow an AR(1) process, and the corresponding standard error is com-

puted.) The numerical standard errors computed by BACC function Expect1 were

very similar. The results of the tests are also presented graphically in Figure 2.
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Figure 2: Densities estimated from the output of the marginal conditional and suc-

cessive conditional simulators: (a) α1, (b) α2, (c) ρ, (d) hε, (e) η1, (f) η2.

The solid lines are the densities of the parameter draws from the successive condi-

tional simulator estimated by kernel smoothing. These densities practically coincide

with the dashed lines that show the prior densities. The joint distribution tests show

no indication of errors in the simulators (on the debugging stage, a few errors were

spotted by the tests.)

5.2 Exact and approximate estimation for dynamic logit

To evaluate the quality of the estimation results I conduct experiments on the model

with extreme value unobservables—the dynamic logit model. For this model, the

integration over the unobservables in solving the DP and in the likelihood function can

be performed analytically. The estimation method that integrates the unobservables
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analytically in the likelihood and in the DP solution will be referred below as the

exact algorithm. The posterior simulator for this method also uses the Metropolis-

Hastings algorithm since the logit-like choice probabilities comprising the likelihood

function contain the expected value functions that can only be computed numerically.

The approximate algorithm will refer to the algorithm considered in this paper.

The Gibbs sampler for the approximate algorithm is the same as the one for the

Gaussian unobservables described in Section 3.1; except here the Gaussian probabil-

ity densities are replaced by the densities for the extreme value distribution. Table

2 gives the estimation results for the exact and approximate algorithms. The experi-

ments use an artificial dataset consisting of observations on I = 70 buses.
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Table 2: Exact and approximate estimation results.

Run α1 α2 η1 η2 η3

1 -0.00228 -9.0721 0.34433 0.63394 0.021736
2 -0.00247 -9.4999 0.34435 0.63392 0.021731
3 -0.00203 -9.1815 0.3443 0.63397 0.021733

Post 4 -0.00207 -9.2569 0.34433 0.63394 0.021732
mean 5 -0.00229 -8.7955 0.34435 0.63393 0.021727

6 -0.00241 -9.0610 0.34435 0.63392 0.021733
7 -0.00229 -9.0519 0.34434 0.63392 0.02174
8 -0.00231 -9.0797 0.34432 0.63395 0.021733
1 0.00044 0.8538 0.006311 0.006399 0.001939
2 0.00049 0.9795 0.006315 0.006403 0.001938
3 0.00046 0.9681 0.006314 0.0064 0.00194

Post 4 0.00047 0.9655 0.00631 0.006394 0.001932
SD 5 0.00042 0.7790 0.006302 0.006396 0.001938

6 0.00051 0.9789 0.006298 0.006395 0.001938
7 0.00051 1.0028 0.006327 0.006412 0.001941
8 0.00049 0.9680 0.006306 0.006396 0.001941
1 0.00015 0.3444 7.42E-06 7.31E-06 2.23E-06
2 0.00019 0.4404 8.48E-06 8.12E-06 2.11E-06

NSE 3 0.00007 0.1892 2.27E-05 2.10E-05 4.16E-06
for 4 0.00007 0.2015 2.63E-05 2.36E-05 4.61E-06

post 5 0.00005 0.1196 1.90E-05 1.74E-05 3.95E-06
mean 6 0.00007 0.1957 1.82E-05 1.71E-05 3.88E-06

7 0.00007 0.1926 2.11E-05 1.97E-05 3.93E-06
8 0.00006 0.1776 2.04E-05 1.88E-05 3.81E-06

Prior N(-0.003, N(-10, 5) Dirichlet prior
.0017) a1 = 34 a2 = 64 a3 = 2

Actual param -0.003 -10 0.34 0.64 0.02

Runs 1–2 in the table are the runs of the exact posterior simulator started from dif-

ferent random initial values for the parameters. The length of runs 1–2 was 1000000.

For the approximate algorithm three different realization of the random grid for solv-

ing the DP were used. Each grid realization corresponds to a pair of simulator runs:

3–4, 5–6, and 7–8. The random number generator was initialized differently for each
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run. The length of runs 3–8 was about 500000.

Figure 3 shows the marginal posterior densities for the parameters obtained from

the exact and approximate algorithms. The densities were obtained by kernel smooth-

ing over all available simulator runs: 2 runs for the exact algorithm and 6 runs for

the approximate algorithm. The results in the figure and table above suggest that

the approximation quality of the proposed algorithm is very good.

Figure 3: Comparison with exact and approximate estimation algorithms. Estimated

posterior densities: (a) α1, (b) α2, (c) η1, (d) η2, (e) η3. The vertical lines show

the actual parameter values. The solid line shows the posterior for exact estimation

procedure, the dashed line – approximate estimation procedure.
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5.3 The role of serial correlation in unobservables

In this section, I show how the presence of serial correlation in unobservables in the

data generation process affects the estimation results for the dynamic logit model.

For this purpose I use an artificial dataset simulated from the model with Gaussian

serially correlated unobservables described in this paper (it will be referred in this

section as the true model.) Then, I use this data in estimation of the dynamic logit

model and the true model. The results are shown in the table below.

Table 3: Estimation results for the dynamic logit model and the model with Gaussian
serially correlated unobservables.

Run α1 α2 ρ η1 η2 η3

Post logit -0.00091 -3.1431 0.35883 0.62733 0.0138
mean true -0.00276 -10.7342 0.8430 0.35887 0.6273 0.0138
Post logit 0.00065 0.2275 0.012606 0.012703 0.003
SD true 0.00098 1.3262 0.0610 0.012607 0.012719 0.003

NSE post logit 0.00001 0.0050 1.38E-05 1.37E-05 3.2E-06
mean true 0.00006 0.1848 0.0187 2.02E-05 2.0E-05 3.8E-06
Actual param -0.003 -10.0 0.8500 0.34 0.64 0.02
Prior N(-.003, N(-10, 5) N(0.5, 103) Dirichlet prior

.0017) tr.[-.99,.99] a1 = 34 a2 = 64 a3 = 2

From this table, it might seem that the presence of serial correlation in unobservables

produces the same effect as an increase in the variance of these unobservables would.

The utility function parameters are almost proportional for both cases. To get more

insight into the effects of serial correlation in unobservables, I compute the posterior

means of the hazard function for each of the models.

As can be seen from panel (a) in Figure 4, the dynamic logit model would under-

estimate the probability of the engine replacement for low mileage and considerably
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overestimate the probability for high mileage if serial correlation is present in the data

generation process.

Figure 4: The posterior means of the hazard functions. Panel (a)—the data gener-

ated from the model with the serially correlated unobservables, panel (b)—the data

generated from the dynamic logit model. The vertical axis is for the probability of

engine replacement, the horizontal axis is for the mileage interval. The solid line is

for the model with serially correlated unobservables. The dashed line—for dynamic

multinomial logit, the dotted line—data hazard.

Moreover, the shape of the hazard function is also different. In the dynamic logit

case, the hazard function is increasing, while for the true model it is decreasing at

first. Although the estimated hazard is noisy, the decrease at the beginning was ob-

served for several posterior simulator runs; thus it is not a result of the noise. For

comparison, panel (b) shows the posterior means of the hazard functions estimated

from the artificial data that were simulated from the dynamic logit model. In this

case, the hazards for the dynamic logit model and for the model with Gaussian seri-

ally correlated unobservables seem to be very close and have the same shape. These
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results support the claim that the disparities in the hazards observed in panel (a)

are driven by the presence of serial correlation in the data but not by the different

distributional assumptions on unobservables: Gaussian vs. extreme value. These

experiment demonstrate that ignoring serial correlation in unobservables might lead

to serious misspecification errors.

5.4 Estimation results for real data

The data set is group 4 from Rust’s paper. It contains observations on 37 buses that

could be divided into I = 70 individual spells containing one engine replacement (or

censored at the last observed xt), which gives
∑

i Ti = 4329 monthly mileage/decision

points. It takes about 50 seconds to produce 100 draws from the posterior on a 2002

vintage PC (the experiments were performed on Unix workstations.)

To start the Gibbs sampler I used the parameter estimates from Rust’s paper.

The algorithm also works if the Gibbs sampler is started from a draw from the prior

distribution or from the zero vector for the utility function parameters α and the data

frequencies for the state transition probabilities η. The initial values for the latent

variables are adjusted so that the observed decisions are optimal. In particular, given

the parameter values, the serially correlated unobservables εt,i are simulated from the

corresponding AR(1) process. Then, ∆Vt,i are adjusted to satisfy the observed choice

optimality constraints with a small margin. It is also possible to adjust εt,i together

with ∆Vt,i. If the initial values for εt,i are not simulated from the AR(1) process or

if the starting value for ρ is far in the tail of the posterior, a procedure similar to

the simulated annealing might be helpful in starting the Gibbs sampler with high
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acceptance rates: the acceptance probabilities for the parameters are multiplied by a

decreasing quantity on the first hundred iterations.

Estimation results for 6 posterior simulator runs are presented in Table 4 and

Figure 5. The number of draws for each simulator run was equal to 1000000.

Figure 5: Estimated posterior densities for different grids: (a) α1, (b) α2, (c) ρ, (d)
η1, (e) η2, (f) η3. The dashed lines are prior densities. The solid lines are posterior
densities averaged over all simulator runs. The dotted lines show posterior densities
averaged for runs 1–2, 3–4, and 5–6.

Three different random grids for solving the DP were used in these experiments (the

random grid is generated before the estimation procedure starts and it stays fixed

through the simulator run.) One grid was used for runs 1–2, another one for runs

3–4, and the last one for runs 5–6. The random number generator was initialized

differently for each run.
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Table 4: Estimation results for data from Rust’s paper, group 4.

Run α1 α2 ρ η1 η2 η3

1 -0.00275 -9.5631 -0.1763 0.40325 0.58388 0.012874
2 -0.00289 -10.0439 0.0945 0.40325 0.58388 0.012869

Post 3 -0.00248 -11.2845 0.1545 0.40329 0.58385 0.012868
mean 4 -0.00228 -9.8963 -0.1000 0.40328 0.58385 0.012868

5 -0.00224 -10.1331 -0.0526 0.40318 0.58395 0.012875
6 -0.00233 -10.3774 -0.0573 0.4032 0.58392 0.012872
1 0.00123 2.4267 0.4229 0.00736 0.007394 0.001696
2 0.00146 2.8896 0.2879 0.007381 0.007414 0.001694

Post 3 0.00084 3.2330 0.4170 0.0074 0.007434 0.001693
SD 4 0.00075 2.5904 0.4871 0.007388 0.007421 0.001694

5 0.00066 2.9959 0.4805 0.007365 0.007403 0.001694
6 0.00075 2.8908 0.4894 0.007379 0.007416 0.001694
1 0.00027 0.6762 0.0916 1.65E-05 1.59E-05 2.33E-06

NSE 2 0.00039 0.9795 0.0451 1.71E-05 1.65E-05 2.34E-06
for 3 0.00012 1.2031 0.1175 1.94E-05 1.86E-05 2.37E-06

post 4 0.00013 0.9552 0.1463 2.23E-05 2.13E-05 2.94E-06
mean 5 0.00008 0.9910 0.1225 1.49E-05 1.44E-05 2.23E-06

6 0.00010 0.9460 0.1258 1.41E-05 1.35E-05 2.37E-06
Prior N(-.003, N(-10, 5) N(0.5, 103) Dirichlet prior

.0017) tr.[-.99,.99] a1 = 34 a2 = 64 a3 = 2

The figure and table above suggest that only the estimation results for ρ are signifi-

cantly affected by the random grid realization. The results for η are not affected at

all since the data on mileage transitions dominate the posterior for η. The qualitative

results for ρ do not seem to depend on the grid realization. The posterior distribution

for ρ is bimodal. The higher mode is positive and located at about 0.2, the lower

mode is at about -0.6. The posterior mean is close to 0. The posterior probability of

ρ > 0 is in 0.54–0.66 range. Overall, there seems to be no strong evidence that Rust’s

assumption of no serial correlation in the unobservables is invalid.

A more objective criterion for studying the effects of the grid realization on the
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estimation results would be to check how it affects conditional choice probabilities or

results of some policy changes. If the effects are still present then there are several

alternative ways to reduce them. The first one is to estimate the posterior densities

from several posterior simulator runs corresponding to different grids. This was done

for the experiment above and the resulting densities are shown by the solid lines in

Figure 5.

Increasing the size of the grid seems to be a more attractive way to obtain better

approximations for the posterior distribution. However, it would increase the compu-

tational burden of solving the DP and approximating the expectations in the Gibbs

sampler. In both cases this burden can be ameliorated. As was described in Section

4.3, solving the DP on several small random grids and combining the results produces

about the same approximation precision as solving the DP on one big random grid.

However, using several smaller grids requires much less time. To speed up the approx-

imation of the expectations in the Gibbs sampler a strategy proposed by Keane and

Wolpin (1994) could be used. In solving the DP, the authors compute expectations

using Monte Carlo integration only for a subset of states in the discretized state space.

For the rest of the states the expectations are computed by interpolation. Such an

interpolation function could be used for approximating the expectations in the Gibbs

sampler. Alternatively, experiments in Norets (2007) suggest that employing artificial

neural networks in approximating expected value functions is a promising approach.
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6 CONCLUSION AND FUTURE WORK

In this paper, I experimentally evaluate a method for Bayesian inference in DDCMs

and provide a sequence of steps for implementing a reliable and efficient estimation

procedure. First, the parameterization of the Gibbs sampler should be carefully

chosen. Parameterizations in which differences of expected value functions are used

in the Gibbs sampler rather than expected value functions by themselves are preferred

since experiments demonstrated that differences in expected value functions are much

easier to approximate precisely. Second, the posterior, prior, and data simulators

should be checked by joint distribution tests. Third, convergence of MCMC should

be carefully evaluated. The simplest way to do this is to run multiple chains from

randomly generated initial conditions. Fourth, the method for solving the DP should

be evaluated on models for which exact solution is easy to obtain, e.g., dynamic logit

models. Fifth, solving the DP on several small random grids and combining the results

could be a very efficient alternative to using one large grid. Application of parallel

computing to this task seems to be a fruitful way to achieve better performance.

A number of other improvements in the DP solving algorithm are proposed in the

paper. An important direction for future work is to develop strategies for decreasing

the amount of correlation in the Gibbs sampler draws and thus reduce the length of the

simulator runs required for attaining convergence. Overall, the paper demonstrates

that Bayesian methods provide a promising approach to estimating DDCMs.
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7 APPENDIX A. Proof of the Gibbs sampler uni-

form ergodicity

Proof. (Theorem 1)

Consider the following uniform probability density:

q(∆V , θ, ε) = c · 1Θ(θ)
∏
i,t

[1E(εt,i) · p(dt,i|∆Vt,i)

·1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])] (17)

where c is a normalization constant. The corresponding probability measure is de-

noted by Q(.).

Let’s show that the transition probability measure for the Gibbs sampler satisfies

the marginalization condition w.r.t. Q(.):

P ((Vm+1, θm+1, εm+1) ∈ A|Vm, θm, εm, d, x) ≥ bQ(A),∀Vm, θm, εm

where b > 0 is a constant. Then, the uniform ergodicity follows from Proposition 2

in Tierney (1994).
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P ((Vm+1, θm+1, εm+1) ∈ A|Vm, θm, εm, d, x) (18)

=

∫
R×...×R

∫
A

∏
t,i

p(∆Ṽm+1
t,i |θm, εm, d, x)

p(ρm+1|θm, εm, ∆Ṽm+1, d, x) · p(αm+1|ρm+1ηm, hm
ε , αm, εm, ∆Ṽm+1, d, x)

p(ηm+1| . . .) · p(hm+1
ε | . . .)

∏
t,i

p(εm+1
t,i | . . .)∏

t,i

p(∆Vm+1
t,i |θm+1, εm+1, d, x) d(∆Ṽm+1, θm+1, εm+1, ∆Vm+1)

where p(.|.) are the densities for the Gibbs sampler blocks. The densities for the

blocks with a Metropolis-Hastings step can be written in terms of the Dirac delta

function (see, for example, chapter 4 in Geweke (2005).)

Given the assumptions on the support of νt,i let’s show that there exist δ1 > 0

such that ∆Vt,i ∈ [−δ1, δ1] implies (∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)]) ∈ [−ν, ν],

∀θ, ε. It was stated in the formulation of the theorem that EV is an upper bound on

the absolute value of the expected value function. Note that an upper bound on the

expected value function EVub exists. Let’s show that it is no greater than EV .

E[|V (s′; θ)|; ‖s, d; θ] = E[|max{α1x + ε + βE[V (s′′; θ)|s′, d1; θ],

α2 + ν + βE[V (s′′; θ)|s′, d2; θ]}|]

≤ u + ε + E[|ν|] + βEVub (19)

It was also assumed in the theorem that Φ(−ν) < 0.25, which implies E[|ν|] ≤
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1 + E[ν2] ≤ 1 + 2h−1
ν . Since (19) holds for any (s, d, θ):

EVub ≤ u + ε + (1 + 2h−1
ε )

1− β
= EV

Therefore,

|[xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)]| ≤ 2(u + ε + βEV )

Let δ1 = ν − 2(u + ε + βEV ), which is positive by the assumption of the theorem.

Thus, for |∆Vt,i| ≤ δ1,

|∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)]| ≤ δ1 + 2(u + ε + βEV ) = ν

To find a lower bound on the integral in (18), let’s restrict the integration over

∆Ṽm+1
t,i to |∆Ṽm+1

t,i | ≤ δ1 and use only the parts of the block densities corresponding

to the accepted draws. The parts of the block densities for the accepted draws are

equal to the MH transition densities multiplied by the acceptance probabilities. For

(∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)]) ∈ [−ν, ν], these densities for the accepted

draws are positive and continuous on Θ, E, and [∆Vt,i ≥ 0] (or [∆Vt,i < 0] depending

on dt,i) for all blocks, and thus bounded away from zero. Let’s denote the common
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bound by δ > 0. Then,

P ((Vm+1, θm+1, εm+1) ∈ A|Vm, θm, εm, d, x) ≥ (
∏
t,i

δ1δ)

·
∫

A

1Θ(θm+1) · δ4 ·
∏
t,i

[δ · 1E(εt,i)] ·
∏
t,i

δ · p(dt,i|∆Vt,i)

·1[−ν,ν](∆Vt,i − [xt,iα1 − α2 + εt,i + Ft,i(θ, εt,i)])

d(θm+1, εm+1, ∆Vm+1) =
1

c
(
∏
t,i

δ)2 · δ4 ·
∏
t,i

δ1 ·Q(A)

Also, since Q(.) is absolutely continuous w.r.t. the posterior probability measure, the

transition probability measure for the Gibbs sampler is irreducible w.r.t. the posterior

probability measure. This completes the proof of the uniform ergodicity of the Gibbs

sampler.
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8 APPENDIX B. Direct search procedure

x1=f(x0)

|x1-x0|<d Yes x=x1

No

x1>x0 YesNo

a0=x0
a1=x1

x0=a1+(a1-a0)M
x1=f(x0)

|x1-x0|<d Yes x=x1

x1>x0

No

Yes

No

b0=x0
b1=x1

x0 = (a1*b0-b1*a0) / (b0-b1+a1-a0)
x1=f(x0)

|x1-x0|<d x=x1Yes

No

x1>x0 Yes a0=x0
a1=x1Nob0=x0

b1=x1

b0=x0
b1=x1

x0=b1+(b1-b0)M
x1=f(x0)

|x1-x0|<dYesx=x1

x1<x0

No

Yes

No

a0=x0
a1=x1

Find
a0,a1,b0,b1

Iterate till
convergence

Figure 6: Flow chart of a direct search procedure for finding a fixed point.

f(.) in the flowchart denotes a mapping that takes EV2 as an input and returns an

updated value of EV2 iterating the Bellman equations once. The algorithm searches

for a fixed point x = f(x). First, the algorithm finds bounds a0, a1, b0, b1: a0 <

a1 = f(a0) ≤ x ≤ b1 = f(b0) < b0 starting with x0. A scaling factor M is chosen

experimentally. Updated x is obtained by cutting interval [a1, b1] in proportions

(a1 − a0) : (b0 − b1). Note that this updated x is chosen to be the fixed point of
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a linear approximation to f(.), as illustrated in Figure 7. After each iteration the

difference f(x0)− x0 is compared to a tolerance parameter d. If the convergence has

not been achieved a0, a1, b0, b1 are updated and the procedure is repeated.

Figure 7: Geometric interpretation of the direct search procedure.
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