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a b s t r a c t

In this paper, we study a Bayesian approach to flexible modeling of conditional distributions. The
approach uses a flexible model for the joint distribution of the dependent and independent variables
and then extracts the conditional distributions of interest from the estimated joint distribution. We
use a finite mixture of multivariate normals (FMMN) to estimate the joint distribution. The conditional
distributions can then be assessed analytically or through simulations. The discrete variables are handled
through the use of latent variables. The estimation procedure employs an MCMC algorithm. We provide
a characterization of the Kullback–Leibler closure of FMMN and show that the joint and conditional
predictive densities implied by the FMMN model are consistent estimators for a large class of data
generating processes with continuous and discrete observables. The method can be used as a robust
regression model with discrete and continuous dependent and independent variables and as a Bayesian
alternative to semi- and non-parametric models such as quantile and kernel regression. In experiments,
the method compares favorably with classical nonparametric and alternative Bayesian methods.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In this paper,we study a Bayesian approach to flexiblemodeling
of conditional distributions. The approach uses a flexible model
for the joint distribution of the dependent and independent
variables and then extracts the conditional distributions of interest
from the estimated joint distribution. We use finite mixtures of
multivariate normals (FMMN) to estimate the joint distribution.
The conditional distributions can then be assessed analytically or
through simulations. The discrete variables are handled through
the use of latent variables. The estimation procedure employs
an MCMC algorithm. We show that the joint and conditional
predictive densities implied by the FMMN model can consistently
estimate data generating processes with continuous and discrete
observables. The method can also be used as a robust regression
model with discrete and continuous dependent and independent
variables and as a Bayesian alternative to semi- and non-para-
metric models such as quantile and kernel regression.

Estimation of conditional distributions has become increasingly
important in applied economics as evidenced by a large body
of research that uses quantile regression methodology, see, for
example, Koenker and Hallock (2001). This area seems to be
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somewhat overlooked in the Bayesian framework.Moreover, there
seems to be no universally accepted regression methodology in
the Bayesian literature that would be robust to various violations
of assumptions of the normal linear model such as OLS with
robust standard errors in the classical framework. The shape
of the distribution of the regression error term can be flexibly
approximated by mixtures of normals, see, for example, Geweke
(2005). Heteroscedasticity in this model can be accommodated by
multiplying the error term by a factor that flexibly depends on the
covariates, see, for example, Leslie et al. (2007). However, further
elaborations on this approach might become too cumbersome if
other assumption violations are addressed such as asymmetry
of the error distribution that depends on covariates. A flexible
and convenient model for conditional distributions seems to be
an attractive approach for handling these issues in the Bayesian
framework.

If researchers are interested only in conditional distributions,
modeling the distribution of covariates might seem to be an
unnecessary complication. A promising Bayesian alternative to
our approach, a smoothly mixing regression (SMR) also known as
a mixture of experts in computer science literature (see, Jacobs
et al. (1991), Jordan and Xu (1995), Peng et al. (1996), Wood et al.
(2002), Geweke and Keane (2007), Villani et al. (2009)), directly
models the conditional distribution of interest by a mixture of
regressions where the mixing probabilities are modeled by a
multinomial choice model and thus depend on covariates. Norets
(2010) and Norets and Pelenis (2011) established that large non-
parametric classes of conditional densities can be approximated
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and consistently estimated by several different specifications of
SMR and related dependent Dirichlet processes.1 In contrast to
available results for SMR, our results for FMMN do not require
compact support for the distribution of covariates. This is an
advantage for the approach based on FMMN. Another advantage
of FMMN over SMR and other direct conditional approaches is that
it is much easier to estimate by MCMC methods. An advantage of
the direct approach to conditional density estimation is that it can
be combinedwith procedures for selection of relevant covariates at
the estimation stage. This can be accomplished bymethods similar
to those employed by Villani et al. (2009). We do not consider the
issue of covariate selection in FMMN based models.

Ideally, a theoretical comparison of a direct conditional
approach and a joint density approach to estimation of conditional
densities should be based on the magnitude of the estimation
errors or the convergence rates. To the best of our knowledge,
posterior convergence rates have not been obtained for either
FMMN or SMR (posterior convergence rates for univariate mixture
models were obtained in Ghosal and van der Vaart (2007)). Even
classical literature on optimal rates of convergence for conditional
distributions is very limited. Efromovich (2007) derived the
minimax rates for conditional densities f (y|x) with univariate x
and y. His results suggest that if the joint and conditional densities
are equally smooth then the minimax convergence rates for them
are the same and if the conditional density is smoother then it can
be estimated at a faster rate. However, it is not clear if a slower
rate for the joint density estimator implies a slower rate for the
conditional density estimator derived from it. Thus, a definitive
theoretical resolution of the issue of the conditional approach
versus the unconditional approach is yet to be obtained and it is
an important direction for future research.

Ourmethod is global and it does not have logical inconsistencies
that some frequentist methods have, for example, crossing
quantiles in the quantile regression.Moreover, experiments on real
data show that out of sample prediction quality of FMMNcompares
favorably with that of the state of the art kernel based methods,
DPM, and SMR.

An approach similar to ours can be implemented with Dirichlet
process mixtures (DPM). Muller et al. (1996) and Taddy and Kottas
(2010) suggest using DPM models for regression and quantile
regression correspondingly. However, these papers do not study
theoretical properties of these procedures. An advantage of a DPM
based model is that every number of mixture components has
a positive probability and there is no need to select it. At the
same time, in finite samples the number of mixture components
generating the data is necessarily finite and the number of
components that appears in estimation is determined by the prior.
Also, the estimation algorithm is easier to implement and the prior
is more flexible for the FMMNmodel. Therefore, we chose to work
with FMMN.

Section 2 sets up the model for the joint distribution and
shows how to extract the conditional distributions of interest.
The Gibbs sampler for exploring the posterior distribution of the
model parameters and a log scoring rule for evaluating model
prediction quality are presented in Section 3. The consistency of
the predictive density is shown in Section 4. Section 5 applies
the method to several datasets that were previously analyzed
by quantile regression and kernel methods. Appendix contains
proofs of theoretical results. Experiments with artificial data, joint
distribution tests for checking correctness of posterior simulator
implementation (Geweke, 2004), an algorithm for computing the
marginal likelihood, and some extra estimation experiments are
delegated to a web appendix, Norets and Pelenis (2009).

1 A growing literature on dependent Dirichlet processes includes the following
papers, among others: MacEachern (1999), De Iorio et al. (2004), Griffin and Steel
(2006), Dunson and Park (2008), Chung and Dunson (2009), and Pati et al. (2011).
2. Finite mixture of normals model

A model in the Bayesian framework specifies the joint
distribution of the observables, unobservables, and objects of
interest. First, we describe the model for continuous observables.
Then, we show how to extend the model to the case of discrete
components in the observables.

2.1. Continuous observables

The observables in the model are denoted by YT = {yt , t =

1, . . . , T }, where yt = (yt,1, . . . , yt,d) ∈ Rd. In the context
of a regression model, yt,1 is a dependent variable and yt,−1 =

(yt,2, . . . , yt,d) are covariates. The observables density is given by

p(yt |θ, Mm) =

m
j=1

αj · φ(yt; µj,H−1
j ), (1)

where Mm stands for the model with m mixture components,
φ(yt; µj,H−1

j ) is a density of a multivariate normal distribution
with mean µj and variance H−1

j (Hj is called precision), α =

(α1, . . . , αm) are mixing probabilities, vector θ = (α, µ1,
H1, . . . , µm,Hm) ∈ Θm collects all the parameters in the model,
and Θm is the parameter space. We use the (conditionally)
conjugate prior distribution p(θ |Mm), which is described in
Section 3.1.

Predictive joint and conditional distributions of y are of interest
in our analysis. The predictive joint distribution is

p(y|YT , Mm) =


p(y|θ, Mm)p(θ |YT , Mm)dθ, (2)

where p(y|θ, Mm) is given by the observables distribution in (1)
and p(θ |YT , Mm) is the posterior distribution of the parameters.
The predictive conditional distribution is

p(y1|y−1, YT , Mm) =


p(y1|y−1, θ, Mm)p(θ |YT , Mm)dθ.

The conditional distribution p(y1|y−1, θ, Mm) is a mixture of
(conditional) normals:

p(y1|y−1, θ, Mm) ∝

m
j=1

αjφ(y−1; µj,−1,H−1
j,−1)

× φ(y1|y−1; µj,H−1
j ), (3)

where φ(y−1; µj,−1,H−1
j,−1) is the marginal normal distribution of

y−1 implied by the joint normal φ(y; µj,H−1
j ), φ(y1|y−1; µj,H−1

j )
is the conditional normal distribution of y1 implied by the joint
normal φ(y; µj,H−1

j ), and the mixing probabilities are given by

αjφ(y−1; µj,−1,H−1
j,−1)

k
αkφ(y−1; µk,−1,H−1

k,−1)
.

The joint and conditional densities of interest and expectations
with respect to them can be evaluated by simulation: θ k

∼

p(θ |YT , Mm) (draws from the posterior), yk ∼ p(y|θ k, Mm), and
yk1 ∼ p(y1|y−1, θ

k, Mm).

2.2. Discrete components in observables

It is common in the Bayesian framework to model discrete
variables by continuous latent variables for computational reasons,
see, for example, Albert and Chib (1993) and Chapter 6 in Geweke
(2005).We also use latent variables to handle discrete observables.
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Let us denote continuous components in observables vector y ∈

Rd+K by yc ∈ Rd and discrete components by y−c , where the
subscript c stands for continuous and K is the number of discrete
variables. Suppose the kth discrete variable can take Nk different
values, where k ∈ {1, . . . , K}. We map possible values of each
discrete variable into a partition of R by intervals. Thus, y−c =

[a1l1 , b
1
l1
] × · · · × [aKlK , bKlK ], lk ∈ {1, . . . ,Nk} and R = ∪

Nk
lk=1[a

k
lk
, bklk ]

for every k ∈ {1, . . . , K}. For each discrete variable we introduce a
corresponding latent variable in the model, y∗

−c ∈ y−c . The density
of the latent variables and continuous observables is modeled as a
mixture of normals,

p(yc, y∗

−c |θ, Mm) =

m
j=1

αj · φ(yc, y∗

−c; µj,H−1
j ). (4)

The conditional density of the discrete observables with respect to
the counting measure is an indicator function

p(y−c |yc, y∗

−c, θ, Mm) = 1y−c (y
∗

−c). (5)

The observables density with respect to the product of the
Lebesgue and counting measures conditional on parameters is
given by the integral of the product of (4) and (5) with respect to
y∗
−c ,

p(yc, y−c |θ, Mm) =

m
j=1

αjφ(yc; µj,c,H−1
j,c )

×


y−c

φ(y∗

−c |yc; µj,H−1
j )d(y∗

−c), (6)

where φ(yc; µj,c,H−1
j,c ) is the marginal normal distribution of yc

implied by the joint normal φ(yc, y∗
−c; µj,H−1

j ) and φ(y∗
−c |yc; µj,

H−1
j ) is the conditional normal distribution of y∗

−c given yc
implied by the joint normalφ(yc, y∗

−c; µj,H−1
j ). As described in the

previous subsection, the draws from p(y1|y−1, θ, Mm) can be used
for evaluating the predictive conditional densities of interest.

3. Estimation method

3.1. Gibbs sampler

The posterior distribution of the parameters is explored by
the Gibbs sampler. A convenient parameterization of the Gibbs
sampler for finite mixture models involves introduction of latent
state variables (Diebolt and Robert, 1994): st ∈ {1, . . . ,m},
p(yt |st , θ, Mm) = φ(·; µst ,H

−1
st ) and P(st = j|θ, Mm) = αj. The

posterior is proportional to the joint distribution of the observables
and unobservables,

p({yt , st}Tt=1; {αj, µj,Hj}
m
j=1|Mm)

∝

T
t=1

αst |Hst |
0.5 exp{−0.5(yt − µst )

′Hst (yt − µst )}

× α
a−1
1 · · · α

a−1
m

×


j

|Hj|
0.5 exp{−0.5(µj − µ)′λHj(µj − µ)}

×


j

|Hj|
(ν−d−1)/2 exp{−0.5trSHj}. (7)

We used conditionally conjugate priors: Normal–Wishart for
(µj,Hj) and Dirichlet for α. Hyper-parameters (ν, S, µ, λ, a) have
to be specified by the researcher in each particular application. We
provide some suggestions on this in Section 5.
The densities for the Gibbs sampler blocks are proportional to
the joint distribution in (7). The Gibbs sampler block for the latent
states has a multinomial distribution,
p(st = j| . . .) ∝ αj|Hj|

0.5 exp{−0.5(yt − µj)
′Hj(yt − µj)}.

The block for mixing probabilities is Dirichlet,

p(α| . . .) ∝ α


t
1{st=1}+a−1

1 · · · α


t
1{st=m}+a−1

m . (8)
The block for the mean and precision of the mixture components
is given by

p(µj,Hj| . . .) ∝


t:st=j

|Hj|
0.5 exp{−0.5(yt − µj)

′Hj(yt − µj)}

× |Hj|
0.5 exp{−0.5(µj − µ)′λHj(µj − µ)}

× |Hj|
(ν−d−1)/2 exp{−0.5trSHj}

∝ |Hj|
(Tj+ν−d)/2

× exp


−0.5tr


Hj


t:st=j

(yt − µj) (yt − µj)
′

+ λ(µj − µ)(µj − µ)′ + S


∝ |Hj|

(Tj+ν−d)/2

× exp


−0.5tr


Hj


t:st=j

(yt − yj) (yt − yj)
′

+ Tj(yj − µj) (yj − µj)
′

+ λ(µj − µ)(µj − µ)′ + S


,

where Tj =


t 1{st = j} and yj = T−1
j


t:st=j yt . Thus,
p(µj|Hj, . . .)p(Hj| . . .) is a Normal–Wishart distribution:

Hj ∼ Wishart


Tj + ν,


t:st=j

(yt − yj) (yt − yj)
′

+
Tjλ

Tj + λ
(yj − µ) (yj − µ)′ + S

−1


(9)

µj ∼ N
Tjyj + λµ

Tj + λ
, [(Tj + λ)Hj]

−1


.

We initially chose a Normal–Wishart prior for (µj,Hj) because it
simplifies computation of the marginal likelihood (see web ap-
pendix, Norets and Pelenis (2009)). With independent condition-
ally conjugate priors for µj and Hj, the Gibbs sampler would have
a normal block for µj and a Wishart block for Hj (the derivation of
the block densities is similar in this case).

If the observables have discrete components then in the Gibbs
sampler described above one can replace yt with (yt,c, y∗

t,−c) and
add blocks for components of the latent variables y∗

t,−c . A block for
the kth component of y∗

t,−c has a truncated normal distribution,

p(y∗

t,−c,k| . . .) ∝ exp{−0.5((yt,c, y∗

t,−c) − µst )
′Hst

((yt,c, y∗

t,−c) − µst )} · 1yt,−c (y
∗

t,−c).

In the model we described, the posterior for parameters is
symmetric with respect to label switching for the parameters. For
example, marginal posteriors of (µj,Hj, αj) are the same for every
j. For larger values of m the described MCMC algorithm might
not produce enough label switching to obtain identical marginal
posteriors for (µj,Hj, αj). However, as demonstrated by Geweke
(2007), the lack of label switching inMCMC is usually not a problem
in mixture models as long as objects of interest are label invariant,
which is the case in this paper.
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3.2. Log scoring rules

We initially used the marginal likelihood (ML) to evaluate
model performance. An algorithm for computing the ML based
on Chib (1995) and Marin and Robert (2008) is presented in a
web appendix Norets and Pelenis (2009). When the number of
variables, especially discrete ones, is large, computation of the
ML is numerically unstable. Therefore, we use log scoring rules
instead. Another important reason for using log scores is that they
can be computed for non-Bayesian models and thus can be useful
in comparison of FMMN with classical alternatives. A full cross-
validated log score (Gelfand et al., 1992) is given by

T
t=1

log p(yt |YT/t , Mm)

≈

T
t=1

log


1
N

N
n=1

p(yt |YT/t , θ
n, Mm)


(10)

T
t=1

log p(yt,i|yt,−i, YT/t , Mm)

≈

T
t=1

log


1
N

N
n=1

p(yt,i|yt,−i, YT/t , θ
n, Mm)


, (11)

where YT/t denotes the sample with observation t removed and
θn’s are draws from posterior p(θ |YT/t , Mm). Eq. (10) should be
used if the joint probability distribution is of interest, while
Eq. (11) should be used if the conditional distribution of the
i-th element is of interest (additional advantage of log scoring
rules over the ML is that the former can evaluate models when
the conditional distribution is of interest). A full cross-validated
log scoring rule requires T posterior simulators for each model
specification. A modified cross-validated log scoring rule Geweke
and Keane (2007) is more computationally efficient. Under this
rule, the sample is ordered randomly and the first T1 observations
are used for estimation and the rest for computing the log score.
This procedure is repeated K times and the means or medians
of the obtained log scores are used for model comparison. The
following formula explicitly shows how the mean log score is
computed,

1
K

K
k=1


T

t=T1+1

log p(ykt,i|y
k
t,−i, Y

k
T1 , Mm)


, (12)

where Y k denotes a random reordering of Y and p(ykt,i|y
k
t,−i, Y

k
T1

,

Mm) is computed as in (11).

4. Consistency of FMMN

In this section, we study frequentist properties of the predictive
densities and the posterior distribution when the sample size
converges to infinity. Consistency has been accepted as a minimal
requirement on priors in the Bayesian nonparametrics literature,
see Ghosh and Ramamoorthi (2003) for a textbook treatment.
Below, we briefly review the most closely related previous work
and then discuss our consistency results.

4.1. Existing results

In the classical framework, Genovese and Wasserman (2000)
showed that if the true density f on R is a general normal
mixture then a maximum likelihood sieve is consistent in the
Hellinger distance. In the Bayesian framework, the theoretical
results of Roeder and Wasserman (1997) are most closely related
to what we do in this section of the paper. Roeder andWasserman
(1997) show that the posterior probability of any total variation
neighborhood of the true density f converges to 1 if f on R is in
the Kullback–Leibler (KL) closure of finite mixtures of normals and
m = o(T/ log(T )). The Roeder and Wasserman (1997) prior was
chosen so that their finite mixture of normals model approached a
model based on the Dirichlet process prior. The result the authors
get is related to analogous results in the literature on the Dirichlet
process priors, see Ghosh and Ramamoorthi (2003) and Ghosal and
van der Vaart (2007). Our results hold for the true density on Rd

not R.
Additionally, we provide a characterization of the Kullback–

Leibler closure of FMMN. In some papers, the true density is
often assumed to be in some special class, for example, general
mixtures of normals in Genovese and Wasserman (2000) or KL
closure of finite mixtures of normals in Roeder and Wasserman
(1997). However, no description of these classes is provided. It is
not immediately clear what densities can actually be estimated in
practice. Thus, our characterization of the KL closure of FMMN can
be useful for developing and applying other theoretical results for
FMMN.

When this manuscript was presented at a conference we
learned about recent related work by Wu and Ghosal (2010) who
study posterior consistency of Dirichlet process mixtures (DPM)
of multivariate kernels in multivariate density estimation. Some
of their sufficient conditions for consistency look similar to our
characterization of the Kullback–Leibler closure of FMMN. Our
conditions are weaker. However, we note that the model and the
type of consistency results in Wu and Ghosal (2010) differ from
what we consider in this paper. Another distinction of our work
from the previous literature is that we develop theoretical results
for categorical observables in addition to continuous ones.

4.2. Theoretical results

First, we consider the case when the number of mixture
components m is fixed. Under mild regularity conditions, we
demonstrate that for a given ϵ > 0 there exists m such that the L1
distance between the predictive density and the data generating
process (DGP) density is less than ϵ almost surely (a.s.). This
result is presented in Theorems 1–3. Theorem 1 states that if the
posterior concentrates on the parameter values,Θ∗

m, thatminimize
the KL distance between the DGP density and the model and if
this distance is small then the L1 distance between the predictive
density and the DGP density is small as well. The concentration
of the posterior on Θ∗

m in parametric problems is a standard
result (see Theorems 3.4.1–3.4.2 in Geweke (2005)), which is
related to similar results for the maximum likelihood estimator.
In Theorem 2, we provide a set of mild sufficient conditions for
FMMN that imply the posterior concentration result. In Theorem 3,
we characterize a class of the DGP densities that can be arbitrarily
well approximated by FMMN in the KL distance. The theory is
first formulated for continuous observables. Analogous results for
observables that can be discrete are given in Corollaries 1 and 2.

At the end of the section, we discuss the posterior consistency
for FMMNbasedmodels, inwhich a prior on the number ofmixture
components is specified. Our characterization of the KL closure of
FMMN in Theorem 3 combinedwith the Schwartz (1965) posterior
consistency theorem immediately implies that the posterior is
weakly consistent. More generally, the characterization of the KL
closure of FMMN we obtain in Theorem 3 is also of independent
interest as KL neighborhoods of the DGP densities play amajor role
in the general theory of weak and strong posterior consistency in
Bayesian nonparametrics (Ghosh and Ramamoorthi, 2003).

We assume that the parameter space Θm in model with
m mixture components Mm is compact and the observables
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YT = (y1, . . . , yT ) are independently identically distributed (i.i.d.)
random variables with density f (y) ≡ p(y|D), where D stands for
the data generating process. Frequentist probabilistic statements
in which YT is treated as random are written conditional on D as in
p(y|D). Proofs of the theoretical results in this section are given in
Appendix.

Theorem 1. Suppose the following two conditions hold. First, the DGP
density f is in the KL closure of the finite mixtures of normals, i.e., for
any ϵ > 0 there exists m and θ ∈ Θm such that

dKL(f (·), p(·|θ, Mm)) =


log

f (y)
p(y|θ, Mm)

F(dy) ≤ ϵ.

Second, the posterior concentrates on the parameter values that
minimize the KL distance between the true density and the model,
Θ∗

m = argminθ∈Θm dKL(f (·), p(·|θ, Mm)), i.e., for any open set
N(Θ∗

m) such that Θ∗
m ⊂ N(Θ∗

m),

P(N(Θ∗

m)|YT , Mm) →
T→∞

1 a.s.

Then, for any ϵ > 0 and all sufficiently large m the probability that
the L1 distance between the predictive density defined in (2) and the
DGP density is smaller then ϵ converges to 1,

lim
T→∞

P[dL1(f (·), p(·|YT , Mm)) < ϵ|D ] = 1,

where dL1(f (·), p(·)) =


|f (y) − p(y)|dy. Actually, a stronger result
holds,

lim
T→∞

P


∞
t=T

[dL1(f (·), p(·|Yt , Mm)) < ϵ]|D


= 1,

which means that [dL1(f (·), p(·|Yt , Mm)) < ϵ] holds a.s. The same
results hold for the conditional predictive density if the following
distance between conditional distributions is used,

d(f (·|·), p(·|·, YT , Mm)) =


dL1(f (·|y−1), p(·|y−1, YT , Mm))

× f (y−1)dy−1.

A parameter value that minimizes the KL distance between the
true density and the FMMN model is not unique; Θ∗

m includes at
leastm! parameters that differ only by labels. Furthermore, it is not
clear whetherΘ∗

m can containmore thanm! elements. Fortunately,
this issue is not important for our results. The following theorem
gives conditions underwhich the posterior concentrates on setΘ∗

m.

Theorem 2. Suppose that
1. p(y|D) has finite second moments;
2. the prior distribution of θm is absolutely continuous: P(θm ∈

C |Mm) > 0 for all C ⊆ Θm for which

C dθm > 0;

3. any precision matrix in a parameter vector from Θm is non-
negative definite with eigenvalues in [λm, λm], where λm > 0 and
λm < ∞.

Then, T−1 log p(YT |θm, Mm)
a.s.
→ l(θm; Mm) uniformly for all θm ∈

Θm, where l(θm; Mm) is a continuous function of θm with a set of
maxima

Θ∗

m = arg max
θ∈Θm

l(θ; Mm) = arg min
θ∈Θm

dKL(f (·), p(·|θ, Mm))

and for any open set N(Θ∗
m) such that Θ∗

m ⊂ N(Θ∗
m),

lim
T→∞

P(θ ∈ N(Θ∗

m)|YT , Mm) = 1 a.s.

The following theorem describes the conditions on f (·) that
guarantee that f (·) can be approximated in KL distance by finite
mixtures of normals. In otherwords, it characterizes the KL closure
of FMMN.

Theorem 3. Let Am
j , j = 0, 1, . . . ,m, be a partition of Y , where

Am
1 , . . . , Am

m are adjacent cubes with side length hm and Am
0 is the rest

of set Y . Assume that

1. f (y) is continuous on Y except on a set of F measure zero.
2. The second moments of y are finite.
3. For any y there exists a cube C(r, y) with side length r > 0 and

y ∈ C(r, y) such that (i)
log

f (y)
inf

z∈C(r,y)
f (z)

F(dy) < ∞ (13)

and (ii) there exists an M such that for any m ≥ M, if y ∈ Am
0 then

C(r, y) ∩ Am
0 contains a cube C0(r, y) with side length r/2 and a

vertex at y and if y ∈ Y \ Am
0 then C(r, y) ∩ (Y \ Am

0 ) contains a
cube C1(r, y) with side r/2 and a vertex at y.

4. An upper bound on the eigenvalues of a precision matrix, λm, in a
parameter vector from Θm satisfies λm → ∞.

Then, for any ϵ > 0 there exists m and θ ∈ Θm such that

dKL(f (·), p(·|θ, Mm)) ≤ ϵ.

The strongest assumption of Theorem 3 is that of the finite
second moments. The proof of the theorem suggests that it can
be weakened if components with tails heavier than normal, for
example, Student t , are added to the mixture of normals.

Condition 4 implies that the variance of mixture components
can be arbitrarily close to zero asm increases. Since the variance of
mixture components plays the role of bandwidth, arbitrarily small
variances of mixture components are required for approximation
of large non-parametric classes of DGP densities by FMMN.

It seems hard to find a positive everywhere density that
would violate condition 3 of the theorem. For example, normal,
exponential, extreme value, and Student t densities do satisfy this
condition. Part 3(i) of the condition requires local difference in
log f (y) to be integrable. When f (y) is positive everywhere, part
3(ii) of the condition is not needed. It always holds if C(r, y) is a
hypercubewith center at y. Part 3(ii) becomes importantwhen f (y)
can be equal to zero. In particular, the sets C0(r, y) and C1(r, y) in
condition 3(ii) are introduced to specify that C(r, y) needs to be
defined differently near the boundary of the support and in the tails
if onewants to use condition (13) in its present form. The following
example illustrates how one could verify the theorem conditions.

Example 1. Consider an exponential distribution, f (y) = γ
exp{−γ y}1{y ≥ 0}, γ > 0. The density is continuous in y on
Y = [0, ∞) and it has finite second moments. Thus conditions
1 and 2 hold. To verify part (i) of condition 3, for some r > 0 let
C(r, y) = [y, y + r] for y ∈ [0, r] and C(r, y) = [y − r/2, y + r/2]
for y ∈ (r, ∞). Then,

log
f (y)

inf
z∈C(r,y)

f (z)
F(dy) =

 r

0
rF(dy) +


∞

r

r
2
F(dy) ≤ r.

Note that if we defined C(r, y) = [y − r/2, y + r/2] for all y then
infz∈C(r,y) f (z) = 0 for y ∈ [0, r/2) and the condition would fail. To
verify part (ii) of condition 3 define the partition Am

j and intervals
C0(r, y) and C1(r, y) as follows. For hm > 0 such that hmm → ∞,
let Am

j = [(j − 1)hm, jhm) for j > 0 and Am
0 = [mhm, ∞). For

all sufficiently large m, r < hmm and for y ∈ Am
0 , C0(r, y) =

[y, y+r/2] ⊂ Am
0 ∩C(r, y). For y ∈ Y \Am

0 , C1(r, y) = [y−r/2, y] ⊂

(Y \ Am
0 ) ∩ C(r, y). Thus, part (ii) of 3 is satisfied.
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Corollaries 1 and 2 state that the theoretical results obtained in
Theorems 1–3 for continuous observables also hold for categorical
observables and the latent variable model defined in Section 2.2.
Since Theorem 3 has an independent value for establishing
more general consistency results we present its extension to the
discrete variable case separately in Corollary 2. The corollaries’
assumptions about the DGP density of the continuous observables
conditional on the categorical observables are essentially the same
as the corresponding assumptions about the DGP density of the
observables in the continuous case.

Corollary 1. When some of the observables are discrete Theorems 1
and 2 apply without any changes for the model with the observables
density p(yc, y−c |θ, Mm) with respect to the product of the Lebesgue
and counting measures defined in (6).

Corollary 2 (Analog of Theorem3When Some of the Observables are
Discrete). Let Am

j , j = 0, 1, . . . ,m, be a partition of the continuous
part of the observables space Yc , where Am

1 , . . . , Am
m are adjacent cubes

with side length hm and Am
0 is the rest of set Yc . Assume that

1. f (yc |y−c) is continuous on Yc except on a set of F measure zero,
∀y−c ∈ Y−c .

2. The second moments of yc are finite.
3. For any yc and y−c there exists a cube C(r, yc, y−c)with side length

r > 0 and yc ∈ C(r, yc, y−c) such that (i)
log

f (yc |y−c)

inf
z∈C(r,yc ,y−c )

f (z|y−c)
F(dy) < ∞ (14)

and (ii) there exists an M such that for any m ≥ M, if yc ∈

Am
0 then C(r, yc, y−c) ∩ Am

0 contains a cube C0(r, yc, y−c) with
side length r/2 and a vertex at yc and if yc ∈ Yc \ Am

0 then
C(r, yc, y−c) ∩ (Yc \ Am

0 ) contains a cube C1(r, yc, y−c) with side
r/2 and a vertex at yc .

4. An upper bound on the eigenvalues of a precision matrix in a
parameter vector from Θm satisfies λm → ∞.

Then, for any ϵ > 0 there exists m and θ ∈ Θm such that

dKL(f (·), p(·|θ, Mm)) ≤ ϵ.

We next consider a model with a prior on the number of
mixture components. Let M∞ stand for a collection of FMMN
models {Mm}

∞

m=1 with corresponding prior model probabilities
{pm}

∞

m=1. Model M∞ defines a prior probability measure on the
space of densities. To demonstrate the posterior consistency in this
model we use the following immediate implication of Schwartz
(1965) posterior consistency theorem.

Theorem 4. Suppose a prior, P, on the space of densities on Y puts a
positive probability on any KL neighborhood of DGP f (·):

P

p :


log

f
p
dF < ϵ


> 0, ∀ϵ > 0.

Then, the corresponding posterior is weakly consistent. Specifically, for
any neighborhood U of f (·) in the topology of weak convergence,

P(U|YT ) →
T→∞

1 a.s.

Aproof of this theoremcanbe found inGhosh andRamamoorthi
(2003) (see Theorems 4.4.1 and 4.4.2).

In Theorem 3 we found a sequence of parameter values θm for
models Mm such that dKL(f (·), p(·|θm, Mm)) → 0 as m → ∞.
Using the Lebesgue dominated convergence theorem as in the
proof of Theorem 3, one can show that dKL(f (·), p(·|θm, Mm)) is
continuous in parameters at θm for all sufficiently large m, even
when general variance covariance matrices are used instead of the
diagonal (σm

j )2I in Mm. Therefore, as long as pm > 0 and p(θ |Mm)
puts positive probability on the neighborhoods of θm for all m,
conditions of Theorem 4 are satisfied. Thus, Theorem 4 applies to
any DGP f that satisfies the assumptions of Theorem 3.
5. Applications

In this section, we present five applications of FMMN (see a
web appendix Norets and Pelenis (2009) for more applications
and artificial data experiments). In the first application, we apply
FMMN to a large dataset and explore the sensitivity of the
estimation results to the prior specification. We also provide
some suggestions on choosing reasonable values for prior hyper-
parameters. In Sections 5.2 and 5.3, we compare out-of-sample
performance of FMMN to that of kernel smoothing methods,
Dirichlet Process mixtures, and smoothly mixing regressions.
We employ kernel estimation methods from Hall et al. (2004)
who use cross-validation to select estimation parameters such
as bandwidth. Comparison with Hall et al. (2004) methods
is particularly relevant since these methods were shown to
outperform many other alternatives, see Hall et al. (2004), Li and
Racine (2007), and Li and Racine (2008). Hall et al. (2004) methods
are implemented by a publicly available R package np (Hayfield
and Racine, 2008), which we use in this paper. In Section 5.4, we
show that FMMN is capable of handling discrete variables that
take a large number of different values. In Section 5.5 we use
FMMN for estimating a conditional density for a two-dimensional
dependent variable.2 Overall, the section demonstrates that in a
variety of settings FMMN performs very well against a wide range
of alternatives.

5.1. Infant birth weight

Abrevaya (2001) and Koenker and Hallock (2001) use linear
quantile regression to study factors that affect infant birth weight.
Their data include observations on infant birth weight, infant
sex, pregnancy trimester of the first doctor visit, cigarettes per
day smoked by the mother during pregnancy, mother’s weight
gain, age, education, marital status and race. We use the same
data as Koenker and Hallock (2001): June 1997 Detailed Natality
Data published by the National Center for Health Statistics. In our
specification,we use the infantweight, demeanedmother’sweight
gain, and demeaned age as continuous variables. The other six
variables are treated as discrete. The total number of observations
available in the dataset is around 200,000. Experiments below are
conducted for three random subsamples from these data that have
different sizes: T = 1000, 10,000, 100,000. In reporting the results
below, we specify which subsample was used by the sample size
T . We also consider different number of mixture components:m ∈

{10, 20, 50, 100}.
We employ the following benchmark prior:

(ν = 20, S = 20I, µ = 0, λ = 1, a = 10). (15)

Fig. 1 shows marginal densities estimated by kernel smoothing
and marginal posterior predictive densities estimated by a model
with m = 10 from T = 1000 observations. The density estimates
produced by the two methods are expected to be similar in large
samples as the methods are consistent. Fig. 2 shows that the fit for
marginal predictive densities improves considerably when larger
m and T are used.

We next explore how sensitive the results are to prior specifi-
cation. For each of the following model sizes:m ∈ {10, 20, 50}, we
consider the following five changes to the benchmark prior (15):

(1) ν = 20, (2) ν = 50, (3) S = .2I,
(4) a = 50, (5) a = 3.

(16)

2 Anonymous referees suggestedwe check themodel performance in the settings
of Sections 5.4 and 5.5.
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Fig. 1. Marginal densities estimated by kernel smoothing (dotted) and posterior
predictive densities (solid), T = 1000,m = 10. (a) Birth weight, (b) mother weight
gain, (c) age.

Fig. 2. Marginal densities estimated by kernel smoothing (dotted) and posterior
predictive densities (solid), T = 100,000, m = 100. (a) Birth weight, (b) mother
weight gain, (c) age.

Fig. 3. Marginal densities for combinations of 5 different priors and m ∈

{10, 20, 50} (total 15 models) and T = 10,000: (a) birth weight, (b) mother weight
gain, (c) age.

Fig. 3 shows that the fit for marginal densities is not very sensi-
tive to priors. In the prior sensitivity experiments, we use 20,000
draws from the MCMC algorithm. There seems to be no need for
a burn-in period for models with m ∈ {10, 20}. For m = 50, 2000
first draws are discarded. On eachMCMC iterationwe also produce
Fig. 4. 5%, 25%, 50%, 75%, 95% quantiles of birth weight conditional on demeaned
mother age. Combinations of the 5 priors in (16) (rows) and m ∈ {10, 20, 50}
(columns).

a predictive distribution draw from p(y|θ, Mm) conditional on the
parameter values at that iteration. The relative numerical efficien-
cies (RNEs) for draws from the predictive distribution, which are
label invariant, are in 0.4–1 range for m ∈ {10, 20} and in 0.15–1
range for m = 50. To produce 100 draws from the posterior for
T = 10,000 andm = 10,m = 20, andm = 50 it takes correspond-
ingly 46, 83, and 323 s on a laptopwith Intel 1.6 GHz processor and
4 GB of RAMmemory (the MCMC algorithm is implemented in the
C programming language).

Fig. 4 demonstrates that in contrast to the marginal densities,
the conditional quantiles can be very sensitive to prior specifica-
tion.
The conditional quantiles of birth weight shown in the figure, are
computed for [−10, 20] range of demeaned age and the following
values of the rest of the variables: infant sex — girl, demeaned
weight gain — zero, cigarettes smoked — zero, education — at least
high school, natal visit — first trimester, marital status — married,
and race — non-black.

Most of the observations have the demeaned age in the
[−10, 10] range. In this range, the results in Fig. 4 are similar
across different priors and model sizes, except for row (g)–(i),
that corresponds to prior (3) in (16). Apparently, this prior
shrinks variances toward zero too much: the prior mean for H
is 100I while sample variances are in 1–20 range (the other
priors use the prior mean for H equal to I). Thus, one needs
to be careful in setting prior hyperparameters for variances in
FMMN to avoid excessive shrinkage. Another important point
about prior specification is that the Dirichlet hyper-parameter
should exceed one. Otherwise, all the observations get assigned
to one or two mixture components and the estimation results
for conditional distributions could be nonsensical. Changing other
prior hyperparameters in reasonable ranges does not seem to
have a considerable effect on estimation results. Our estimation
experiments on data from this and following subsections also
suggest that centering prior for means around sample means and
prior for variances around a half or a smaller fraction of the sample
variance works well. Prior sensitivity analysis with smaller sample
sizes (T = 500) and a smaller number of mixture components
(m = 3) deliver similar results.

5.2. Boston housing data

In this section, we consider 1970s-era Boston housing data
that has been analyzed by a number of authors, see for example,
Li and Racine (2008). This dataset contains T = 506 observations
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with the response variable being the median price of the house in
an area. We focus on three important covariates: average number
of rooms in the area, percentage of the population having lower
economic status in the area and the weighted distance to five
Boston employment centers. This particular set of variables is
chosen to replicate the analysis in Li and Racine (2008).Wewant to
determinewhether FMMN can perform equally well or even better
than the nonparametric conditional density kernel estimator used
by Li and Racine (2008) for this specific empirical application.
Furthermore, we evaluate the performance of FMMN against DPM
and SMR models as well.

We estimate the distribution of the median price conditional
on the other three covariates. All the variables are treated
as continuous. Modified cross-validated log scoring rule (see
Section 3.2) is used as a measure of performance. For K = 100
random reorderings of the sample, the sample is split into an
estimation part with T1 = 400 observations and an evaluation
part of T2 = 106 observations. For FMMN models with m ∈

{3, 4, 5, 6, 7}, we employ the following prior: (ν = 5, S = ν ·

diag(100, 50, 5, 0.5) · 0.25, µ = (23, 13, 4, 6)′, λ = 1, a = 3).
The prior of themean is chosen to be close to the samplemean, and
the prior mean of the precision is similar to the sample precision
multiplied by a factor of 4 (the theory suggests that the precision
of each mixture component should be larger than the precision of
the DGP density).

In the SMR specification, the means of the mixed normals
are linear in x and the mixing probabilities are modeled by
a multinomial logit with linear indices in x. The prior for the
coefficients in the means of the mixed normals is centered at zero
and the prior for the intercepts is centered at the sample average.
The prior variance for the coefficients is 100. The priormean for the
precision of the mixed normals is centered at the sample precision
multiplied by 2. The prior standard deviation for the precision
of the mixed normals is equal to the prior mean multiplied by
2. The prior on the logit parameters is normal with zero mean
and variance 100. The prior for DPM specification is chosen as
suggested in Section 2.3 of Taddy and Kottas (2010) (those priors
are sample mean and sample range dependent).

The results summarizing the predictive ability of different
models are presented in Table 1 below. For FMMN models the
number of MCMC draws was 10,000 with first 2500 draws
discarded. The convergence of MCMC chain is assessed using
separated partial means test for MCMC for first and second
moments of the predictive distribution draws and out-of-sample
log scores. We focus on these variables rather than posterior
draws of the parameters since they are label invariant. Posterior
simulation takes approximately 80 s for a single FMMNmodelwith
m = 7 and less for smaller values ofm on a desktop with Intel 2.80
GHz processor and 4 GB of RAM memory. The numerical standard
errors for individual out-of-sample log scores for each simulation
of FMMN models range from 0.04 to 0.2 and the RNEs range from
0.05 to 0.5.
Table 1 reveals that FMMN models with m > 3 outperform
nonparametric kernel conditional density estimator and DPM,
and perform comparably with SMR. The superior performance of
FMMN seems to be a result of the in-sample overfitting by the DPM
and kernel smoothing methods.

5.3. Labor market participation

In this section, we use Gerfin (1996) cross-section dataset
containing T = 872 observations of seven variables that are used
to model labor market participation of married Swiss women.3

3 The data for this study can be obtained online at http://qed.econ.queensu.ca/
jae/1996-v11.3/gerfin/.
Table 1
Modified cross-validated log scores.

Model Log score
Mean Median

Kernel −293.17 −289.44
FMMN (m = 3) −291.57 −289.16
FMMN (m = 4) −282.10 −281.66
FMMN (m = 5) −278.66 −278.93
FMMN (m = 6) −278.40 −278.53
FMMN (m = 7) −278.26 −278.57
SMR (m = 4) −280.29 −280.31
SMR (m = 7) −280.23 −279.19
DPM −286.97 −284.41

Table 2
Modified cross-validated log scores and classification rates.

Model Log score % Correct rate
Mean Median Mean (%) Median (%)

Probit −137.23 −136.69 66.08 66.37
Kernel −138.21 −135.99 65.91 65.77
FMMN (m = 1) −137.27 −136.81 66.02 65.77
FMMN (m = 2) −132.30 −131.86 67.95 68.02
FMMN (m = 3) −133.32 −132.60 67.76 67.57
FMMN (m = 4) −133.13 −131.86 68.21 68.02

A binary variable LFP is equal to 1 if the woman is an active
labor force participant and is equal to 0 otherwise. We wish to
evaluate the predictive performance of alternative estimators for
this binary variable. Moreover, this dataset contains both discrete
and continuous variables and we would like to check whether
FMMN model performs well when some variables are categorical.
We consider a FMMN model, a linear probit model as in Gerfin
(1996), and a nonparametric conditional density kernel estimator
of Hall et al. (2004).

We estimate the distribution of the variable LFP conditional
on log of non-labor income, age, education, number of young
children, number of old children, and foreign dummy. We treat
the age and log of non-labor income as continuous and the rest of
the variables as categorical. Modified cross-validated log scoring
rule (see Section 3.2) and correct classification rates are used
as two alternative measures of the predictive performance of
an estimator. For K = 100 random reorderings of the data,
the sample is split into a prediction part with T1 = 650
observations and an evaluation part of T2 = 222 observations.
For FMMN models with m ∈ {1, 2, 3, 4} we employ the following
prior: (ν = 8, S = ν · diag(0.2, 1, 0.25, 10, 0.5, 1, 0.2) ·

0.25, µ = (0, 11, 4, 9, 0, 1, 0)′, λ = 1, a = 3). The prior
mean for coefficients is chosen to be similar to the sample
mean, and the prior mean for the precision matrix is chosen
to be close to the sample precision multiplied by 4. For FMMN
models the number of MCMC draws was 10,000 with first
2500 discarded. The convergence of MCMC chain was assessed
using separated partial means test for MCMC for first and
second moments of the predictive distribution draws. Posterior
simulation takes approximately 200 s for FMMN model with
m = 4 on a desktop with an Intel 2.80 GHz processor and
4 GB of RAM. We use every 75th of remaining 7500 iterations
for log-score computation as evaluating multivariate truncated
integrals of normal distributions is computationally intensive. The
results summarizing the predictive ability of different models are
presented in Table 2. The numerical standard errors for individual
log scores range from 0.2 to 0.6 and the RNEs are higher than
0.9. For the correct classification rates the numerical standard
errors range between 0.1% and 0.2% and the RNEs are higher than
0.9 (the serial correlation is very low for the thinned draws).
As can be seen from Table 2, the FMMN model with m = 2
already outperforms both the kernel and probit methods in out-
of-sample prediction judging by both the modified log score and
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Fig. 5. The solid lines are truth, dashed lines are posteriormean and dotted lines are 95% highest posterior density region estimates of conditional probability weights f (y|x),
where x is the value on the y-axis. The number of observations is T = 500.
the correct classification rates. Results suggest that the FMMN
model is an attractive alternative to classical parametric and
nonparametric techniques for conditional distribution estimation
for both continuous and categorical data.

5.4. Poisson regression

This section evaluates whether the FMMN method can handle
discrete variables that take a large number of different values.
We generate a sample of T = 500 observations of a continuous
covariate x and a discrete response variable y. The data generating
process is given by: xi ∼ N(0, 1), yi ∼ Poisson (β0 + β1xi).
The values of β0 = 4 and β1 = 0.5 are chosen so that the
discrete variable yi takes a large number of distinct values. We use
the number of mixture components m = 10. The prior is set to:
(ν = 10, S = ν · sample cov · 0.25, µ = sample means, λ =

1, a = 10). The results are based on 12,500 draws from posterior
simulator with first 2500 draws discarded. Posterior simulation
takes approximately 2 mins on a desktop with Intel 2.80 GHz
processor and 4 GB of RAM memory. MCMC convergence is
assessed by a separated partial means test for first and second
moments of the predictive distribution draws. Numerical standard
errors of the predictive distribution draws for y and x are equal
to 0.8 and 0.02 and RNEs are equal to 0.78 and 0.86. In Fig. 5, we
plot posterior estimates for conditional probability weights f (y|x)
for varying values of x. As can be seen from the figure, a FMMN
model can estimate reasonably well the conditional distribution of
a discrete variable with a large support.

Of course, this is a low dimensional example and more
extensive theoretical work, simulations, applications to real data,
and comparisons with other approaches would be necessary to
better evaluate FFMN performance in settings with a large number
of discrete variables. We leave this for future work.

5.5. NLSY data

This section applies FMMN to estimation of conditional
distribution of a multivariate variable. We consider National
Longitudinal Survey NLSY79 dataset from 2002 interview for
subjects thatwere first surveyed in 1979.4 Wemodelweekly hours
worked and hourly earnings as a function of years of schooling and
total out-of-school work experience and we focus only on male
subjects and all the observable variables are treated as continuous.
The number of observations is equal to 5400.

The prior is set to: (ν = 10, S = ν · diag([300, 100, 20, 10]) ·

0.25, µ = ([20, 04, 17, 14])′, λ = 1, a = 3). We model the data
as FMMNwithm = 10. The results are based on 25,000 draws from
the posterior simulator with first 5000 draws discarded. Posterior
simulation takes approximately 40 min on a desktop with Intel
2.80 GHz processor and 4 GB of RAM memory. The numerical
standard errors for the draws from the predictive distribution are
on the level of 1% to 2% of the sample standard deviation. The
RNEs for the predictive distribution draws are all above 0.65. The
convergence of posterior is assessed through a separated partial
means test. In Fig. 6, we plot predictive density for hours worked
per week and hourly earnings conditional on a level of schooling
and prior work experience. We condition on schooling = {12, 16}
and work experience = {14, 18, 22}.
The figure shows how earnings increase with schooling and work
experience. Also, one can explore in the figure how the earnings
differ for part time and full time workers. Overall, the subsection
demonstrates that FMMNmodel can be a useful tool for estimation
of conditional distributions of multivariate variables.
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Fig. 6. Log of the predictive density of hourly earnings and weekly working hours conditional on work experience and schooling.
Appendix. Proofs

A.1. Continuous data

Proof (Theorem 1). First, note that

dL1(f (·), p(·|YT , Mm))

=

 
Θm

f (y) · p(θm|YT , Mm)dθm

−


Θm

p(y|θm, Mm) · p(θm|YT , Mm)dθm

 dy
≤


Θm

|f (y) − p(θm|YT , Mm)| · p(θm|YT , Mm)dθmdy

=


Θm


|f (y) − p(θm|YT , Mm)|dy

× p(θm|YT , Mm)dθm. (17)

Second, by the theorem assumptions, given ϵ > 0 there exists m
andθm ∈ Θm such that

dKL(f (y), p(y|θm, Mm)) <
ϵ

8
.

If θm ∈ Θ∗
m then

dL1(f (·), p(·|θm, Mm)) =


|f (y) − p(y|θm, Mm)|dy

≤ 2 dKL(f (·), p(·|θm, Mm))

= 2 min
θm∈Θm

dKL(f (·), p(·|θm, Mm))

≤ 2 dKL(f (·), p(·|θm, Mm)) <
ϵ

4
.

Since dL1(f (·), p(·|θ, Mm)) is uniformly continuous in θ by
Lemma 3 below, there exists δ > 0 such that ∀θ ∈ N(Θ∗

m) =

θ∈Θ∗

m
[θ̃ : ∥θ̃ − θ∥ < δ], dL1(f (·), p(·|θ, Mm)) < ϵ/2. This

inequality and (17) imply

dL1(f (·), p(·|YT , Mm)) ≤ 2P(N(Θ∗

m)c |YT , Mm)

+ P(N(Θ∗

m)|YT , Mm) ·
ϵ

2
.

By the theorem assumptions, R(YT ) ≡ P(N(Θ∗
m)c |YT , Mm) →

T→∞

0 a.s. So, dL1(f (·), p(·|YT , Mm)) < 2R(YT ) + ϵ/2 and

[dL1(f (·), p(·|YT , Mm)) < ϵ] ⊃


R(YT ) <

ϵ

4


.

As R(YT ) → 0 a.s., we have

P[dL1(f (·), p(·|YT , Mm)) < ϵ|D] ≥ P

R(YT ) <

ϵ

4
|D


→ 1

and

1 = P


∞
T=1

∞
t=T


R(Yt) <

ϵ

4


|D



≤ P


∞
T=1

∞
t=T

[dL1(f (·), p(·|Yt , Mm)) < ϵ]|D



= lim
T→∞

P


∞
t=T

[dL1(f (·), p(·|Yt , Mm)) < ϵ]|D


.

The same results follow for the conditional predictive density since

d(f (·|·), p(·|·, YT , Mm)) =


dL1(f (·|y−1), p(·|y−1, YT , Mm))

× f (y−1)dy−1

≤ 2dL1(f (·), p(·|YT , Mm)). �
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Proof (Theorem 2). First, let us show that

T−1 log p(YT |θm, Mm) =
1
T

T
t=1

log p(yt |θm, Mm)

a.s.
→ l(θm; Mm)

uniformly for all θm ∈ Θm. Note that

p(yt |θm, Mm) =

m
j=1

αj · φ(yt; µj,H−1
j )

≤ max
j=1,...,m

|Hj |
1/2

≤ λ
0.5d
m , ∀θm ∈ Θm.

Also,

log p(yt |θm, Mm) ≥

m
j=1

αj ·


log(2π)−d/2

+
1
2
log |Hj|

− 0.5(y − µj)
′Hj(y − µj)


≥ log(2π)−d/2

+ 0.5d log λm

− 0.5max
j

[y′Hjy − 2yHjµj + µ′

jHjµj]

≥ log(2π)−d/2
+ 0.5d log λm − 0.5λy′y

− ∥y∥max
j

∥Hjµj∥ − max
j

∥µ′

jHjµj∥.

Since eigenvalues ofHj are bounded above and away from zero and
since ∥Hj∥ and ∥µj∥ are bounded on Θm,

| log p(yt |θm, Mm)| ≤ q(yt),

where q(yt) is integrable because p(y|D) has finite second mo-
ments by the theoremassumptions. Also, log p(y|θm) is continuous
in θ andmeasurable in y. Thus, by Theorem2 in Jennrich (1969),we
get uniform a.s. convergence. l(θ; Mm) is continuous by the domi-
nated convergence theorem.

Second, let N = N(Θ∗
m), L(θ) = l(θ, Mm), L0 = max L(θ), and

L2 = maxθ∈Nc L(θ) < L0. We claim that there exists L1 such that
L2 < L1 < L0 and H = {θ : L(θ) > L1} ⊂ N . Suppose that
the claim is false. Then, ∀L1 < L0, ∃θ ∈ Nc such that L(θ) > L1.
Similarly, for a sequence Ln1 ↑ L0, there exists a sequence θn

∈ Nc ,
such that L(θn) > Ln1. SinceN

c is compact there exists a convergent
subsequence θnk → θ̄ ∈ Nc and L(θnk) → L(θ̄) = L0. Therefore,
θ̄ ∈ Nc and L(θ̄) = L0 and we get a contradiction to the state-
ment that maxθ∈Nc L(θ) < L0. Hence, there exists L1 and H such
that L2 < L1 < L0 and H = {θ : L(θ) > L1} ⊂ N . Then,

P(θ ∈ Nc
|YT , Mm)

P(θ ∈ N|YT , Mm)

≤


θ∈Nc P(YT |θ, Mm)p(θ |Mm)/p(YT |Mm)dθ
θ∈H P(YT |θ, Mm)p(θ |Mm)/p(YT |Mm)dθ

≤
P(θ ∈ Nc)

P(θ ∈ H)
·

sup
θ∈Nc

p(YT |θ, Mm)

inf
θ∈H

p(YT |θ, Mm)
. (18)

Note that P(θ ∈ H) > 0 because H is open and non-empty and the
prior is absolutely continuous by assumption. Since log is a strictly
monotone function, the density p(·|·) is always positive, and the
convergence to L(θ) uniform a.s.,

T−1 log

 sup
θ∈Nc

p(YT |θ, Mm)

inf
θ∈H

p(YT |θ, Mm)


= sup

θ∈Nc
T−1 log(p(YT |θ, Mm)) − inf

θ∈H
T−1 log(p(YT |θ, Mm))

→ sup
θ∈Nc

L(θ) − inf
θ∈H

L(θ) ≤ L2 − L1 < 0.
Consequently, the a.s. limit of (18) is 0 and P(θ ∈ N|YT , Mm)
→ 1. �

Proof (Theorem3). Parameter values θm for approximating f (y) by
FMMNmodel Mm are defined by

p(y|θm, Mm) =

m
j=1

F(Am
j )φ(y; µm

j , σm)

+ F(Am
0 )φ(y; 0, σ0), (19)

where σ0 is fixed, σm converges to zero as m increases, and µm
j ∈

Am
j . Since dKL is always non-negative,

0 ≤


log

f (y)
p(y|θm, Mm)

F(dy)

≤


logmax


1,

f (y)
p(y|θm, Mm)


F(dy).

We will use dominated convergence theorem (DCT) to show that
the last integral in the inequality above converges to zero as m
increases.

First, wewill show the point-wise convergence of the integrand
to zero a.s. F . For fixed y and a cube Cδm(y) with center y and side
length δm > 0

p(y|θm, Mm) =

m
j=1

F(Am
j )φ(y; µm

j , σm) + F(Am
0 )φ(y; 0, σ0)

≥ inf
z∈Cδm (y)

f (z)


j:Amj ⊂Cδm (y)

λ(Am
j )φ(y; µm

j , σm), (20)

where λ is the Lebesgue measure.
It is always possible to construct a partition, in which elements

Am
1 , . . . , Am

m are adjacent cubes with side length hm (λ(Am
j ) = hd

m
for j > 0) and for any y there existsM0 such that

∀m ≥ M0, Cδm(y) ∩ Am
0 = ∅. (21)

In Lemmas 1 and 2 below, the following bounds for the Riemann
sum in (20) are derived (the Riemann sum is not far from the
corresponding normal integral and the integral is not far from 1)
j:Amj ⊂Cδm (y)

λ(Am
j )φ(y; µm

j , σm)

≥ 1 −
3dδd−1

m hm

(2π)d/2σ d
m

−
8dσm

(2π)1/2δm
. (22)

Let δm, σm, hm satisfy the following

δm → 0, σm/δm → 0, hm/σ d
m → 0. (23)

Given ϵ > 0 there exists M1 such that for m ≥ M1 expressions in
(22) are bounded below by (1 − ϵ).

For any y at which f is continuous and positive there exists M2
such that for m ≥ M2, [f (y)/ infz∈Cδm (y) f (z)] ≤ (1 + ϵ) since
δm → 0.

For any m ≥ max{M0,M1,M2},

1 ≤ max

1,

f (y)
p(y|θm, Mm)


≤ max

1,
f (y)

inf
z∈Cδm (y)

f (z)(1 − ϵ)


≤

1 + ϵ

1 − ϵ
.

Thus, logmax{1, f (y)/p(y|θm, Mm)} → 0 for any y satisfying
f (y) > 0, which implies convergence a.s. F since f (y) > 0 on Y
except on a set of F measure zero by assumptions of Theorem 3.
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Second, we will establish an integrable upper bound on
logmax{1, f (y|x)/p(y|x, Mm)}.

p(y|θm, Mm) =

m
j=1

F(Am
j )φ(y; µm

j , σm)

+ F(Am
0 )φ(y; 0, σ0)

≥ [1 − 1Am0
(y)] · inf

z∈C1(r,y)
f (z)

×


j:Amj ⊂C1(r,y)

λ(Am
j )φ(y; µm

j , σm)

+ 1Am0
(y) · inf

z∈C0(r,y)
f (z)

× λ(C0(r, y))φ(y; 0, σ0). (24)

Lemmas 1 and 2 imply that the Riemann sum in (24) is bounded
below by 2−d

− 2−(d+1)
= 2−(d+1) for any m larger than some M4.

Parameter σ0 can be chosen so that

1 > 2−(d+1) > φ(y; 0, σ0)λ(C0(r, y)). (25)

This implies

logmax

1,

f (y)
p(y|Mm)



≤ logmax

1,
f (y)

inf
z∈C(r,y)

f (z) · φ(y; 0, σ0) · (r/2)d


≤ log

1
φ(y; 0, σ0)(r/2)d

× max

φ(y; 0, σ0)(r/2)d,
f (y)

inf
z∈C(r,y)

f (z)


≤ − log(φ(y; 0, σ0)(r/2)d) + log

f (y)
inf

z∈C(r,y)
f (z)

. (26)

Inequality (26) follows by (25). The first expression in (26) is
integrable by condition 2 in Theorem 3. The second expression in
(26) is integrable by condition 3 of Theorem 3.

Since we have established pointwise convergence and inte-
grable upper bound, we can apply the DCT. Henceforth, given
ϵ > 0∃M such that for any m > M and θm defined in (19),
dKL(f (·), p(·|θ, Mm)) ≤ ϵ. �

Lemma 1. Define a cube Cδ(y) = {µ ∈ Rd
: yi ≤ µi ≤ yi + δ, i =

1, . . . , d}. Let A1, . . . , Am be adjacent cubes with centers µj and side
length h such that Cδ(y) ⊂ ∪

m
j=1 Aj and δ > 3h. Define J = {j : Aj ⊂

Cδ(y)}. Then,
j∈J

λ(Aj)φ(y; µj, σ ) ≥


Cδ(y)

φ(µ; y, σ )dµ −
3dδd−1h

(2π)d/2σ d
.

By symmetry, this result holds for any cube with vertex at y and side
length δ. This implies that for cube Dδ(y) = {x : yi − δ/2 ≤ xi ≤

yi + δ/2, i = 1, . . . , d},
j:Aj⊂Dδ(y)

λ(Aj)φ(y; µj, σ ) ≥


Dδ(y)

φ(µ; y, σ )dµ

− 2d 3d(δ/2)
d−1h

(2π)d/2σ d

as long as Dδ(y) ⊂ ∪
m
j=1 Aj and δ > 6h.
Proof. For j ∈ J let Bj = {x : µji ≤ xi ≤ µji + h, i = 1, . . . , d} be a
rotated and shifted version of Aj so that the sides of Bj are parallel
to the sides of Cδ(y). Note that µj = argmaxµ∈Bj φ(µ; y; σ) and
therefore
j∈J

λ(Aj)φ(y; µj, σ ) =


j∈J

λ(Bj)φ(y; µj, σ )

≥


∪J Bj

φ(µ; y, σ )dµ

≥


Cδ(y)

φ(µ; y, σ )dµ

−


Cδ(y)\∪J Bj

φ(µ; y, σ )dµ.

Since {x : minJ µji ≤ xi ≤ maxJ µji, i = 1, . . . , d} ⊂ Cδ(y)∩[∪J Bj]

and maxJ µji − minJ µji ≥ δ − 3hd1/2, λ(Cδ(y) ∩ [∪J Bj]) ≥ (δ −

3hd1/2)d and

λ(Cδ(y) \ [∪J Bj]) = λ(Cδ(y)) − λ(Cδ(y) ∩ [∪J Bj])

≤ δd
− (δ − 3hd1/2)d ≤ 3dhd1/2δd−1,

where the last inequality follows by induction. Therefore,
Cδ(y)\∪J Bj

φ(µ; y, σ )dµ ≤ λ(Cδ(y) \ [∪J Bj])
1

(2π)d/2σ d

≤
3d3/2hδd−1

(2π)d/2σ d
. �

Lemma 2. Let Cδ(y) be a d-dimensional cube with center y and side
length δ > 0. Then,
Cδ(y)

φ(µ; y, σ )dµ > 1 −
8dσ

(2π)1/2δ
.

Note that this inequality immediately implies that for any sub-cube
of Cδ(y), C̃ , with vertex at y and side length δ/2, for example, C̃ =

Cδ(y) ∩ [µ ≥ y],
C̃
φ(µ; y, σ )dµ =

1
2d


Cδ(y)

φ(µ; y, σ )dµ >
1
2d

−
8dσ

2d(2π)1/2δ
.

Proof.
Cδ(y)

φ(µ; y, σ )dµ =


∩
d
i=1[|µi|≤δ/2]

φ(µ; 0, σ )dµ

= 1 −


∪
d
i=1[|µi|≥δ/2]

φ(µ; 0, σ )dµ

≥ 1 −

d
i=1


|µi|≥δ/2

φ(µi; 0, σ )dµi

= 1 − 2d


∞

δ/2
φ(µ1; 0, σ )dµ1

> 1 −
2d

(2π)1/2σ

×


∞

δ/2
exp


−

0.5(δ/2)µ1

σ 2


dµ1

= 1 −
2d

(2π)1/2σ

−σ 2

0.5(δ/2)

× exp

−

0.5(δ/2)µ1

σ 2

∞
δ/2
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= 1 −
8dσ

(2π)1/2δ
exp


−

0.5(δ/2)2

σ 2


> 1 −

8dσ
(2π)1/2δ

. �

Lemma 3. dL1(f (y), p(y|θ, Mm)) is uniformly continuous in θ .

Proof.

|dL1(f (y), p(y|θ1, Mm)) − dL1(f (y), p(y|θ2, Mm))|

=

 |f − p1| − |f − p2|
 ≤


|p1 − p2|

=


Bn[0]

|p1 − p2| +


Bn[0]c

p1 +


Bn[0]c

p2,

where Bn[0] is a closed ball with center 0 and radius n.

Bn[0]

p(y|θ, Mm) dy is continuous by the DCT (Bn[0] is bounded). Thus,
Bn[0]c

p(y|θ, Mm) dy = 1 −

Bn[0]

p(y|θ, Mm) dy is continuous in θ

and ∀ θ it is monotone in n (↘ 0). By Dini’s theorem it converges
to 0 uniformly. Therefore, ∃ n such that ∀ θ1, θ2 ∈ Θm
Bn[0]c

p1 +


Bn[0]c

p2 <
ϵ

2
.

p(y|θ, Mm) is continuous in y and θ and uniformly continuous on
Bn[0] × Θm. Hence, given ϵ > 0 ∃δ > 0 such that ∀ |θ1 − θ2| < δ,
Bn[0]

|p1 − p2| < ϵ
2 . �

A.2. Continuous and discrete data

The arguments used here are almost identical to the arguments
above. Therefore, only the differences in assumptions and addi-
tional steps that are necessary to deal with discrete data will be
provided.

Proof (Corollary 1, Extension of Theorem 1 to Discrete Observables
Case). The proof is identical to the one of Theorem 1. �

Proof (Corollary 1, Extension of Theorem 2 to Discrete Observables
Case). First, let us show that

T−1 log p(YT |θm, Mm) =
1
T

T
t=1

log p(yt |θm, Mm)

a.s.
→ l(θm; Mm)

uniformly for all θm ∈ Θm. Note that

p(yt |θm, Mm) =

m
j=1

αj · φ(yt,c; µj,c,H−1
j,c )

×


yt,−c

φ(y∗

t,−c |yt,c; µj,H−1
j )d(y∗

t,−c)

≤ max
j=1,...,m

|Hj,c |
1/2

≤ λ
0.5d
m , ∀θm ∈ Θm.

By construction, y−c = [a1l1 , b
1
l1
]× · · ·×[aKlK , bKlK ], where y−c ⊂ RK .

Define

δ = min

min
k,lk

{|bklk − aklk |}, 1


and

γ = max
max

k,lk
{aklk}

 , min
k,lk

{bklk}
 .

Note that δ is a finite number which is either the length of the
shortest possible interval or 1, and γ is the closest point to 0 in
the farthest away from 0 interval. Define Dy−c ⊂ y−c as Dy−c ≡

[a1l1 , a
1
l1
+δ]×· · ·×[aKlK , aKlK +δ] if aklk ≠ −∞ for all k ∈ {1, . . . , K}. If

for some k, aklk = −∞ use [bklk −δ, bklk ] instead of [aklk , a
k
lk
+δ] in the

definition of Dy−c . Note that if y∗
∈ Dy−c , then ∥y∗

∥ ≤
√
K(δ + γ ).

Then,

p(yt |θm, Mm) =

m
j=1

αj · φ(yt,c; µj,c,H−1
j,c )

×


yt,−c

φ(y∗

t,−c |yt,c; µj,H−1
j )d(y∗

t,−c)

≥

m
j=1

αj · φ(yt,c; µj,c,H−1
j,c )

×


Dyt,−c

φ(y∗

t,−c |yt,c; µj,H−1
j )d(y∗

t,−c).

Define yjt,−c as

yjt,−c(yt,c) = arg min
y∗t,−c∈Dyt,−c

φ(y∗

t,−c |yt,c; µj,H−1
j ),

where by construction ∥yjt,−c∥ ≤
√
K(δ + γ ). Define yjt =

(yt,c, y
j
t,−c). Note that

p(yt |θm, Mm) ≥

m
j=1

αjφ(yt,c; µj,c,H−1
j,c )

×


Dyt,−c

φ(yt,−c |yt,c; µj,H−1
j )d(y∗

t,−c)

≥

m
j=1

αjφ(yt,c; µj,c,H−1
j,c )φ(yjt,−c |yt,c; µj,H−1

j )δK

≥

m
j=1

αjφ(yjt; µj,H−1
j )δK .

Then,

log p(yt |θm, Mm) ≥

m
j=1

αj


K log δ + log(2π)−(d+K)/2

+
1
2
log |Hj| − 0.5(yj − µj)

′Hj(yj − µj)


≥ K log δ + log(2π)−(d+K)/2

+ 0.5(d + K) log λ

− 0.5max
j

[yj
′
Hjyj − 2yj

′
Hjµj + µ′

jHjµj]

≥ K log δ + log(2π)−(d+K)/2
+ 0.5(d + K) log λ

− 0.5λmax
j

yj′yj − max
j

∥yj∥ · ∥Hjµj∥

− 0.5max
j

∥µ′

jHjµj∥

≥ K log δ + log(2π)−(d+K)/2
+ 0.5(d + K) log λ

− 0.5λ(y′

cyc + K(γ + δ)2)

− (∥yc∥ +
√
K(γ + δ))max

j
∥Hjµj∥

− 0.5max
j

∥µ′

jHjµj∥.

Since eigenvalues ofHj are bounded above and away from zero and
since ∥Hj∥ and ∥µj∥ are bounded on Θm,

| log p(yt |θm, Mm)| ≤ q(yt),

where q(yt) is integrable because p(yc |D) has finite second
moments by the theorem assumptions. Also, log p(y|θm) is
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continuous in θ and measurable in y. Thus, by Theorem 2
in Jennrich (1969), we get uniform a.s. convergence. l(θ; Mm) is
continuous by the dominated convergence theorem. The rest of the
argument is the same as in Theorem 2. �

Proof (Corollary 2). Let Am
j,i = Am

j × Ai, where Am
j is an element

of partition of Yc , Ai = [a1i1 , b
1
i1
] × · · · × [aKiK , bKiK ] is an element

of the partition of the space for the latent variables, RK , defined by
possible values of the discrete observables, and

i = (i1, . . . , iK ) ∈ I
≡ {(l1, . . . , lK ) : lk ∈ {1, . . . ,Nk}, k ∈ {1, . . . , K}}.

As m increases the Lebesgue measure of Am
j , j > 0, decreases and

the fine part of the partition Am
1 , . . . , Am

m covers larger and larger
part of Yc , where Yc ⊂ Rd. Parameter values for approximating
F(y) = F(yc, y−c) by Mm are defined by

p(y|θm, Mm) =


i∈I

m
j=1

F(Am
j,i)


y−c

φ(y∗

−c |yc; µm
j,i, σm)

× d(y∗

−c) · φ(yc; µm
j , σm)

+ F(Am
0,i)


y−c

φ(y∗

−c |yc; µm
j,i, σm)

× d(y∗

−c) · φ(yc; 0, σ0), (27)

where σ0 is fixed, σm converges to zero as m increases, µm
j,i ∈ Am

j,i,
µm

j,i = [µm
j

′, µi
′
]
′, µm

j is the center of Am
j and µi is the center of Ai.

Since dKL is always non-negative,

0 ≤


log

f (y)
p(y|θm, Mm)

F(dy)

≤


logmax


1,

f (y)
p(y|θm, Mm)


F(dy).

We will use dominated convergence theorem (DCT) to show that
the last integral in the inequality above converges to zero as m
increases.

First, wewill show the point-wise convergence of the integrand
to zero a.s. F . For a fixed y = (yc, y−c) define a cube Cδm(yc) ⊂ Rd

with a center yc and side length δm > 0. Then,

p(y|θm, Mm) =


i∈I

m
j=1

F(Am
j |Ai)F(Ai)

×


y−c

φ(y∗

−c |yc; µm
j,i, σm)d(y∗

−c)

× φ(yc; µm
j , σm) + F(Am

0 |Ai)F(Ai)

×


y−c

φ(y∗

−c |yc; µm
j,i, σm)d(y∗

−c)

× φ(yc; 0, σ0)

≥

m
j=1

F(Am
j |Ai∗)F(Ai∗)

×


y−c

φ(y∗

−c; µi∗ , σm)d(y∗

−c)

× φ(yc; µm
j , σm),

where i∗ is such that y−c = Ai∗ and therefore F(Ai∗) = f (y−c).
Note that F(·) and f (·) are used interchangeably for discrete
components. Furthermore, µi∗ is an interior point of y−c by
construction. Given ϵ > 0 since σm → 0, ∃M0 such that ∀m ≥ M0,
y−c

φ(y∗

−c |yc; µm
j,i∗ , σm)d(y∗

−c) =


y−c

φ(y∗

−c; µi∗ , σm)d(y∗

−c)

> (1 − ϵ).
Therefore,

p(y|θm, Mm) ≥ (1 − ϵ)F(y−c)


m
j=1

F(Am
j |y−c)φ(yc; µm

j , σm)


≥ (1 − ϵ)F(y−c) inf

z∈Cδm (yc )
f (z|y−c)

×


j:Amj ⊂Cδm (yc )

λ(Am
j )φ(yc; µm

j , σm), (28)

where λ is the Lebesgue measure.
As long as δm is bounded above it is always possible to construct

a partition, in which elements Am
1 , . . . , Am

m are adjacent cubes with
side length hm (λ(Am

j ) = hd
m for j > 0) and for any yc there exists

M1 such that

∀m ≥ M1, Cδm(yc) ∩ Am
0 = ∅. (29)

In Lemmas 1 and 2 below, the following bounds for the Riemann
sum in (20) are derived (the Riemann sum is not far from the
corresponding normal integral and the integral is not far from 1)
j:Amj ⊂Cδm (yc )

λ(Am
j )φ(yc; µm

j , σm)

≥ 1 −
3dδd−1

m hm

(2π)d/2σ d
m

−
8dσm

(2π)1/2δm
. (30)

Let δm, σm, hm satisfy the following

δm → 0, σm/δm → 0, hm/σ d
m → 0. (31)

Given ϵ > 0 there exists M2 such that for m ≥ M2 expressions in
(30) are bounded below by (1 − ϵ).

By assumption of the corollary f (yc |y−c) is continuous in yc
on Yc a.s. F. Then, for any yc and y−c satisfying f (yc |y−c) ·

f (y−c) > 0 there exists M3 such that for m ≥ M3,
[f (yc |y−c)/ infz∈Cδm (yc ) f (z|y−c)] ≤ (1 + ϵ) since δm → 0.

For any m ≥ max{M0,M1,M2,M3},

1 ≤ max

1,

f (y)
p(y|θm, Mm)



≤ max

1,
f (yc |y−c)f (y−c)

f (y−c) inf
z∈Cδm (yc )

f (z|y−c)(1 − ϵ)2


≤ max

1,
f (yc |y−c)

inf
z∈Cδm (yc )

f (z|y−c)(1 − ϵ)2

 ≤
1 + ϵ

(1 − ϵ)2
.

Thus, logmax{1, f (y)/p(y|θm)} → 0 for any y satisfying f (y) > 0,
which implies convergence a.s. F .

Second, we will establish an integrable upper bound on
logmax{1, f (y)/p(y|θm)}.

p(y|θm, Mm) =


i∈I

m
j=1

F(Am
j |Ai)F(Ai)

×


y−c

φ(y∗

−c |yc; µm
j,i, σm)d(y∗

−c)

× φ(yc; µm
j , σm) + F(Am

0 |Ai)F(Ai)

×


y−c

φ(y∗

−c |yc; µm
j,i, σm)d(y∗

−c)

× φ(yc; 0, σ0)

≥

m
j=1

F(Am
j |Ai∗)F(Ai∗)
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×


y−c

φ(y∗

−c; µi∗ , σm)d(y∗

−c)

× φ(yc; µm
j , σm) + F(Am

0 |Ai∗)F(Ai∗)

×


y−c

φ(y∗

−c; µi∗ , σm)d(y∗

−c)

× φ(yc; 0, σ0).

Since σm → ∞ there existsM4 such that ∀m > M4
y−c

φ(y∗

−c; µi∗ , σm)d(y∗

−c) > 0.5.

Then,

p(y|θm, Mm) ≥ f (y−c) · 0.5


m
j=1

F(Am
j |y−c)φ(yc; µm

j , σm)

+ F(Am
0 |y−c)φ(yc, 0, σ0)


≥ [1 − 1Am0

(yc)] · f (y−c) · 0.5

× inf
z∈C1(r,yc ,y−c )

f (z|y−c)

×


j:Amj ⊂C1(r,yc ,y−c )

λ(Am
j )φ(yc; µm

j , σm)

+ 1Am0
(yc) · f (y−c) · 0.5 · inf

z∈C0(r,yc ,y−c )
f (z|y−c)

× λ(C0(r, yc, y−c))φ(yc; 0, σ0). (32)

Lemmas 1 and 2 imply that the Riemann sum in (32) is bounded
below by 2−d

− 2−(d+1)
= 2−(d+1) for any m larger than some M5.

Parameter σ0 can be chosen so that

1 > 2−(d+1) > φ(yc; 0, σ0)λ(C0(r, y)). (33)

This implies

logmax

1,

f (y)
p(y|θm, Mm)



≤ logmax

1,
f (yc |y−c )f (y−c )

f (y−c )0.5 inf
z∈C(r,yc ,y−c )

f (z|y−c ) · φ(yc ; 0, σ0) · (r/2)d


≤ log

1
0.5φ(yc ; 0, σ0)(r/2)d

× max

0.5φ(yc ; 0, σ0)(r/2)
d,

f (yc |y−c )

inf
z∈C(r,yc ,y−c )

f (z|y−c )


≤ − log(0.5φ(y; 0, σ0)(r/2)

d) + log
f (yc |y−c )

inf
z∈C(r,yc ,y−c )

f (z|y−c )
. (34)

Inequality (34) follows by (33). The first expression in (34) is
integrable by corollary assumption 2. The second expression in
(34) is integrable by corollary assumption 3.

Since we have established pointwise convergence and inte-
grable upper bound, we can apply the DCT. Henceforth, given
ϵ > 0∃M such that for any m > M and θm defined in (27),
dKL(f (·), p(·|θ, Mm)) ≤ ϵ. �
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