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CREDIBILITY OF CONFIDENCE SETS IN NONSTANDARD
ECONOMETRIC PROBLEMS

BY ULRICH K. MÜLLER AND ANDRIY NORETS1

Confidence intervals are commonly used to describe parameter uncertainty. In non-
standard problems, however, their frequentist coverage property does not guarantee
that they do so in a reasonable fashion. For instance, confidence intervals may be empty
or extremely short with positive probability, even if they are based on inverting power-
ful tests. We apply a betting framework and a notion of bet-proofness to formalize the
“reasonableness” of confidence intervals as descriptions of parameter uncertainty, and
use it for two purposes. First, we quantify the violations of bet-proofness for previously
suggested confidence intervals in nonstandard problems. Second, we derive alternative
confidence sets that are bet-proof by construction. We apply our framework to sev-
eral nonstandard problems involving weak instruments, near unit roots, and moment
inequalities. We find that previously suggested confidence intervals are not bet-proof,
and numerically determine alternative bet-proof confidence sets.

KEYWORDS: Confidence sets, betting, Bayes, conditional coverage, recognizable
subsets, invariance, nonstandard econometric problems, unit roots, weak instruments,
moment inequalities.

1. INTRODUCTION

IN EMPIRICAL ECONOMICS, parameter uncertainty is usually described by con-
fidence sets. By definition, a confidence set of level 1 − α covers the true pa-
rameter θ with probability of at least 1 − α in repeated samples, for all true
values of θ. This definition, however, does not guarantee that confidence sets
are compelling descriptions of parameter uncertainty. For instance, confidence
intervals may be empty or unreasonably short with positive probability, even if
they are based on inverting powerful tests, or if they are chosen to minimize
average expected length. At least for some realizations of the data, such confi-
dence sets thus understate the uncertainty about θ, so that applied researchers
are led to draw erroneous conclusions.

Let us consider several examples. First, suppose we are faced with the sin-
gle observation X ∼ N (θ�1), where it is known that θ > 0. (This is a styl-
ized version of constructing an interval based on an asymptotically normal
estimator with values close to the boundary of the parameter space.) Since
[X − 1�96�X + 1�96] is a 95% confidence interval without the restriction on θ,
the set [X−1�96�X+1�96]∩(0�∞) forms a 95% confidence interval. In fact, it
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is the confidence set that is obtained by “inverting” the uniformly most power-
ful unbiased test of the hypotheses H0 : θ= θ0, that is, it collects all parameter
values θ0 that are not rejected by the test with critical region |X − θ0|> 1�96.
Yet, the resulting set is empty whenever X <−1�96. An empty confidence set
realization may be interpreted as evidence of misspecification. However, the
set can also be arbitrarily short if X is just very slightly larger than −1�96.

As a second illustration, consider a homoscedastic instrumental variable
(IV) regression in a large sample. Suppose that there is one endogenous vari-
able and three instruments, and the concentration parameter is 12, so that the
first stage F statistic is only rarely larger than 10 (see a survey by Stock, Wright,
and Yogo (2002) for definitions). The 95% Anderson and Rubin (1949) inter-
val is then empty approximately 1.2% of the time. Moreover, it is also very
short with positive probability; for instance, it is shorter than the usual two-
stage least squares interval (but not empty) approximately 2.7% of the time.
Applied researchers faced with such short intervals would presumably con-
clude that the data were very informative, and report and interpret the interval
in the usual manner. But intuitively, weak instruments decrease the informa-
tional content of data, rendering these conclusions quite suspect. The same
holds for all confidence sets that are empty and, by continuity, very short with
positive probability.2

As a third illustration, let us approach the problem of set estimation as a
decision problem, where the action space consists of all (measurable) sets. As-
sume a loss function that is the sum of two components: a unit loss if the re-
ported set does not contain the true parameter, and a term that is linear in the
length of the set. Decision rules that are optimal in the sense of minimizing a
weighted average (over different parameter values) of risk, that is, Bayes risk,
might then still be empty with positive probability. Consider the distribution
described in Table I. If the component that penalizes length (here: cardinality)
has a coefficient strictly between 1/2 and 0�95/0�975, then the decision rule that
minimizes the simple average of risk under θ1 and θ2 is given by the set that
equals {θi} for X = i, i= 1�2, and an empty set if X = 3. Intuitively, the draw
X = 3 contains relatively little information about the parameter, so attempting
to cover all plausible parameter values is too expensive in terms of the second
component in the loss function. Indeed, this set also minimizes the simple aver-
age of the expected length among all 95% confidence sets, as may be checked
by solving the corresponding linear program, and it also corresponds to the in-
version of the most powerful 5% level tests. Thus, the example demonstrates

2Further examples include intervals based on Guggenberger, Kleibergen, Mavroeidis, and
Chen’s (2012) subset Anderson–Rubin statistic, intervals based on Stock’s (2000) GMM S-
statistic, Stoye’s (2009) interval for a set-identified parameter, Wright’s (2000) and Müller and
Watson’s (2013) confidence sets for cointegrating vectors, and Elliott and Müller’s (2007) inter-
val for the date of a structural break.
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TABLE I

DISTRIBUTION OF X CONDITIONAL ON θ

θ \ x 1 2 3

θ1 0.950 0.025 0.025
θ2 0.025 0.950 0.025

that confidence sets that solve classical decision problems, minimize an aver-
age expected length, or invert likelihood ratio tests do not necessarily provide
reasonable descriptions of parameter uncertainty.

Our last example demonstrates that even when confidence sets are never
empty, the set is not necessarily reasonable. It is due to Cox (1958) and in-
volves a normal observation with random but observed variance. To be specific,
suppose we observe (Y�S), where Y |S = N (θ�S2), θ ∈ R and, say, S = 1 with
probability 1/2, and S = 5 with probability 1/2. (This is a stylized version of
conducting inference about a linear regression coefficient when the design ma-
trix is random with known distribution, as in Phillips and Hansen’s (1990) and
Stock and Watson’s (1993) cointegrating regressions, for example.) A natural
95% confidence set is then given by [Y − 1�96S�Y + 1�96S]. But the interval
[Y − 2�58S�Y + 2�58S] if S = 1 and [Y − 1�70S�Y + 1�70S] if S = 5 is also
a 95% confidence interval, and it has smaller expected length. Yet, this sec-
ond interval understates the degree of uncertainty relative to the nominal level
whenever S = 5, since its coverage over the draws with S = 5 is only about
91%.

Following Buehler (1959) and Robinson (1977), we consider a formalization
of “reasonableness” of a confidence set by a betting scheme: Suppose an in-
spector does not know the true value of θ either, but sees the data and the
confidence set of level 1 − α. For any realization, the inspector can choose to
object to the confidence set by claiming that she does not believe that the true
value of θ is contained in the set. Suppose a correct objection yields her a pay-
off of unity, while she loses α/(1 − α) for a mistaken objection, so that the
odds correspond to the level of the confidence interval. Is it possible for the
inspector to be right on average with her objections no matter what the true
parameter is, that is, can she generate positive expected payoffs uniformly over
the parameter space? Surely, if the confidence set is empty with positive prob-
ability, the inspector could choose to object only to those realizations, and the
answer must be yes. Similarly, it is not hard to see that in the example involv-
ing (Y�S), the inspector should object whenever S = 5 to generate uniformly
positive expected winnings. The possibility of uniformly positive expected win-
nings may thus usefully serve as a formal indicator for the “reasonableness” of
confidence sets.

The analysis of set estimators via betting schemes, and the closely re-
lated notion of a relevant or recognizable subset, goes back to Fisher (1956),
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Buehler (1959), Wallace (1959), Cornfield (1969), Pierce (1973), and Robinson
(1977). The main result of this literature is that a set is “reasonable” or bet-
proof (uniformly positive expected winnings are impossible) if and only if it is
a superset of a Bayesian credible set with respect to some prior. In the stan-
dard problem of inference about an unrestricted mean of a normal variate with
known variance, which arises as the limiting problem in well-behaved paramet-
ric models, the usual interval can hence be shown to be bet-proof. In nonstan-
dard problems, however, whether a given set is bet-proof is usually far from
clear and the literature referenced above provides little guidance beyond sev-
eral specific examples. Since much recent econometric research has been dedi-
cated to the derivation of inference in nonstandard problems, it is important to
develop a practical framework to analyze the bet-proofness of set estimators in
these settings. We develop a set of theoretical results and numerical algorithms
to address this problem.

First, we propose to quantify the degree of unreasonableness by the largest
possible expected winnings of the inspector and obtain theoretical results that
simplify the corresponding numerical calculations. We find that popular confi-
dence intervals for inference with a single weak instrument, for autoregressive
roots near unity and a version of Imbens and Manski’s (2004) problem are
quite unreasonable.

Second, we develop a generic approach to the construction of appealing bet-
proof sets. Specifically, we propose a method for determining the confidence
set that minimizes a weighted average length criterion, subject to the inclusion
of a Bayesian credible set, which guarantees bet-proofness. In addition, we
show how problems that are naturally invariant along some dimension can be
cast into a form to which our results apply. This is useful, as invariance often re-
duces the dimension of the effective parameter space, which in turn simplifies
the numerical determination of attractive confidence sets. As an illustration,
we apply this constructive recipe to determine “reasonable” confidence sets in
the nonstandard inference problems mentioned above. From our perspective,
these sets are a more compelling description of parameter uncertainty, and
thus attractive for use in applied work.

The remainder of the paper is organized as follows. Section 2.1 formally
introduces the betting problem and defines bet-proof sets. In Section 2.2,
we show that similar confidence sets that are equal to the whole parameter
space with positive probability are not bet-proof. Section 2.3 describes our
quantification of “unreasonableness” of non-bet-proof sets. Section 3 develops
an approach to the construction of bet-proof confidence sets that minimize
a weighted average of expected length. Our methodology is extended to in-
variant problems in Section 4. Applications of the methodology are presented
in Section 5. Section 6 concludes. Proofs are collected in the Appendix. Ad-
ditional information and figures are contained in the Supplemental Material
(Müller and Norets (2016a)).
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2. BET-PROOF SETS

2.1. Definitions and Notation

Suppose the distribution of the data X ∈ X given parameter θ ∈Θ, P(·|θ),
has density p(·|θ) with respect to a σ-finite measure ν. The parameter of in-
terest is γ = f (θ) ∈ Γ for a given surjective function f : Θ �→ Γ . We assume
that X , Θ, and Γ are subsets of Euclidean spaces with Borel σ-algebras.

We formally define a set by a rejection probability function ϕ : Γ × X �→
[0�1], where ϕ(γ�x) is the probability that γ is not included in the set when
X = x is observed. The function ϕ defines a 1 − α confidence set if

(1)
∫ [

1 −ϕ(
f (θ)�x

)]
p(x|θ)dν(x)≥ 1 − α ∀θ ∈Θ

(equivalently, the function ϕ(γ0� ·) defines a level α test of H0 : f (θ)= γ0, for
all γ0 ∈ Γ ). Hereafter, we assume 0<α< 1.

As described in the Introduction, we follow Buehler (1959) and others and
study the “reasonableness” of the confidence set ϕ via a betting scheme: For
any realization ofX = x, an inspector can choose to object to the set described
by ϕ. We denote the inspector’s objection by b(x)= 1, and b(x)= 0 otherwise.
If the inspector objects, then she receives 1 if ϕ does not contain γ, and she
loses α/(1 − α) otherwise. For a given betting strategy b and parameter θ, the
expected loss of the inspector is thus

(2) Rα(ϕ�b�θ)= 1
1 − α

∫ [
α−ϕ(

f (θ)�x
)]
b(x)p(x|θ)dν(x)�

If there exists a strategy b such that Rα(ϕ�b�θ) < 0 for all θ ∈ Θ, then the
inspector is right on average with her objections for any parameter value, and
one might correspondingly call such a ϕ “unreasonable.” Buehler (1959) used
{−1�0�1} as a betting strategy space. Intuitively, negative b allow the inspector
to express the objection that the confidence set is “too large.” However, since
the definition of confidence sets involves an inequality that explicitly allows for
conservativeness, we follow Robinson (1977) and impose nonnegativity on bets
in what follows. For technical reasons, it is useful to allow for values of b also in
(0�1), so that the set of possible betting strategies is the set B of all measurable
mappings b :X �→ [0�1].

DEFINITION 1: If, for any bet b ∈ B, Rα(ϕ�b�θ)≥ 0 for some θ in Θ, then ϕ
is bet-proof at level 1 − α.

2.2. Bet-Proofness and Similarity

Proving analytically that a given confidence set is not bet-proof seems hard
in general. One apparently new general result is as follows.
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THEOREM 1: Suppose a confidence set ϕ(γ�x) is similar (
∫
ϕ(f (θ)�x)p(x|

θ)dν(x) = α�∀θ ∈ Θ) and there exists X0 ⊂ X , such that for any x ∈ X0, ϕ in-
cludes the whole parameter space (ϕ(γ�x)= 0, ∀x ∈X0, ∀γ ∈ Γ ). If P(X0|θ) > 0
for all θ in Θ, then ϕ is not bet-proof.

Intuitively, the set ϕ(f (θ)�X) might be considered unappealing because it
overcovers when X ∈ X0 and undercovers when X /∈ X0. Similar confidence
sets that are equal to the whole parameter space with positive probability or,
in other words, sets that satisfy the theorem’s conditions on X0, are part of
the standard toolbox in the weak instruments literature (Anderson and Rubin
(1949), Staiger and Stock (1997), Kleibergen (2002), Moreira (2003), Andrews,
Moreira, and Stock (2006), and Mikusheva (2010)). Thus, the sets proposed in
this literature are too short whenever they are not equal to the whole parame-
ter space.

2.3. Quantifying the Unreasonableness of Non-Bet-Proof Sets

For a non-bet-proof confidence set ϕ, we propose to measure the degree of
its “unreasonableness” by the magnitude of inspector’s winnings. Specifically,
we consider an optimal betting strategy b� that solves the following problem:

(3) W (Π)= sup
b∈B:Rα(ϕ�b�θ)≤0�∀θ

−
∫
Rα(ϕ�b�θ)dΠ(θ)�

where Π is a probability measure on Θ. Thus, b� maximizes Π-average ex-
pected winnings subject to the requirement that expected winnings are non-
negative at all parameter values. Lemma 4 shows that for any 1 −α confidence
set, W (Π) ≤ α. The maximal expected winnings α can be obtained for the
“completely unreasonable” confidence set that is equal to the parameter space
with probability 1 − α and empty with probability α. Thus, a finding of W (π)
close to α indicates a very high degree of “unreasonableness.”

The following lemma provides a sufficient condition for the form of b�.

LEMMA 1: Suppose b�(x) = 1[∫ [ϕ(f (θ)�x) − α]p(x|θ)d(Π + K)(θ) ≥ 0],
where K is a finite measure on Θ,

∫ [ϕ(f (θ)�x)− α]b�(x)p(x|θ)dν(x) ≥ 0 for
all θ ∈ Θ, and K({θ : ∫ [ϕ(f (θ)�x)− α]b�(x)p(x|θ)dν(x) > 0}) = 0. Then, b�

solves (3).

The optimal strategy in Lemma 1 is recognized as the inspector behaving
like a Bayesian with a prior proportional to Π +K: She objects whenever the
posterior probability that θ is excluded from the set ϕ exceeds α. Lemma 1 is
useful for the numerical determination of W (Π) in some applications.
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Most of this paper is concerned with the implication of bet-proofness rela-
tive to bets whose payoff corresponds to the level 1−α of the confidence set. To
shed further light on the severity and nature of the violation of bet-proofness,
it is interesting to explore the possibility and extent of uniformly nonnegative
expected winnings also under less favorable payoffs for the inspector. Specifi-
cally, assume that a correct objection still yields her a payoff of unity, but she
now has to pay α′/(1−α′) for a mistaken objection, where α′ >α. If the inspec-
tor can still generate uniformly positive winnings under these payoffs, then the
confidence set ϕ is not bet-proof even at the level 1 − α′ < 1 − α. Note that if
a confidence set is empty with positive probability, then the inspector can gen-
erate positive expected winnings for any 0< α′ < 1 simply by objecting only to
realizations that lead to an empty set ϕ. In particular, the “completely unrea-
sonable” level 1 − α confidence set that is empty with probability α still yields
maximal expected winnings equal to α. In other problems, however, such as in
Cox’s example of a normal mean problem with random but observed variance
mentioned in the Introduction, there exists a cut-off ᾱ′ < 1 such that no uni-
formly positive winnings are possible under any odds with α′ > ᾱ′. The optimal
betting strategy under such modified payoffs still follows from Lemma 1 with α
replaced by α′, as its proof does not depend on ϕ being a level 1−α confidence
set.

The appeal of bet-proofness can also be argued on the basis of purely fre-
quentist considerations that do not involve a betting game. A betting strategy
b : X �→ {0�1} defines a subset Xb of the sample space where b(x) = 1. By
the definition of Rα, the noncoverage of ϕ under θ conditional on Xb equals
α− (1 −α)Rα(ϕ�b�θ)/q(b�θ), where q(b�θ)= ∫

Xb
p(x|θ)dν(x) is the proba-

bility of betting. Thus, if b delivers uniformly positive winnings, then the cover-
age of ϕ conditional on Xb is strictly less than the nominal level 1−α uniformly
over the parameter space, and Xb is called a negatively biased recognizable
subset. Even before the betting setup was introduced in Buehler (1959), the
existence of recognizable subsets had been considered an unappealing prop-
erty of confidence sets; see, for example, Fisher (1956); Wallace (1959), Pierce
(1973), and Robinson (1977) are also relevant. If b delivers uniformly positive
expected winnings under α′ > α payoffs, then the coverage of ϕ conditional
on Xb is uniformly below 1 − α′. The program (3) may thus also be seen as
a particular strategy of determining recognizable subsets. Our preferred mea-
sure for the unreasonableness of non-bet-proof sets, the magnitude of the ex-
pected winnings −Rα′(ϕ�b�θ) for various values of α′, provides information
both on the existence of recognizable subsets at a certain level of negative
bias and on the probability of such objectionable realizations. In Müller and
Norets (2016a), we presented plots of the probability of betting q(b�θ) and
the conditional noncoverage probability for the applications considered in this
paper.
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3. CONSTRUCTION OF BET-PROOF CONFIDENCE SETS

The literature on betting and confidence sets showed that a set is bet-proof
at level 1 − α if and only if it is a superset of a Bayesian 1 − α credible set;
see, for example, Buehler (1959), Pierce (1973), and Robinson (1977). This
characterization suggests that in a search of bet-proof confidence sets, one may
restrict attention to supersets of Bayesian credible sets.3 For completeness, we
formally state the sufficiency of Bayesian credibility for bet-proofness.

LEMMA 2: Suppose ϕ is a superset of a 1 − α credible set for some prior Π
on Θ, that is,

(4)
∫
ϕ

(
f (θ)�x

)
p(x|θ)dΠ(θ)

/ ∫
p(x|θ)dΠ(θ)≤ α ∀x�

Then, ϕ is bet-proof at level 1 − α.

To derive appealing bet-proof confidence sets, it is necessary to introduce
additional criteria that rule out unnecessarily conservative sets. Specifically, we
propose to first specify a prior Π0 and a type of credible set (highest posterior
density (HPD), one sided, or equal tailed) and to then find a set that (i) has
1 − α frequentist coverage; (ii) includes the specified 1 − α credible set with
respect to Π0 for all x; and (iii) among all such sets, minimizes a weighted
average expected volume criterion.4

The volume of a set ϕ at realization x is
∫
(1 −ϕ(γ�x))dγ, and its expected

volume under θ equals Eθ[
∫
(1 − ϕ(γ�x))dγ] = ∫

(
∫
(1 − ϕ(γ�x))dγ)p(x|

θ)dν(x). The weighted average expected volume of a set ϕ equals
∫
Eθ[

∫
(1 −

ϕ(γ�x))dγ]dF(θ), where F is a finite measure. In order to solve for a con-
fidence set that minimizes this criterion, we exploit the relationship between
volume minimizing sets and the inversion of best tests first noticed by Pratt
(1961). The following theorem translates the insight of Pratt (1961) to our
setting. It provides an explicit form for the best tests, which is useful for
the derivation of numerical algorithms that approximate the minimum aver-
age expected volume sets. The existence result exploits the insights of Wald
(1950) and Lehmann (1952) on the existence of least favorable distributions
in testing problems. In practice, a least favorable distribution Λ can some-

3One might also question the appeal of the frequentist coverage requirement. We find Robin-
son’s (1977) argument fairly compelling: In a many-person setting, frequentist coverage guaran-
tees that the description of uncertainty cannot be highly objectionable a priori to any individual,
as the prior weighted expected coverage is no smaller than 1 − α under all priors.

4Müller and Norets (2016b) proposed an alternative construction of set estimators with fre-
quentist and Bayesian properties based on coverage inducing priors. The approach proposed
here is more generally applicable as it yields attractive sets also in the presence of nuisance pa-
rameters.
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times be determined analytically, or one can resort to numerical approxima-
tions.

THEOREM 2: Let S0(x) be a subset of the parameter of interest space.
(a) Suppose, for all γ ∈ Γ , there exists a probability distribution Λγ on Θ with

Λγ({θ : f (θ)= γ})= 1 and constants cvγ ≥ 0, 0 ≤ κγ ≤ 1 such that

(5) ϕ0(γ�x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if γ ∈ S0(x)�

κγ if
∫
p(x|θ)dF(θ)= cvγ

∫
p(x|θ)dΛγ(θ)

and γ /∈ S0(x)�

1
[∫

p(x|θ)dF(θ) > cvγ
∫
p(x|θ)dΛγ(θ)

]
otherwise,

is a level α test of H0�γ : f (θ)= γ, and cvγ(
∫
Eθ[ϕ0(f (θ)�X)]dΛγ(θ)− α)= 0.

Then for any level 1−α confidence set ϕ for γ satisfying ϕ(γ�x)= 0 for γ ∈ S0(x),∫
Eθ

[∫ (
1 −ϕ(γ�x))dγ]

dF(θ)(6)

≥
∫
Eθ

[∫ (
1 −ϕ0(γ�x)

)
dγ

]
dF(θ)�

(b) Suppose f (θ) is continuous and that either Θ is compact, or for any closed
and bounded subset of the sample space A ⊂ X , P(A|θ)→ 0 whenever ‖θ‖ →
∞. Then for any γ ∈ Γ , there exist Λγ , cvγ , and κγ as specified in part (a).

4. INVARIANCE

Many statistical problems have a structure that is invariant to certain trans-
formations of data and parameters. Common examples include inference
about location and/or scale. It seems reasonable to impose invariance prop-
erties on the solutions of such problems. Imposing invariance often simplifies
problems and reduces their dimension. Berger’s (1985) textbook provides an
introduction to the use of invariance in statistical decision theory.

The theoretical developments below are illustrated by the following moment
inequality example from Imbens and Manski (2004) and further studied by
Woutersen (2006), Stoye (2009), and Hahn and Ridder (2009). We also return
to this example in Section 5.3.

EXAMPLE: A stylized asymptotic version of the problem consists of a bivari-
ate normal observation

(7) X∗ =
(
X∗
U

X∗
L

)
∼N

((
μ+Δ
μ

)
�

(
1 0
0 1

))
�
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where μ ∈ R and Δ ≥ 0, and the parameter of interest γ is known to satisfy
μ ≤ γ ≤ μ + Δ. With Δ > 0, γ is not point identified. Formally, γ = f (θ∗) =
μ+ λΔ, where θ∗ = (μ�Δ�λ)′ ∈ R × R+ × [0�1]. The objective is to construct
a confidence set ϕ∗ for γ. When both X∗

U and X∗
L are shifted by an arbitrary

constant a, it is clear that the structure of the problem does not change and
in the absence of reliable a priori information about μ we would expect ϕ∗ to
shift by the same a.

More generally, suppose the distribution of the data X∗ ∈ X ∗ given param-
eter θ∗ ∈ Θ∗ has a density p∗(x∗|θ∗) with respect to a generic measure ν∗.
Consider a group of transformations in the sample space, indexed by a ∈A,
g :A×X ∗ �→X ∗, and a corresponding group ḡ :A×Θ∗ �→Θ∗ on the param-
eter space. The inverse element is denoted by a−1, that is, g(a−1� g(a�x∗)) =
g(a−1 ◦ a�x∗) = x∗ and ḡ(a−1� ḡ(a�θ∗)) = θ∗. Let T : X ∗ �→ X ∗ and T̄ : Θ∗ �→
Θ∗ be maximal invariants of these groups: (i) T(x∗) = T(g(a�x∗)) for any
a ∈ A and (ii) if T(x∗

1) = T(x∗
2), then x∗

1 = g(a�x∗
2) for some a ∈ A, for all

x∗�x∗
1�x

∗
2 ∈ X ∗. Suppose there exist measurable functions U : X ∗ �→ A and

Ū :Θ∗ �→A such that

θ∗ = ḡ(Ū(
θ∗)� T̄ (

θ∗)) for all θ∗ ∈Θ∗�(8)

x∗ = g(U(
x∗)�T (

x∗)) for all x∗ ∈X ∗�(9)

The inference problem is said to be invariant if, for all a ∈A and θ∗ ∈Θ∗, the
density of g(a�X∗) is p∗(·|ḡ(a�θ∗)) whenever the density of X∗ is p∗(·|θ∗).
In other words, the distribution of g(a�X∗) under θ∗ is the same as the dis-
tribution of X∗ under ḡ(a�θ∗). Note that the distribution of T(X∗) then only
depends on θ∗ via T̄ (θ∗).

EXAMPLE, CONTINUED: θ = T̄ (θ∗) = (0�Δ�λ)′, A = R, g(a�X∗) = (X∗
U +

a�X∗
L + a)′, ḡ(a�θ∗) = (μ+ a�Δ�λ)′, X = T(X∗) = (X∗

U −X∗
L�0)′, U(X∗) =

X∗
L, and Ū(θ∗)= μ.

Under invariance, it seems natural to restrict attention to set estimators ϕ∗ :
Γ × X ∗ �→ [0�1] that satisfy the same invariance, that is, with f (θ∗) ∈ Γ the
parameter of interest and ĝ : A × Γ �→ Γ the induced group f (ḡ(a�θ∗)) =
ĝ(a� f (θ∗)) for all a ∈A, θ∗ ∈Θ∗, it should hold that

ϕ∗(f (θ∗)�x∗) = ϕ(
ĝ
(
a� f

(
θ∗))� g(a�x∗))(10)

for all a ∈A�θ∗ ∈Θ∗ and x∗ ∈X ∗�

Similarly, one might also be willing to restrict bets to satisfy b(x∗)= b(g(a�x∗))
for all a ∈A and x∗ ∈ X ∗. Intuitively, if an inspector objects to the confidence
set at X∗ = x∗, then she should also object at X∗ = g(a�x∗), for any a ∈A.
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We denote the density of X = T(X∗) under θ∗ = θ ∈Θ= T̄ (Θ∗) by p(x|θ)
with respect to measure ν. The following lemma summarizes implications of
imposing invariance in the analysis of bet-proofness.

LEMMA 3: Consider an invariant inference problem.
(i) For any invariant set ϕ∗, the distribution of ϕ∗(f (θ∗)�X∗) under θ∗ is the

same as the distribution of ϕ∗(f (T̄ (θ∗))�g(U(X∗)�T (X∗))) under T̄ (θ∗).
(ii) For any given invariant set ϕ∗, define

(11) ϕ
(
f (θ)�x

) =Eθ
[
ϕ∗(f (θ)�X∗)|T (

X∗) = x]�
The frequentist coverage of ϕ∗(f (θ∗)�X∗) under θ∗ satisfies∫ [

1 −ϕ∗(f (θ∗)�x∗)]p∗(x∗|θ∗)dν∗(x∗)(12)

=
∫ [

1 −ϕ(
f (θ)�x

)]
p(x|θ)dν(x)�

and for θ= T̄ (θ∗), the expected loss of the inspector from an invariant bet b satis-
fies ∫ [

α−ϕ∗(f (θ∗)�x∗)]b(x∗)p∗(x∗|θ∗)dν∗(x∗)
1 − α(13)

=

∫ [
α−ϕ(

f (θ)�x
)]
b(x)p(x|θ)dν(x)

1 − α �

(iii) If ĝ(U(g(a�x∗))−1 ◦ a�γ) = ĝ(U(x∗)−1�γ) for all x∗ ∈ X ∗, γ ∈ Γ , and
a ∈A (which holds, for example, when the parameter of interest is not affected by ĝ
or when g(a1�x

∗)= g(a2�x
∗) implies a1 = a2), then for any given set ψ(γ�x), the

setψ∗(γ�x∗)=ψ(ĝ(U(x∗)−1�γ)�T(x∗)) is invariant, andψ∗(γ�x)=ψ(γ�x) for
all x= T(x∗) ∈X = T(X ∗).

As shown in part (i) of the lemma, the distribution of ϕ∗(f (θ∗)�X∗) only
depends on θ= T̄ (θ∗), which makesΘ= T̄ (Θ∗) the effective parameter space.
Similarly, the maximal invariant X can be thought of as the effective data.
Furthermore, with ϕ as defined in part (ii) of the lemma, the expressions for
coverage (12) and expected betting losses (13) are equivalent to (1) and (2)
of Section 2.1. Thus, the results obtained in Section 2 carry over to invariant
problems with this definition of ϕ, Θ, and X . In particular, the largest aver-
age expected winnings under invariant bets are obtained by the strategy of
Lemma 1, and Lemma 2 shows that an invariant set ϕ∗ is bet-proof relative
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to invariant bets if ϕ in (11) derived from ϕ∗ is a superset of a 1 − α credible
set in the (X �Θ) problem.

Using the invariance of ϕ∗ and (9), we can rewrite ϕ(f (θ)�x) =
Eθ[ϕ∗(ĝ(U(X∗)−1� f (θ))�T (X∗))|T(X∗) = x]. Then, the credibility level of
ϕ may be given the following limited information interpretation in the orig-
inal (X∗�Θ∗) problem: It is the probability that a Bayesian having a prior
Π on θ ∈ Θ and observing only X = T(X∗) would assign to the event that
the set ϕ∗ includes the realization of the random variable ĝ(U(X∗)−1� f (θ)).
This may be used constructively: For any T(X∗) = x ∈ X , one could deter-
mine, say, the shortest set or equal-tailed interval S0(x) ⊂ Γ of credibility
level 1 − α in this sense. Under the assumption of part (iii) of the lemma,
the set S0(x∗) = ĝ(U(x∗)� S0(T(x∗))) for x∗ ∈ X ∗ is an invariant set, and
by Lemma 2 and (13), it is bet-proof against invariant bets. In the special
case where the parameter of interest is unaffected by the transformations,
ĝ(γ�a) = γ, ϕ(f (θ)�x) = ϕ∗(f (θ)�x), and S0(x) reduces to the usual cred-
ible set in the (X �Θ) problem. Either way, the construction of S0(x∗) only
requires the specification of a prior on Θ, but not on the original parameter
space Θ∗.

EXAMPLE, CONTINUED: ĝ(U(X∗)−1� f (θ)) = Δλ − X∗
L. The limited infor-

mation Bayesian updates his prior on θ = (0�Δ�λ)′ based on X = x, and as-
signs credibility to any set ϕ∗(·�x) according to the probability that the poste-
rior weighted (over θ) mixture of normals Δλ−X∗

L|X = x ∼ N (Δλ + 1
2(x −

Δ)� 1
2) takes on values in ϕ∗. From this, one can easily determine the shortest

set of credibility 1 − α, or the interval S0(x)= [l0(x)�u0(x)] such that exactly
α/2 of this mixture of normals probability is below and above the interval end-
points. The interval S0(x∗)= ĝ(U(x∗)� S0(T(x∗)))= [l0(x∗

U−x∗
L)+x∗

L�u
0(x∗

U−
x∗
L)+ x∗

L] then is invariant and bet-proof against invariant bets.

As in Section 3, one can augment this credible set to induce coverage under
all θ∗ in a way that minimizes weighted average volume. The following theorem
describes the form of this augmentation.

THEOREM 3: Consider an invariant inference problem. Let S0(x∗) be an in-
variant subset of the parameter of interest space Γ , that is, γ ∈ S0(x∗) implies
ĝ(a�γ) ∈ S0(g(a�x∗)) for all a ∈A and x∗ ∈X ∗. Suppose that either:

(a) the parameter of interest is invariant, ĝ(a�γ)= γ for all a ∈A and γ ∈ Γ ,
and there exists ϕ0 as defined in Theorem 2(a) when applied to (X�θ�S0(x));
or

(b) the assumption in Lemma 3(iii) and the following three conditions
hold:

(b.i) the random vector (X�Y) = (T(X∗)� ĝ(U(X∗)−1� f (θ))) under θ∗ =
θ ∈ Θ has density p̃(x� y|θ) with respect to ν(x) × μ(y), where μ is Lebesgue
measure on Γ ;
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(b.ii) for any invariant set ϕ∗,
∫
(1 − ϕ∗(γ�g(a�x)))dγ = gl(a)

∫
(1 − ϕ∗(γ�

x))dγ for all a ∈ A and x∗ ∈ X ∗ and some function gl : A �→ R+ such that
hθ(x)=Eθ[gl(U(X∗))|X = x] exists for ν-almost all x;

(b.iii) for a finite measure F on Θ, there exists a probability distribution Λ on
Θ and constants cv ≥ 0 and 0 ≤ κ≤ 1 such that

(14) ϕ0(γ�x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if γ ∈ S0(x)�

κ if cv
∫
p̃(x�γ|θ)dΛ(θ)=

∫
hθ(x)p(x|θ)dF(θ)

and γ /∈ S0(x)�

1
[

cv
∫
p̃(x�γ|θ)dΛ(θ) <

∫
hθ(x)p(x|θ)dF(θ)

]
otherwise,

satisfies
∫∫
ϕ0(γ�x)p̃(x�γ|θ)dγ dν(x)≤ α for all θ ∈Θ, and cv(

∫∫∫
ϕ0(γ�x)×

p̃(x�γ|θ)dγ dν(x)dΛ(θ)− α)= 0.
Then the set ϕ∗

0(γ�x
∗)= ϕ0(ĝ(U(x

∗)−1�γ)�T(x∗)) is (i) invariant, (ii) satisfies
ϕ∗

0(γ�x
∗)= 0 for γ ∈ S0(x∗), and (iii) is of level 1 −α. Furthermore, for any other

set ϕ∗ with these three properties,

∫
Eθ

[∫ (
1 −ϕ∗

0

(
γ�X∗))dγ]

dF(θ)(15)

≤
∫
Eθ

[∫ (
1 −ϕ∗(γ�X∗))dγ]

dF(θ)�

The assumptions in part (a) cover cases where invariance reduces the pa-
rameter space, but leaves the parameter of interest unaffected; the near unit
root application below is such an example. The determination of the weighted
average volume minimizing set then simply amounts to applying Theorem 2
to the problem of observing the maximal invariant X = T(X∗) with density
indexed by θ ∈ Θ = T̄ (Θ∗), and the extension of the resulting test ϕ0 to val-
ues of x∗ /∈ X via ϕ∗

0(γ�x
∗) = ϕ0(ĝ(U(x

∗)−1�γ)�T(x∗)) = ϕ0(γ�T(x
∗)). Part

(b) deals with cases where the invariance affects the parameter of interest.
The assumption (b.ii) is relevant for volume changing transformations, such as
those arising under a scale invariance. The only unknown in the form of the
weighted expected volume minimizing set is a least favorable distribution Λ on
the reduced parameter spaceΘ and critical value cv, which, in contrast to The-
orem 2, are no longer indexed by the parameter of interest γ. In either case,
note that the measure F only needs to be specified on the reduced parameter
space Θ.
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EXAMPLE, CONTINUED: ĝ(a�γ)= γ+a, Y = Δλ−X∗
L, and gl(a)= hθ(x)=

1 so that for γ /∈ S0(x), ϕ0(γ�x) equals 1 if

cv ·
(2π)−1

∫
exp

[
−1

2

(
x−Δ
γ−Δλ

)′ (
2 1
1 1

)−1 (
x−Δ
γ−Δλ

)]
dΛ(θ)

(2π)−1/22−1/2

∫
exp

[
−1

2
(x−Δ)2/2

]
dF(θ)

≤ 1

for endogenously determined cv and distribution Λ on θ = (0�Δ�λ) ∈ {0} ×
R+ × [0�1].

5. APPLICATIONS

In this section, we consider the following nonstandard inference problems:
(i) inference about the largest autoregressive root near unity, (ii) instrumen-
tal variable regression with a single weak instrument, (iii) inference for a set-
identified parameter where the bounds of the identified set are determined by
two moment equalities. First, for each of these problems, we explore whether
previously suggested 95% confidence sets are bet-proof. For all problems, this
turns out not to be the case. As discussed in Section 2.3, we compute maximal
weighted average expected winnings to gauge the degree of unreasonableness.
Next, we determine the “augmented credible set” along the lines of Sections 3
and 4 (implementation details are presented in Müller and Norets (2016a)).

In all examples, the parameter space is not naturally compact, even after im-
posing invariance, which potentially complicates numerical implementation.
At the same time, most nonstandard inference problems are close to an unre-
stricted Gaussian shift experiment for most of the parameter space. In particu-
lar, inference about the largest autoregressive root becomes “almost” a Gaus-
sian shift experiment for large degrees of mean reversion, inference with a
weak instrument becomes “almost” a standard problem unless the instrument
is quantitatively weak, and inference close to the boundary of the identified
set becomes close to an unrestricted one-sided Gaussian inference problem as
the identified set becomes large (see Elliott, Müller, and Watson (2015) for a
formal discussion).

In the computations presented below, we therefore focus on the substan-
tively nonstandard part of the parameter space. We find that in the unit root
and weak instrument example, the credible set S0, computed from a fairly
vague prior, quickly converges to the standard Gaussian shift confidence set
as the mean reverting parameter and concentration parameters increase. Cor-
respondingly, the coverage of S0 quickly converges to its nominal level, so
that augmentation of S0 is only necessary over a small compact part of the
parameter space. In the set-identified problem, this Bernstein–von Mises ap-
proximation does not hold, and the credible set substantially undercovers—see
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Moon and Schorfheide (2012) for further discussion of this effect. But given
the convergence to the one-sided Gaussian problem, it makes sense to switch
to the standard confidence interval for all realizations that, with very high prob-
ability, stem from the standard part of the parameter space, just as in Elliott,
Müller, and Watson (2015). This approach formally amounts to setting S0 in
Theorems 2 and 3 equal to the union of the credible set, and this additional
exogenous switching set.

5.1. Autoregressive Coefficient Near Unity

As in Stock (1991), Andrews (1993), Hansen (1999), and Elliott and Stock
(2001), among others, suppose we are interested in the largest autoregressive
root ρ of a univariate time series yt ,

yt =m+ ut� (1 − ρL)φ(L)ut = εt� t = 1� � � � � T�

where φ(z)= 1−φ1z−· · ·−φp−1z
p−1, εt ∼ i�i�d� (0�σ2), and u0 is drawn from

the unconditional distribution. Suppose it is known that the largest root ρ is
close to unity, while the roots of φ are all bounded away from the complex unit
circle. Formally, let ρ= ρT = 1 − γ/T , so that equivalently, γ is the parameter
of interest. Under m= T 1/2μ, the appropriate limiting experiment under εt ∼
i�i�d� N (0�σ2) in the sense of LeCam involves observing X∗(·) = μ + J(·),
where J is a stationary Ornstein–Uhlenbeck on the unit interval with mean
reversion parameter γ.

This limit experiment is translation invariant. Thus, the discussion in Sec-
tion 4 applies, with θ∗ = (γ�μ), g(x∗� a)= x∗ + a, and ĝ(γ�a)= γ. One choice
of maximal invariants are θ= T̄ (θ∗)= (γ�0) andX = T(X∗)=X∗(·)−X∗(0),
so that X(s)=Z(e−γs − 1)/

√
2γ+ ∫ s

0 exp[−γ(s− r)]dW (r) with W (·) a stan-
dard Wiener process independent of Z ∼N (0�1). The density ofX relative to
the measure of a standard Wiener process is (cf. Elliott (1999))

p(x|θ)=
√

2
2 + γ exp

[
−γ

2
(
x(1)2 − 1

) − γ2

2

∫ 1

0
x(s)2 ds(16)

+
γ

(
γ

∫ 1

0
x(s)ds+ x(1)

)2

2(2 + γ)

]

for γ ≥ 0. The same limiting problem may also be motivated using the frame-
work in Müller (2011), without relying on an assumption of Gaussian ut .

As pointed out by Mikusheva (2007), care must be taken to ensure that con-
fidence sets for γ imply uniformly valid confidence sets for ρ outside the local-
to-unity region. We focus on two such intervals that are routinely computed
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in applied work: (i) Andrews’s (1993) level α confidence sets that are based
on the α/2 and 1 − α/2 quantiles of the OLS estimator γ̂ = − 1

2(X̄
∗(1)2 −

X̄∗(0)2 − 1)/
∫ 1

0 X̄
∗(s)2 ds with X̄∗(s) = X∗(s) − ∫ 1

0 X
∗(r)dr; (ii) Hansen’s

(1999) equal-tailed inversions of tests of H0 : γ = γ0 based on the t-statistic
t̂ = (γ̂ − γ0)/(

∫ 1
0 X̄

∗(s)2 ds)−1/2. Note that both these sets are translation in-
variant.

5.1.1. Quantifying Violations of Bet-Proofness

Applying (13) in Lemma 3(ii) yields that the expected loss under invariant
bets are those in the problem of observing X with density (16), indexed only
by γ. We numerically approximate the optimal betting strategy of Lemma 1 and
impose nonnegativeness on the grid γ ∈ {0�0�25� � � � �200}. To avoid artificial
endpoint effects at the upper bound, we restrict the inspector to never object
to an interval with upper endpoint larger than 200. Under that restriction, any
betting strategy yields uniformly nonnegative expected winnings under γ > 200
(because any objection against a set that excludes the values γ > 200 is neces-
sarily correct for true values γ > 200).

Figure 1 plots the expected winnings as a function of γ when the inspector
seeks to maximize the weighted average of the expected winnings with a nearly
flat Π with density proportional to (100 + γ)−1�11[γ ≥ 0]. For small γ, both
Andrews’s (1993) and Hansen’s (1999) intervals allow for substantial expected
winnings, even under fairly unfavorable payoffs. The normalization by the re-
alized information in Hansen’s t-statistic approach seems to somewhat reduce
the extent of expected winnings. Still, these results indicate that both intervals
are not compelling descriptions of uncertainty about the value of γ.

5.1.2. Bet-Proof Confidence Set

We apply the approach discussed in Section 4. Specifically, we construct
S0(x) as 95% HPD set of γ under prior Π given observation X , and extend

FIGURE 1.—Autoregressive coefficient near unity: expected winnings.
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FIGURE 2.—Autoregressive coefficient near unity: expected length of sets relative to expected
length of augmented credible set.

it to an invariant HPD set S0(x∗) via S0(x∗)= S0(x∗ −x∗(0)). The assumptions
of Theorem 3(a) hold, so we apply and numerically implement the construc-
tion of Theorem 2 with F =Π to obtain the weighted average expected length
minimizing augmentation of S0(x∗). Note that with γ the only parameter in
the problem, Λγ in Theorem 2 is degenerate, so determining the set ϕ0 defined
there only requires computation of the critical values cvγ that induce cover-
age. By Lemma 3(ii) and Lemma 2, the resulting confidence set ϕ∗

0 is bet-proof
against translation invariant bets. Without augmentation, the set S0 undercov-
ers at some γ. However, S0 has (at least) nominal coverage for all γ ≥ 26, so the
augmented credible set differs from S0 only in its inclusion of values of γ ≤ 26
(cvγ = 0 for γ > 26 in Theorem 2), which makes its numerical determination
entirely straightforward.

Figure 2 plots the expected length of the Andrews (1993) and Hansen (1999)
intervals, and of the HPD set S0, relative to the expected length of this aug-
mented credible set. For small γ, the HPD set S0 is up to 3% shorter on
average than the augmented credible set. At the same time, the augmented
credible set is uniformly shorter in expectation than the Andrews (1993) and
Hansen (1999) intervals, with a largest difference of 11% and 7%, respectively.
As such, the augmented credible set seems a clearly preferable description of
uncertainty about the degree of mean reversion of yt .

5.2. Weak Instruments

A large body of work is dedicated to deriving inference methods that remain
valid in the presence of weak instruments—see, for instance, Staiger and Stock
(1997), Moreira (2003), and Andrews, Moreira, and Stock (2006, 2008). Fol-
lowing Chamberlain (2007), we showed in Müller and Norets (2016a) that in
the case of a single endogenous variable and single instrument, the relevant
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asymptotic problem may be usefully reparameterized as

(17) X∗ =
(
X∗

1
X∗

2

)
∼N

((
ρ sinφ
ρ cosφ

)
� I2

)

with parameter θ∗ = (φ�ρ) ∈ [0�2π)× [0�∞). The original coefficient of in-
terest is a one-to-one transformation of γ = f (θ∗)= mod(φ�π) ∈ Γ = [0�π),
with ρ a nuisance parameter that measures the strength of the instrument. In
this parameterization, the popular Anderson and Rubin (1949) 5% level test
ofH0 :φ=φ0 rejects if |X∗

1 cosφ0 −X∗
2 sinφ0|> 1�96. Since this test is similar,

its inversion yields a similar confidence set. Furthermore, note that this AR
confidence set is equal to the parameter space [0�π) whenever ‖X∗‖ < 1�96.
As discussed in Section 2.2, these two observations already suffice to conclude
that the AR confidence set cannot be bet-proof.

In the following results, we exploit the rotational symmetry of the problem
in (17) (also see Chamberlain (2007) for related arguments). In particular,
the groups of transformations on the parameter space, the sample space, and
the parameter of interest space Γ are given by g(a�X) = O(a)X , ḡ(a�θ∗) =
(mod(φ+a�2π)�ρ), and ĝ(a�γ)= mod(γ+a�π), where a ∈A= [0�2π) and
multiplication by the 2 × 2 matrix O(a) rotates a 2 × 1 vector by the angle a.
Thus, X = T(X∗) = (0�‖X∗‖)′, ‖X∗‖(sin(U(X∗))� cos(U(X∗))) = (X∗

1 �X
∗
2 )

(i.e., U(X∗) ∈ [0�2π) is the angle of (X∗
1 �X

∗
2 ) expressed in polar coordinates),

θ= T̄ (θ∗)= (0�ρ)′, Ū(θ∗)=φ, and f (θ)= 0. Note that the AR confidence set
is invariant with respect to g. Thus, after imposing invariance, Lemma 3 shows
that the problem is effectively indexed only by the nuisance parameter ρ≥ 0.

5.2.1. Quantifying Violations of Bet-Proofness

As noted in Section 2.2, the AR interval cannot be bet-proof. Figure 3 quan-
tifies its unreasonableness for ρ restricted to the grid R = {0�0�2�0�4�0�6�
� � � �8}. As a baseline, we specify the weight function Π of the inspector to be
uniform on R (left panel). To study the sensitivity of the results to this choice,
we also derive the envelope of the expected winnings, that is, for each value of
ρ ∈R, we set Π to a point mass at ρ, and report the expected winnings at that
point (right panel).

Under considerably unfavorable payoffs α′ ∈ {0�1�0�5}, the expected win-
nings in Figure 3 are indistinguishable from zero. Still, under fair payoffs, the
95% AR interval appears to be a very unreasonable description of uncertainty,
since for ρ close to zero, the inspector can generate expected winnings very
close to the maximum of 5%.

5.2.2. Bet-Proof Confidence Set

We construct the shortest invariant 95% credible set S0(x∗) as discussed be-
low Lemma 3 under the priorΠ with density proportional to (100+ρ)−1�11[ρ≥
0]. We find that S0(x∗) undercovers under small ρ. We thus apply Theorem 3(b)
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FIGURE 3.—Weak instruments: expected winnings.

with F =Π, and a numerical calculation reveals Λ in (14) to be a point mass
at ρ= 0. The left panel of Figure 4 shows the boundary of the critical region of
the null hypothesis H0 : γ = 0 that is implied by S0(x∗), and by the augmented
credible set. Points with x∗

1 = 0 are always in the acceptance region of the aug-
mented credible set. The confidence interval is constructed from these rejec-
tion regions via rotational invariance; see the right panel of Figure 4. Both the
AR and the augmented credible intervals are equal to the parameter space for
small realizations of ‖X∗‖, and they also essentially coincide for large values of
‖X∗‖. However, for most of the intermediate values of ‖X∗‖, the augmented
credible interval is considerably longer than the AR interval, for example, 20%
longer at ‖X∗‖ = 2�5. In practice, AR intervals are usually reported only when
there is no overwhelming evidence of a strong instrument, that is, when ‖X∗‖ is

FIGURE 4.—Weak instruments: intervals.
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not very large. But for such values, the augmented credible interval provides a
more conservative and more reasonable description of parameter uncertainty.

5.3. Imbens–Manski Problem

We now return to the moment inequality problem from Imbens and Manski
(2004), the running Example of Section 4 above. Imbens and Manski (2004)
observed that for large values of Δ, the natural confidence interval for γ is
given by [X∗

L − 1�645�X∗
U + 1�645]. Note, however, that this interval only has

coverage of 90% if Δ = 0. In absence of a consistent estimator for Δ, Stoye
(2009) thus suggested using [X∗

L−1�96�X∗
U +1�96] instead. This “Stoye” confi-

dence set is empty wheneverX∗
U −X∗

L <−2 · 1�96, has exact coverage at Δ= 0,
and as Δ→ ∞, has coverage converging to 97.5%. Elliott, Müller, and Wat-
son (2015) derived a weighted average power maximizing test of H0 : γ = γ0

in this model. In contrast to Stoye’s set, the inversion of this test always leads
to an “EMW” confidence interval of positive length. Figure 5 shows the Stoye
and EMW intervals (we discuss the credible set and augmented credible set in
Section 5.3.2 below).

5.3.1. Quantifying Violations of Bet-Proofness

The results are based on the grid Δ ∈D = {0�0�2� � � � �10}. It turns out that
in this problem, the specification of Π plays a very minor role in the sense that
the expected winnings under aΠ uniform on Δ and with point mass at λ= 1/2
are numerically nearly indistinguishable from the envelope of expected win-
nings for the Stoye and EMW sets. Figure 6 plots these expected winnings as
a function of Δ under λ ∈ {0�1} (left panel) and at λ= 1/2 (right panel). Re-
call that λ= 1/2 corresponds to the true parameter being in the middle of the

FIGURE 5.—Imbens–Manski problem: intervals.
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FIGURE 6.—Imbens–Manski problem: expected winnings as function of Δ and λ.

identified set; this configuration induces the largest coverage of the confidence
intervals, which in turn reduces the expected winnings of the inspector.

Given that Stoye’s interval is empty with positive probability, it is not surpris-
ing to see that the inspector can obtain uniformly positive expected winnings,
even under very unfavorable payoffs. Note, however, that even with Δ = 0,
Stoye’s interval is empty only with 0.28% probability. Most of the gains are
rather generated by objections to intervals that are of positive length, but “too
short.”

Interestingly, also EMW’s interval is far from bet-proof, with expected win-
nings that are, if anything, even larger than for Stoye’s set, at least for 1 − α′

close to the nominal level. The reason why EMW’s intervals are unreason-
able becomes readily apparent by inspection of Figure 5. For X∗

U −X∗
L <−2,

EMW’s interval has endpoints 1
2(X

∗
U + X∗

L) ± c, where c < 1. But even un-
der Δ = 0, so that 1

2(X
∗
U +X∗

L) ∼ N (γ�1/2), the probability that this interval
covers γ is less than 85%. This is just like Cox’s example of the Introduction:
Conditional on X∗

U −X∗
L <−2, the interval is obviously too short.

5.3.2. Bet-Proof Confidence Set

We construct the shortest invariant 95% credible set S0(x∗) as discussed be-
low Lemma 3 under the prior Π proportional to (100 + Δ)−1�11[Δ ≥ 0] on Δ,
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and conditional on Δ, λ is uniform on [0�1]. The interval for γ under this prior
has coverage above the nominal level for Δ= 0, but it very substantially under-
covers for larger Δ. As discussed above, the inference problem converges to a
one-sided Gaussian shift experiment as Δ→ ∞. We correspondingly impose
in the application of Theorem 3 that forX∗

U −X∗
L > 5, S0(x∗) also contains the

interval [X∗
L − 1�645�X∗

U + 1�645], which guarantees that coverage of S0(x∗)
converges to the nominal level as Δ→ ∞. Setting F =Π, we numerically ap-
proximate Λ in (14) to determine the weighted expected length minimizing
coverage inducing augmentation ϕ∗

0 of this set. As can be seen from Figure 5,
the resulting “augmented credible set” connects smoothly with the standard
Gaussian shift interval at X∗

U −X∗
L = 5.

6. CONCLUSION

By definition, the level of a confidence set is a pre-sample statement: at least
100(1 − α)% of data draws yield a confidence set that covers the true value.
But once the sample is realized, “unreasonable” confidence sets (as defined
in the paper) understate the level of parameter uncertainty, at least for some
draws. A compelling description of parameter uncertainty in both the pre- and
post-sample sense should possess frequentist and Bayesian properties.

Many popular confidence sets in nonstandard problems do not have this
property. At least occasionally, applied research based on such sets hence un-
derstates the extent of parameter uncertainty, and thus comes to misleading
conclusions.

We provide remedies for this problem. On the one hand, we develop a nu-
merical approach that quantifies the degree of “unreasonableness” of a given
confidence set. This can serve as a criterion to choose among previously de-
rived sets. On the other hand, we derive confidence sets that are reasonable
by construction. Specifically, we suggest enlarging a credible set relative to a
prespecified prior by some minimal amount to induce frequentist coverage.
In combination, these results allow the determination of sets that credibly de-
scribe parameter uncertainty in nonstandard econometric problems.

APPENDIX: PROOFS AND AUXILIARY RESULTS

LEMMA 4: For any confidence set ϕ of level 1 − α, 0 ≤W (Π)≤ α.

PROOF:

−(1 − α)Rα(ϕ�b�θ)

≤
∫
ϕ(f (θ)�x)≥α

[
ϕ

(
f (θ)�x

) − α]
p(x|θ)dν(x)

≤ min
{
(1 − α)P(

ϕ
(
f (θ)�X

) ≥ α|θ)�



CREDIBILITY OF CONFIDENCE SETS 2205

α
(
1 − P(

ϕ
(
f (θ)�X

) ≥ α|θ))}
≤ α(1 − α)� Q.E.D.

PROOF OF THEOREM 1: Note that for b(x) = 1[x /∈X0], the expected win-
nings can be written as

∫
X\X0

(ϕ(f (θ)�x)−α)p(x|θ)dν(x)/(1−α). By similar-
ity,

0 =
∫
X0

(
ϕ

(
f (θ)�x

) − α)
p(x|θ)dν(x)(18)

+
∫
X\X0

(
ϕ

(
f (θ)�x

) − α)
p(x|θ)dν(x)�

Since ϕ(f (θ)�x)= 0 on X0 and P(X0|θ) > 0, the first term on the right-hand
side of (18) is strictly negative for α > 0 and the winnings are uniformly posi-
tive. Q.E.D.

PROOF OF LEMMA 1: Consider an alternative strategy b ∈ B that delivers
uniformly nonnegative winnings. By definition of b�,∫ [

b�(x)− b(x)] ∫ [
ϕ

(
f (θ)�x

) − α]
p(x|θ)d(Π +K)(θ)dν(x)≥ 0�

It follows that∫ [
b�(x)− b(x)] ∫ [

ϕ
(
f (θ)�x

) − α]
p(x|θ)dΠ(θ)dν(x)

≥ −
∫ ∫

b�(x)
[
ϕ

(
f (θ)�x

) − α]
p(x|θ)dν(x)dK(θ)

+
∫ ∫

b(x)
[
ϕ

(
f (θ)�x

) − α]
p(x|θ)dν(x)dK(θ)�

The first expression on the right-hand side of this inequality is equal to zero
by the definition of b�(x). The second expression is nonnegative as b delivers
uniformly nonnegative winnings. Thus, the winnings from b�(x) are at least as
large as the winnings from b. Q.E.D.

PROOF OF LEMMA 2: Note that ϕ(·� ·) being a superset of a 1 − α credible
set for Π implies∫ (

α−ϕ(
f (θ)�x

))
p(x|θ)dΠ(θ)≥ 0
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for any x. Multiplication of this inequality by any b(x)≥ 0 and integration with
respect to ν gives

∫ (
α−ϕ(

f (θ)�x
))
b(x)p(x|θ)dν(x)dΠ(θ)≥ 0�

Therefore, Rα(ϕ�b�θ)≥ 0 for some θ ∈Θ. Q.E.D.

PROOF OF THEOREM 2: Without loss of generality, we can assume F to be
a probability measure.

(a) Let p1(x) = ∫
p(x|θ)dF(θ) and p0�γ(x) = ∫

p(x|θ)dΛγ(θ). By defini-
tion of ϕ0 and the fact that ϕ0(γ�x)=φ(γ�x)= 0 for γ ∈ S0(x),

(19)
∫ (
ϕ0(γ�x)−φ(γ�x))(p1(x)− cvγ p0�γ(x)

)
dν(x)≥ 0�

Since φ(γ� ·) is of level α under H0�γ ,
∫
φ(γ�x)p(x|θ)dν(x) ≤ α for all

θ ∈ Θ with f (θ) = γ, it also has a rejection probability no larger than α un-
der p0�γ ,

∫
φ(γ�x)p0�γ dν(x) = ∫ [∫ φ(γ�x)p(x|θ)dν(x)]dΛγ(θ) ≤ α. Thus

cvγ
∫
(ϕ0(γ�x) − φ(γ�x))p0�γ(x)dν(x) ≥ 0. Therefore, (19) implies that, for

all γ, ∫ (
ϕ0(γ�x)−φ(γ�x))p1(x)dν(x)≥ 0

or, equivalently,∫ (
1 −ϕ0(γ�x)

)
p1(x)dν(x)(20)

≤
∫ (

1 −φ(γ�x))p1(x)dν(x)

for all γ.
By Tonelli’s theorem, we have

∫ ∫ [∫ (
1 −φ(γ�x))dγ]

p(x|θ)dν(x)dF(θ)(21)

=
∫ [∫ ∫ (

1 −φ(γ�x))p(x|θ)dF(θ)dν(x)]dγ
=

∫ [∫ (
1 −φ(γ�x))p1(x)dν(x)

]
dγ
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and also ∫ ∫ [∫ (
1 −ϕ0(γ�x)

)
dγ

]
p(x|θ)dν(x)dF(θ)(22)

=
∫ [∫ (

1 −ϕ0(γ�x)
)
p1(x)dν(x)

]
dγ�

where either integral might diverge. By (20), the integrand in (22) is weakly
smaller than the one on the right-hand side of (21) for all γ, so that if the
integral in (21) does not diverge, the desired inequality follows. If the integral
does diverge, then there is nothing to prove.

(b) For a given γ, define S = {x : γ ∈ S0(x)}, and let p1(x)= ∫
p(x|θ)dF(θ),

as in the proof of part (a). Let ΦS be the set of tests satisfying ϕ(x) = 0 for
x ∈ S. Suppose first that

∫
S
p1(x)dν(x)= 1 (so that any test ϕ ∈ΦS has power

zero against p1). Then p1(x) = 0 ν-almost surely, so one may choose Λγ ar-
bitrarily, and set cvγ = κγ = 0. So from now on, suppose

∫
S
p1(x)dν(x) < 1.

Consider the testing problem

(23) H0�γ : f (θ)= γ against H1 : the density of x is p1(x)�

where tests ϕ are constrained to be in ΦS . Define p̃1(x) = p1(x)1[x /∈ S]/ω,
where ω= 1 − ∫

S
p1(x)dν(x), and consider the unconstrained testing problem

(24) H0�γ : f (θ)= γ against H1 : the density of x is p̃1(x)�

Suppose ϕu(x) is a most powerful test for (24). Define ϕc(x)= ϕu(x)1[x /∈ S],
which is level α in (23). For any test ϕ ∈ΦS that has level α forH0�γ in (23) and
(24), ∫

ϕp1 dν =ω
∫
ϕp̃1 dν ≤ω

∫
ϕup̃1 dν =

∫
ϕcp1 dν�

Thus, ϕc(x) is a most powerful test for (23), and it suffices to invoke previous
results on the existence of a least favorable distribution in the unconstrained
problem (24). Specifically, Wald’s (1950) Theorem 3.14 implies the existence
under compact Θ0�γ = {θ : f (θ) = γ} (see the discussion in Lehmann (1952)).
For non-compactΘ, the existence follows from Theorem 4 in Lehmann (1952)
under the assumptions of the theorem. Q.E.D.

PROOF OF LEMMA 3: (i) By invariance, the distribution of g(Ū(θ∗)�X∗)
under T̄ (θ∗) is the same as the distribution of X∗ under ḡ(Ū(θ∗)� T̄ (θ∗)) =
θ∗, where the last equality follows from (8). Therefore, the distribution of
ϕ∗(f (θ∗)�X∗) under θ∗ is the same as the distribution of ϕ∗(f (θ∗)�g(Ū(θ∗)�
X∗)) under T̄ (θ∗). By invariance of ϕ∗ and (8), ϕ∗(f (θ∗)�g(Ū(θ∗)�X∗)) =
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ϕ∗(f (T̄ (θ∗))�X∗). Replacing X∗ by g(U(X∗)�T (X∗)) in the latter expression,
which can be done by (9), completes the proof of the claim.

(ii) By part (i) of the lemma, the coverage, Eθ∗ [1 − ϕ∗(f (θ∗)�X∗)] is equal
to Eθ[1 − ϕ∗(f (θ)�g(U(X∗)�X))]. The formula for the frequentist coverage
follows immediately from the law of iterated expectations.

Next, let us obtain the formula for the expected loss. The argument in the
proof of (i) applied to

(25)
[
α−ϕ∗(f (θ∗)�X∗)]b(X∗)

shows that the distribution of (25) under θ∗ is the same as the distribution
of [α−ϕ∗(f (T̄ (θ∗))�g(U(X∗)�T (X∗)))]b(g(Ū(θ∗)�X∗)) under T̄ (θ∗). By in-
variance of b, b(g(Ū(θ∗)�X∗)) = b(X∗) = b(T(X∗)), where the last equality
follows by (9) and invariance. Thus, the expected loss can be computed as

Eθ
[(
α−ϕ∗(f (θ)�g(U(

X∗)�X)))
b(X)

]
/(1 − α)�

An application of the law of iterated expectations to the last display completes
the proof of the claim.

(iii) First, let us show that the assumption ĝ(U(g(a�x∗))−1 ◦ a�γ) =
ĝ(U(x∗)−1�γ) follows from the uniqueness of the index a for the group ac-
tion on x∗ (g(a1�x

∗)= g(a2�x
∗) for some x∗ implies a1 = a2). By substituting

g(a�x∗) for x∗ in (9), we obtain, for all x∗ ∈X∗,

g
(
a�x∗) = g(U(

g
(
a�x∗))�T (

g
(
a�x∗))) = g(U(

g
(
a�x∗))�T (

x∗))�
where the last equality uses maximality of T . Furthermore, by applying the
transformation g(a� ·) to (9), we obtain

g
(
a�x∗) = g(a ◦U(

x∗)�T (
x∗))�

Thus, we conclude U(g(a�x∗))= a ◦U(x∗), and U(g(a�x∗))−1 ◦ a=U(x∗)−1,
which implies the desired result.

Now for the invariance of ψ∗ when ĝ(U(g(a�x∗))−1 ◦ a�γ)= ĝ(U(x∗)−1�γ),

ψ∗(ĝ(a�γ)�g(a�x∗)) = ψ
(
ĝ
(
U

(
g
(
a�x∗))−1

� ĝ(a�γ)
)
�T

(
g
(
a�x∗)))

= ψ
(
ĝ
(
U

(
g
(
a�x∗))−1 ◦ a�γ)

�T
(
x∗))

= ψ
(
ĝ
(
U

(
x∗)−1

�γ
)
�T

(
x∗)) =ψ∗(γ�x∗)�

as was to be shown, where the second equality uses the maximality of T .
For the second claim, using (9) with x∗ = T(x∗) = x and the maximal-

ity of T , we obtain x = T(x) = g(U(x)�T(x)) = g(U(x)�x). Thus, for all
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x= T(x∗) ∈X ,

ψ∗(γ�x)= ψ∗(ĝ(U(x)�γ)
� g

(
U(x)�T(x)

))
= ψ∗(ĝ(U(x)�γ)

�x
)

= ψ
(
ĝ
(
U(x)−1 ◦U(x)�γ)

�T (x)
)

= ψ(γ�x)�

where the first equality stems from the invariance of ψ∗, the third applies the
definition of ψ∗, and the last uses the maximality of T . Q.E.D.

PROOF OF THEOREM 3: Without loss of generality, we can assume F to be
a probability measure.

Claim (i) follows from Lemma 3(iii). For claim (ii), note that ϕ0(γ�x)= 0 for
γ ∈ S0(x) implies via ϕ∗

0(γ�x
∗) = ϕ0(ĝ(U(x

∗)−1�γ)�T(x∗)) that ϕ∗
0(γ�x

∗) = 0
if ĝ(U(x∗)−1�γ) ∈ S0(T(x∗)). Now by invariance of S0, this latter condition
equivalently becomes ĝ(a ◦U(x∗)−1�γ) ∈ S0(g(a�T(x∗))) for any a, so setting
a=U(x∗) yields γ ∈ S0(g(U(x∗)�T (x∗)))= S0(x∗), where the last step applies
(9). For claim (iii), for now only note that by Lemma 3(i), for any invariant
set ψ∗, the coverage probability of ψ∗(f (θ∗)�X∗) under θ∗ is the same as the
coverage probability ψ∗(f (θ)�X∗) under θ= T̄ (θ∗),

(26)
∫
ψ∗(f (θ∗)�x∗)p∗(x∗|θ∗)dν∗(x∗) =

∫
ψ∗(f (θ)�x∗)p∗(x∗|θ)dν∗(x∗)�

Let us first complete the proof for part (iii) and prove (15) under assumption
(a). With ĝ(a�γ)= γ for all a ∈A, γ ∈ Γ , for any invariant set ψ∗,

(27) ψ∗(γ�x∗) =ψ∗(ĝ(U(
x∗)−1

�γ
)
�T

(
x∗)) =ψ∗(γ�T (

x∗))�
In particular, ϕ∗

0(f (θ)�x
∗) = ϕ0(f (θ)�T(x

∗)) for all θ ∈ Θ, x∗ ∈X∗, so claim
(iii) follows from (26) and the coverage property of ϕ0.

By (26) and (27), the assumed coverage of ϕ∗ implies that α ≥ ∫
ϕ∗(f (θ)�

x∗)p∗(x∗|θ)dν∗(x∗) = ∫
ϕ∗(f (θ)�x)p(x|θ)dν(x) for all θ = T(θ∗) ∈ Θ. The

test ϕ∗ thus satisfies the assumption about ϕ in Theorem 2(a). Also, again
applying (27), for any invariant set ψ∗

∫ [∫ (
1 −ψ∗(γ�x∗))dγ]

p∗(x∗|θ)dν∗(x∗)

=
∫ [∫ (

1 −ψ∗(γ�T (
x∗)))dγ]

p∗(x∗|θ)dν∗(x∗)

=
∫ [∫ (

1 −ψ∗(γ�x)
)
dγ

]
p(x|θ)dν(x)�
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Thus, inequality (15) reduces to claim (6) in Theorem 2(a).
Under assumption (b), the coverage probability of any invariant setψ∗ under

θ= T(θ∗) can be written as

Eθ
[
ψ∗(f (θ)�X∗)] = Eθ

[
ψ∗(Y�X)

]
(28)

=
∫ ∫

ψ∗(γ�x)p̃(x�γ|θ)dγ dν(x)�

where the first equality uses (9). In particular, it thus follows from the assump-
tion

∫∫
ϕ0(γ�x)p̃(x�γ|θ)dγ dν(x) ≤ α for all θ ∈ Θ and ϕ∗

0(γ�x) = ϕ0(γ�x)
from Lemma 3(iii) that ϕ∗

0 is of level 1 − α on Θ∗.
Also, the expected length of an invariant set ψ∗ under θ can be written as

follows:

Eθ

[∫ (
1 −ψ∗(γ�X∗))dγ]

=Eθ
[∫ (

1 −ψ∗(γ�g(U(
X∗)�T (

X∗))))dγ]

=Eθ
[
gl

(
U

(
X∗))∫ (

1 −ψ∗(γ�T (
X∗)))dγ]

=Eθ
[
Eθ

[
gl

(
U

(
X∗))∫ (

1 −ψ∗(γ�T (
X∗))) ∣∣∣ T (

X∗)]dγ]

=Eθ
[
hθ(X)

∫ (
1 −ψ∗(γ�X)

)
dγ

]

=
∫
hθ(x)

(∫ (
1 −ψ∗(γ�x)

)
dγ

)
p(x|θ)dν(x)�

where the first equality applies (9), the second assumption (b.ii), and the third
the law of iterated expectations. Using this expression and Tonelli’s theorem,
the F -weighted expected length of any invariant set is equal to∫

Eθ

[∫ (
1 −ψ∗(γ�X∗))dγ]

dF(θ)(29)

=
∫ ∫ [∫ (

1 −ψ∗(γ�x∗))dγ]
p

(
x∗|θ)dν∗(x∗)dF(θ)

=
∫ (∫ (

1 −ψ∗(γ�x)
)
dγ

)
p1(x)dν(x)�

where p1(x)= ∫
hθ(x)p(x|θ)dF(θ).
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Now by construction of ϕ0, using ϕ∗
0(γ�x)= ϕ0(γ�x) from Lemma 3(iii),

(30)
∫ ∫ (

ϕ∗
0(γ�x)−ϕ∗(γ�x)

)(
p1(x)− cv p̃0(x�γ)

)
dγ dν(x)≥ 0�

where p̃0(x� y)= ∫
p̃(x� y|θ)dΛ(θ). Since ϕ∗ is of level 1−α, (28) implies that∫∫

ϕ∗(γ�x)p̃0(x�γ)dγ dν(x) ≤ α. Thus, cv(
∫∫
ϕ0(γ�x)p̃0(x�γ|θ)dγ dν(x) −

α) = 0 implies cv
∫∫
(ϕ∗

0(γ�x) − ϕ∗(γ�x))p̃0(x�γ)dν(x)dγ ≥ 0. Therefore,
(30) yields∫ ∫ (

ϕ∗
0(γ�x)−ϕ∗(γ�x)

)
p1(x)dγ dν(x)≥ 0

or, equivalently,∫ ∫ (
1 −ϕ∗

0(γ�x)
)
p1(x)dγ dν(x)

≤
∫ ∫ (

1 −ϕ∗(γ�x)
)
p1(x)dγ dν(x)�

which in light of (29) was to be shown. Q.E.D.
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