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Abstract

Previous studies find that some social groups are stuck in poverty traps because of network

effects. However, these studies do not carefully analyze how these groups overcome low hu-

man capital investment activities. Unlike previous studies, the model in this paper includes

network externalities in both the human capital investment stage and the subsequent career

stages. This implies that not only the current network quality, but also the expectations about

future network quality affect the current investment decision. Consequently, the coordinated

expectation among the group members can play a crucial role in the determination of the final

state. I define “overlap” for some initial skill ranges, whereby the economic performance of a

group can be improved simply by increasing expectations of a brighter future. I also define

“poverty trap” for some ranges, wherein a disadvantaged group is constrained by its history,

and I explore the egalitarian policies to mobilize the group out of the trap.

Keywords: Group Inequality, Network Externality, Overlap, Poverty Trap.

JEL Code: I30, J15, Z13

2



1 Introduction

A human being is socially situated such that familial and communal resources explicitly influence his acqui-

sition of human capital through various routes, including through training resources, nutritional and medical

provision, after-school parenting, peer effects, role models, and even the psychological processes that shape

one’s outlook on life. Even after the skill acquisition period, one’s social network influences his economic suc-

cess through various routes, such as mentoring, job searches, business connections, and information channeling.

Empirical studies concerning social externalities demonstrate the persistence of network effects, which include

community effects (Kain 1968, Borjas 1995, Cutler and Glaeser 1997, Weinberg et al. 2004), job information

effects (Rees and Shultz 1970, Blau and Robins 1990, Munshi 2003), peer effects (Hoxby 2002, Falk and Ichino

2005, Hanushek et al. 2009), and business network effects (Fafchamps and Minten 1999, Khwaja et al. 2009).

An extensive body of sociological literature has been devoted to the topic, beginning with the seminal work

by Granovetter (1974).1 These studies imply that the persistence of a social group’s low economic status is

generated by group-level influences on individuals’ skill investment activities and economic outcomes.

A number of theoretical works emphasize network effects and the subsequent development bias that gen-

erates between-group disparities. Some of these studies focus on network externalities in the human capital

investment stage. For example, Becker and Tomes (1979) and Loury (1981) explain the persistence in relative

economic status across generations via the effects of parental income on offspring’s education. Akerlof (1997)

argues that individual concern for status and conformity are the primary determinants of an individual’s

educational attainment, child bearing, and law-breaking behaviors. Lundberg and Startz (1998) argue that

group disparities in earnings can persist indefinitely when the average level of human capital in a community

affects the accumulation of human capital of the following generations. In a related work, Bowles, Loury and

Sethi (2007) prove the instability of an equal society in a highly segregated economy under the interpersonal

spillovers in human capital accumulation and the production complementarity between high and low skill

labor. Other works focus on network externalities in the subsequent career stages. For example, Montgomery

(1991, 1994) suggests that the widespread use of employee referrals combined with a tendency to refer others

within individuals’ social networks might generate persistent inequalities between groups of workers. More

recently, Calvó-Armengol and Jackson (2004, 2007) argue that differences in collective employment histories

and the consequent asymmetry of job information produce sustained inequality in wages and drop-out rates
1Ioannides and Loury (2004) and Durlauf and Fafchamps (2006) provide a rich survey of the literature on this topic.
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across social groups.

Although theoretical works on the topic find that some groups are stuck in poverty traps because of network

effects, they do not provide a rich analysis of how these groups can overcome the low human capital investment

activities. In their models, multiple equilibria of skill investment rates are self-confirmed under the presence of

strong network externalities. What can we say about the skill levels between those stationary points? How can

a group with a lower skill investment rate change the skill investment behaviors of its group members? In the

theoretical models, players are assumed to be myopic. However, what if they are farsighted and can cooperate

with each other? This paper tries to answer these questions by suggesting that coordinated expectations

among group members play a critical role in the determination of a group’s skill investment activities.

As mentioned earlier, previous studies focus on network externalities in either the human capital investment

stage or the subsequent career stages. Externalities in the former stage alter the cost to achieve skills and

those in the latter stages alter the benefits from skill investments. Unlike previous studies, the theoretical

model in this paper allows both types of externalities. Therefore, not only the current network quality, but also

the expectations regarding future network quality affect current invest decisions. This implies that multiple

equilibrium paths can exist for a certain range of initial skill levels. Within that range, a group’s economic

performance can be improved simply by increasing expectations for a brighter future. This provides rational

support for the argument that some social groups are not constrained by their history but can raise themselves

up “by their bootstraps.” However, some groups may suffer from very low network quality if their skill levels

are far below a certain range. This provides rational support for the argument that some groups may not

escape their low skill investment activities without external interventions.

This paper illustrates the mechanism through concrete examples. The model considers both kinds of

network externalities. These two effects operate via different channels. For network externalities in the

education period, the change in a group’s status tends to be caused by factors in the past; by altering skill

investment cost, the current stock of network human capital directly affects the investment rate in a newborn

cohort. In contrast, for network externalities in the working period, the change in a group’s status tends to

be affected by factors in the future; by altering the future benefits to skill acquisition, the expected success

of one’s network influences skill investment in an entering cohort. The latter effect implies a unique feature

of collective action: the possibility of group members acting together to improve or deteriorate the quality

of a group’s social network. For instance, suppose that a group’s network quality is relatively poor but that

4



a newborn cohort happens to believe that the quality of the group’s network will be better in the future. If

this belief leads more newborn group members to acquire skills, then the next cohort will find that the overall

network quality has improved due to the enhanced skill investment of the previous cohort. If they and the

following cohorts continue to hold the optimistic view toward the future, they will maintain the enhanced

skill investment rate and the quality of group’s social network will improve over time – thereby justifying the

optimistic beliefs of earlier cohorts. However, suppose that the newborn cohort holds a pessimistic view that

the network quality will be even worse in the future. Fewer members invest in skill achievement because the

expected benefits are fewer. If the following cohorts continue to hold the pessimistic view, the network quality

will deteriorate over time. Thus, this pessimistic belief could also be self-fulfilling. This nature of possible

collective actions stresses the importance of coordinated expectations across different time cohorts. Whether

optimism or pessimism persists across cohorts determines the final economic state of a social group.

However, collective action through coordinated beliefs may not be feasible for all social groups with unequal

network quality. The potential impact of altered beliefs is restricted by the strength of education period

network externalities. The skill improvement that occurs due to coordinated optimism may not be feasible if

the negative influence of the current network quality is too strong. This is the situation of “the past” that

traps disadvantaged groups.

Therefore, the analysis of the dynamic structure of network externalities focuses on the identification of the

network quality range in which both the optimistic and the pessimistic expectations are feasible for the group

members. Krugman (1991) denoted the range with multiple equilibrium paths by overlap in his influential

argument for the relative importance of history and expectations. In his argument, within an overlap, the final

economic state is determined by expectations toward the future, while it is determined by history outside an

overlap. Unlike his model with a fixed population, my model is developed based on the overlapping generation

framework. The model emphasizes the importance of belief coordination over the long-term horizon: the

expectations coordinated across the different time cohorts impact the dynamic path to be taken.

If there is no overlap, then history is always decisive. With greater overlap, expectations play a greater role

in the determination of the final state. The model developed in this paper proves that the size of an overlap is

determined by the relative strength of working-period network externalities over the education period network

externality. This is consistent with the facts that the education period network externality operates as a

historical force that restricts a group to be subject to the current network quality and that the working period
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network externalities operate as a mobilization force that leads a group to enhance (shrink) the skill investment

activities by holding an optimistic (pessimistic) view about the future network quality.

Finally, the model in this paper provides some new perspectives on egalitarian policies such as affirmative

action by considering economic agents’ forward-looking behaviors. This point distinguishes the paper from

other papers concerning the egalitarian policies whose main focus is on the equilibrium analysis (e.g., Coate

and Loury 1993, Fryer and Loury 2007). If the initial network quality of a social group is far below the

“overlap”, the group may be trapped by the negative influence of network effects, and an active state role

is required to enhance the group’s skill level to enter the “overlap”. However, if the network quality of a

social group is already in the overlap range, the active state role would not have a significant impact on the

group’s skill level. Instead, an emphasis on coordinated optimism among the disadvantaged group members

should be pursued, although this fact is often ignored in policy debates. Civic leaders, civic organizations,

religious groups, and governments may all contribute to the encouragement of collective optimism. Therefore,

an effective policy to mobilize a disadvantaged group out of the poverty trap first requires active governmental

intervention and then requires societal belief coordination. A policy that fails in either respect cannot be

successful in helping the group to advance as much as an advantaged group. This point is illustrated further

later in this paper in the examination of a multiple group society.

The paper is organized into the following sections. Section 2 describes the basic structure of the model with

social network externalities. Section 3 develops the dynamic model with the newborn cohort’s forward-looking

decision making and the dynamic evolution of group skill levels. Section 4 identifies multiple stationary states

in the dynamic model. Section 5 identifies the equilibrium paths to those stationary states and the consequent

overlap. In Section 6, we extend the model to examine a multiple group society with social interactions

between groups and discuss the egalitarian policies to mobilize the disadvantaged groups out of the poverty

trap. Section 7 provides study conclusions.

2 Social Externalities and Skill Investment Decision

Consider a social group with a large population of workers. A worker is subject to the “Poisson death process”

with parameter α: in a unit period, each individual faces α chances to die. We assume that the total population

of the group is constant at N , implying that the α fraction of the group’s population is replaced by newborn
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group members in a unit period. Each worker is either skilled or unskilled. Let st ∈ [0, 1] denote the fraction

of skilled workers in the group at time t, which is called the group skill level at time t. An agent’s neighbors

are n random draws from the group’s population, and n is large enough that the quality of an agent’s network

is approximately equal to the group skill level st.2

At this stage, we examine the dynamics of social network externalities within a social group. In the second

part of this paper, we extend this to allow social interactions between social groups. With the extension, one’s

network quality is no longer equal to the group skill level st, but is also affected by the skill levels of other

social groups. The degree of segregation in the society plays a crucial role in the determination of the influence

of one’s own group skill level.3

A newborn’s innate ability a is a random draw from a distribution G(a). Each newborn agent born with an

innate ability level a decides whether to be skilled or not during his early days of life. Each newborn individual

at time t makes a skill investment decision by comparing the cost of skill acquisition with the expected benefits

of investment. The cost to achieve a skill at time t depends on innate ability a ∈ (−∞,∞) and the quality

of social network at time t as suggested by Bowles, Loury and Sethi (2007): Ct ≡ C(a, st). The C(a, st) is a

decreasing function in both arguments a and st. The cost includes both the mental and physical costs that

are incurred for the skill achievement. The lower one’s innate ability or the worse the quality of one’s social

network, the more mentally stressful the skill acquisition process is or the more materials he must spend on

the achievement.

The expected benefits of investment to a newborn individual born at time t, Πt ∈ (0,∞), is the net benefits

of his skill investment to be realized over his whole lifetime from time t until he dies. Let us assume the base

level salary for a skilled worker is w1 and w0 for an unskilled worker, in which w1 > w0. A worker’s neighbors

at time t are composed of the nst number of skilled workers and the n(1 − st) number of unskilled workers.

Let φij(x) denote the extra benefits of having x number of j type workers in a i type worker’s social network,

in which φij(0) = 0 for any i, j ∈ {s, u}.

First, φss(nst) denote the extra benefits of having nst skilled workers in a skilled worker’s social network,

which is an increasing function of nst. The benefits are both psychological and material. For instance, job
2In the extreme case that n is equal to the population size minus one (N − 1), agents are all connected to one another. This

extreme network is called complete network in the network literature (Jackson, 2008).
3Note that we do not allow the difference in the network quality between a skilled and an unskilled worker in the given model.

However, the extension to this dimension would not generate meaningful changes in major results as long as the network quality
of a skilled worker is significantly affected by the skill level of his own group.
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information flows along the synapses of the social network (Granovetter 1974). The more skilled workers he

has in his network, the more likely he is to find an appropriate job position for his specific skills (Holzer 1988).

A skilled worker can be more efficient in contacting customers and handling specific work troubles when he

has more skilled workers in his network. (Ozgen and Baron 2007). He may gain comfort and mentoring from

the informal network, and the cost of maintaining jobs may decline with more skilled workers around him

(Castilla 2005, Rockoff 2008).

In the same way, unskilled workers such as car mechanics, construction workers and shop attendants would

obtain extra benefits from having unskilled workers in his network. φuu(n(1 − st)) denote the extra benefits

of having n(1− st) unskilled workers in an unskilled worker’s social network, which is an increasing function

of n(1 − st). For example, a car mechanic searching for a place to work for will find a car center that fits

his specialty better when he has more car mechanics in his network. He can be more efficient in handling

specific mechanical problems in his work when he can confer with more mechanics. A construction worker (or

a shop attendant) will have more chances to find new job openings with more construction workers (or shop

attendants) in his network.

Even a skilled worker may obtain extra benefits from having unskilled workers in his network, denoted by

φsu(n(1− st)) , but to a lesser degree than an unskilled worker would obtain: φ′su(n(1− st)) < φ′uu(n(1− st)).

In a symmetric way for having skilled workers, we have φ′us(nst) < φ′ss(nst). Thus, the net benefits of being a

skilled worker realized at time τ is ws+φss(nseτ )+φsu(n(1−seτ ))−wu−φuu(n(1−seτ ))−φus(nseτ ), in which seτ

indicates the expected network quality at the future point of time τ . Replacing the baseline salary differential

ws−wu with δ̄, and φss(nseτ ) +φsu(n(1− seτ ))−φuu(n(1− seτ ))−φus(nseτ ) with f(seτ ), the lifetime net benefits

of skill investment to an agent born at time t are summarized as

Πe
t =

∫ ∞
t

[δ̄ + f(seτ )]e−(ρ+α)(τ−t)dτ, (1)

where ρ is a time-discounting factor and α is a Poisson death rate. Also note that f ′(seτ ) > 0, which implies

the social increasing returns emphasized by Acemoglu(1996). We assume that δ̄ is big enough that δ̄+f(0) > 0

so that the net benefits of being skilled is always positive. Thus, the net benefits of skill investment Πe
t are

an increasing function of both the baseline salary differential δ̄ and the sequences of expected network quality

{seτ}∞τ=t: Πe
t ≡ Π(δ̄, {seτ}∞τ=t). The higher rate of return on skill investment with the more skilled workers in
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the social group seems natural with the existence of social network externalities as long as the group’s skill

level does not affect significantly the aggregate skill composition of the economy.4

An agent born at time t with an innate ability a commits a skill investment if and only if

C(a, st) ≤ Π(δ̄, {seτ}∞τ=t). (2)

The notable feature of this argument is that one’s skill investment is affected by both the current network

externalities in the skill acquisition period and the future network externalities over the labor market phase

of his career. The interplay between the two kinds of network externalities has not yet been explored by other

theoretical works including recent developments by Bowles et al. (2007) and Calvó-Armengol and Jackson

(2004). The above formula generates a unique threshold ability level such that newborn individuals of the

social group whose innate ability is at least the threshold invest in the skill acquisition. Let us define a function

A that represents the unique threshold ability ã: ãt ≡ A(st,Πe
t ). Using the distribution of the innate ability

level G(a), the fraction of individuals born at time t who invest in the skill, denoted by xt, is expressed by

xt = 1−G(A(st,Πe
t )). (3)

3 Dynamic System with Social Network Externalities

The skill investment of the newborns can be approximated by the following procedure. Consider a very short

time interval between t and t + ∆t. Suppose that, at the beginning of the interval, the randomly chosen

α∆t fraction of the group’s population, which is the N · α∆t number of workers, die, and the same number

of agents are newly born. The N · (1 − α∆t) workers of the group survive until t + ∆t. At the end of the

interval, the newborn agents incur the cost of skill achievement. Then, the threshold level of ability ã for

the skill investment is determined by the following equation: C(ã, st) = Π(δ̄, {seτ}∞τ=t+∆t). The fraction of

the individuals who are born at time t who invest in skill (xt) is 1 − G(A(st,Πe
t+∆t)). The total number of

skilled workers at time t+ ∆t will be the sum of skilled workers in the surviving population and those in the

newborn cohort: N · (1−α∆t) · st +N ·α∆t · [1−G(A(st,Πe
t+∆t))]. Thus, the group skill level at time t+ ∆t

4However, some scholars even suggest that the skill premium may depend positively on the the aggregate skill composition
given the market frictions. For example, Acemoglu (1996) develops a mechanism for social increasing returns that the rate
of return on human capital of a worker is increasing in the average human capital of the workforce when the labor market is
characterized by costly search.
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is approximated as

st+∆t ≈ (1− α∆t) · st + α∆t · [1−G(A(st,Πe
t+∆t))]. (4)

Rearranging the equation gives us

∆st
∆t
≡ st+∆t − st

∆t
≈ α

[
1−G(A(st,Πe

t+∆t))− st
]
. (5)

Taking ∆t→ 0, we achieve the evolution rule of a group’s skill level st,

ṡt = α [1−G(A(st,Πe
t ))− st] . (6)

This can be expressed as ṡt = α [xt − st] because of equation (3). If the fraction of newborn agents who invest

in skill (xt) is greater than the current skill level of the group (st), the network quality improves at time t.

Otherwise, it declines.

Also, taking the derivative with respect to time t in equation (1), we have the evolution rule of the net

benefits of skill investment Πe
t ,

Π̇e
t = (ρ+ α)

[
Πe
t −

δ̄ + f(st)
ρ+ α

]
. (7)

If a normalized level of the currently accrued benefits of being skilled
(
δ̄+f(st)
ρ+α

)
is greater than the lifetime

benefits of being skilled that are expected to accrue from now until death (Πe
t ), the lifetime benefits of being

skilled expected to accrue from the next time point t + ∆t to the death (Πe
t+∆t) would be smaller than its

current level: Πe
t+∆t < Πe

t . If they are equal, the lifetime net benefits of skill investment would not change

within the short time interval ∆t: Πe
t+∆t = Πe

t .

The group skill level st is constantly adjusted by the level of skill investments among the newborn cohort,

which means that it is a flow variable, which cannot make a sudden jump at a point of time. However, the

lifetime benefits of skill investment Πe
t depend on the expectations about future network quality. By altering

the expectation of {seτ}∞τ=t, the lifetime benefits can make a sudden jump at any point of time. Thus, it is

a jumping variable. The dynamic system with network externalities that includes a flow variable st and a
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jumping variable Πe
t is therefore summarized by the following equations:

ṡt = α(xt − st), in which xt = 1−G(A(st,Πe
t )), (8)

Π̇e
t = (ρ+ α)

[
Πe
t −

δ̄ + f(st)
ρ+ α

]
, (9)

and the two isoclines of the time dependent variables are represented by

ṡt = 0 Locus : st = 1−G(A(st,Πe
t )), (10)

Π̇e
t = 0 Locus : Πe

t =
δ̄ + f(st)
ρ+ α

. (11)

For further analysis of this dynamic system without damaging its essential structure, we introduce the

following linear functional forms of the cost function C(a, st) and the benefits function f(st): C(a, st) =

c0−ψa−pst and f(st) = f0 +qst, where p represents the influence of the education period network externality,

and q represents the influence of the working period network externality. ψ represents the cost sensitivity to

the innate ability level a. The threshold ability level (ã) for the skill achievement is obtained from the equation

C(ã, st) = Πe
t :

A(st,Πe
t ) =

c0 − pst −Πe
t

ψ
. (12)

In order to avoid the massive complications, the model in this paper uses the above linear functional forms.

Readers will be able to find that the major results of this paper are derived with the general forms of the cost

function C(a, st) and the benefits function f(st) without the artificial linearization.

4 Multiple Steady States

In this section, we check the possible multiple steady states in the given dynamic system. We start with the

simplest case wherein the innate ability is equal across the population: a ≡ ā. Then, we examine the case

with the general form of the ability distribution.
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4.1 Steady States with Unique Ability Level

In the unique system with the equal innate ability ā , the investment rate among the newborns is either xt = 1

or xt = 0. All of the newborn agents at time t invest in skill achievements when the expected benefits are

no less than the cost: xt = 1 with Πe
t ≥ C(ā, st)(= c0 − ψā − pst). This implies that the equation ṡt = 0

holds when Πe
t ≥ c0 − ψā − p and st = 1 as xt = st = 1. Also, for the given st = 1, the equation Π̇e

t = 0

holds when Πe
t = δ̄+f0+q

ρ+α , according to equation (11). Therefore, there exists a steady state with st = 1 when

δ̄+f0+q
ρ+α ≥ c0 − ψā− p. Let us normalize δ̄

ρ+α as δ̄′, which represents the lifetime level of the wage differential∫∞
t
δ̄ · e−(ρ+α)(τ−t)dτ , and normalize ρ

ρ+α and f0
ρ+α as ρ′ and f ′0. The high investment rate with xt = 1 and

the high quality of the social network with st = 1 is a steady state when the composite network externalities

(p+ q′) are large enough that p+ q′ ≥ c0 − ψā− δ̄′ − f ′0.

None of the newborns invest in the skill when the expected benefits is smaller than the cost, xt = 0 with

Πe
t < C(ā, st)(= c0 − ψā − pst). This implies that the equation ṡt = 0 holds when Πe

t < c0 − ψā and st = 0

as xt = st = 0. For the given st = 0, the equation Π̇e
t = 0 holds when Πe

t = δ̄+f0
ρ+α (equation (11)). Therefore,

another steady state that includes the low investment rate xt = 0 and the low quality social network with

st = 0 exists when the following holds: c0 −ψā− δ̄′ − f ′0 > 0. The two steady states are displayed in Figure 1

with the two isocline loci.

Proposition 1. Given a unique innate ability level ā for all the newborns and assuming c0−ψā− δ̄′−f ′0 > 0,

multiple steady states exist, (sl,Πl) = (0, δ̄′ + f ′0) and (sh,Πh) = (1, δ̄′ + f ′0 + q′) , if and only if the composite

network externalities (p+ q′) are big enough that p+ q′ ≥ c0 − ψā− δ̄′ − f ′0.

This proposition proves that sufficient network externalities must be present for multiple steady states to

exist. In addition, under the absence of network externalities, a unique steady state always exists. If the

base salary differential δ̄′ is big enough, then the high network quality (st = 1) is self-confirmed at the unique

steady state. Otherwise, the low network quality (st = 0) is self-confirmed.

Corollary 1. Given a unique innate ability level ā for all the newborns, there exists a unique steady state

under the absence of network externalities (p = q = 0). The unique steady state is (1, δ̄′+f ′0) if δ̄′ ≥ c0−ψā−f ′0

and (0, δ̄′ + f ′0) otherwise.
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4.2 Steady States with Ability Distribution G(a)

In the simplest case with a unique ability label ā, we have shown that the multiplicity of steady states is

generated by the influence of network externalities, and, without the network externalities, the multiplicity

is not achieved. In this section, we confirm this conclusion with the more general form of the innate ability

function G(a). Suppose G(a) is S-shaped. Then, there exists â such that G(a)′′ > 0 for any a ∈ (−∞, â) and

G(a)′′ < 0 for any a ∈ (â,∞), which implies that its PDF g(a) has one peak at â (e.g., a bell-shaped g(a)).

The ṡt = 0 locus in equation (10) is represented by (st,Πe
t )s that satisfy the following two equations, which

are associated with the threshold ability level (ã) for the skill achievement.


st = 1−G(ã)

ã = A(st,Πe
t )

(13)

The first is denoted by the solid curve in Panel A of Figure 2 in the (st, ã) domain, and the second is denoted

by the dotted lines for each level of Πe
t (iso-Π lines) in the same panel. The slope of the ṡt = 0 locus is

obtained through the implicit function theorem: defining a function F as F = 1 − G(A(st,Πe
t )) − st, we

have dΠe
t

dst

∣∣
ṡt=0

(
≡ − Fs

FΠ

)
= −G

′(ã)·As+1
G′(ã)·AΠ

. Because As = −pψ−1 and AΠ = −ψ−1 (equation (12)), we have the

following lemma.

Lemma 1. The slope at an arbitrary point (s′,Π′) on the ṡt = 0 locus is ψ
g(ã′) − p, in which ã′ = A(s′,Π′)

and ã′ = G−1(1− s′).

For the specific ability level â under which g(a) is maximized, the corresponding ŝ on the ṡt = 0 locus is

ŝ ≡ 1−G(â), and the corresponding Π̂ is the Πe
t that satisfies â = A(ŝ,Πe

t ): Π̂ ≡ c0 − ψâ− pŝ.

Suppose the Π̇e
t = 0 locus passes through the specific point (ŝ, Π̂), as displayed in Panel B of Figure 2.

Note that the slope of the ṡt = 0 locus, ψ
g(ã) − p, is minimized at the point because g(ã) is maximized with

ã = â. In this case, it is obvious that multiple steady states exist if and only if the slope of the Π̇e
t = 0 locus is

greater than that of the ṡt = 0 locus at the point (ŝ, Π̂): q′ > ψ
g(â) −p. Thus, we conclude that the multiplicity

of the steady states is achieved when the composite influence of the network externalities measured by p+ q′

is big enough that p+ q′ > ψ
g(â) .

Proposition 2. Suppose that the Π̇e
t = 0 locus passes through (ŝ, Π̂) on the ṡt = 0 locus, in which A(ŝ, Π̂) =
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â. Three steady states exist if and only if the composite network externalities (p + q′) are big enough that

p+ q′ > ψ
g(â) .

Let us denote the three steady states by El(sl,Πl), Em(sm,Πm) and Eh(sh,Πh), in which sl < sm(= ŝ) <

sh, as displayed in Figure 2. With the low quality social network sl now and in the future, the expected

benefits of skill investment are low (Πl). With the low level of the network quality sl together with the low

level of benefits to investment Πl, the ability threshold for skill achievement among the newborns is high and

a relatively small fraction of the newborns invest in skills. In this manner, the low quality social network

is self-confirmed, which is represented by the steady state El(sl,Πl). With the high quality social network

sh now and in the future, the expected benefits of skill investment are high (Πh). With the high levels of

network quality (sh) and the net benefits to investment (Πh), the ability threshold for skill achievement is

lower and a relatively large fraction of the newborns invest in skills. Thus, the high quality social network is

also self-confirmed, which is represented by the steady state Eh(sh,Πh).

The existence of multiple steady states is possible only when the influence of network externalities is

sufficiently strong. Consider the economy under the absence of network externalities (p = q = 0). The Π̇e
t = 0

locus is flat because of q = 0: Πe
t = δ̄′ + f ′0. The ṡt = 0 locus is Πe

t = −ψG−1(1 − st) + c0 because of p = 0,

according to equations (10) and (12), which is a monotonically increasing function. Therefore, a unique steady

state always exists at (1−G((c0 − δ̄′ − f ′0)ψ−1), δ̄′ + f ′0) without the network externalities.

Corollary 2. A unique steady state (1−G((c0− δ̄′− f ′0)ψ−1), δ̄′+ f ′0) exists under the absence of the network

externalities (p = q = 0).

Proposition 2 can be generalized further as follows.

Theorem 1. If and only if the composite network externalities (p + q′) are big enough that p + q′ > ψ
g(â) ,

does a range of the base salary differential [δ̄2, δ̄1] exist such that the multiple steady states exist with any δ̄

within the range: δ̄j = (ρ+α)(c0−ψG−1(1− sj)− (p+ q′)sj − f ′0),∀j ∈ {1, 2}, in which both s1 and s2 satisfy

g(G−1(1− sj)) = ψ(p+ q′)−1 and s1 < ŝ < s2. Otherwise, a unique steady state exists regardless of the base

salary differential level δ̄.

Proof. For the proof, see the appendix. �

The theorem implies there are three steady states with δ̄ between δ̄2 and δ̄1 given p + q′ > ψ
g(â) and two

with either δ̄ = δ̄2 or δ̄ = δ̄1 because the Π̇e
t = 0 locus is tangent to the ṡt = 0 locus. The above theorem
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confirms the importance of network externalities in generating multiple steady states. If the influence of

network externalities (p+ q′) is weak, the different steady states never include multiple social groups. When

the influence is sufficiently strong, however, we can have multiple social groups at the steady states with the

different network qualities. However, multiplicity is only possible when the base salary differential δ̄ is in a

certain range [δ̄2, δ̄1]. If it is either large enough that δ̄ > δ̄1 or small enough that δ̄ < δ̄2, a unique steady

state exists (s̄, Π̄) in spite of the strong presence of network externalities. With δ̄ > δ̄1, the benefits of skill

investment are so great that a large fraction of the newborns invest in skills, and the high network quality

s̄(> ŝ) is solely self-confirmed. In the same manner, when δ̄ < δ̄2, a small fraction of the newborns invest in

skills and the low network quality s̄(< ŝ) is solely self-confirmed.

Corollary 3. Even when the composite network externalities (p + q′) are greater than ψ
g(â) , there exists a

unique steady state (s̄, Π̄) with the base salary differential δ̄ out of the range [δ̄2, δ̄1]. The steady state satisfies

s̄ > ŝ and Π̄ > Π̂ with δ̄ > δ̄1, and s̄ < ŝ and Π̄ < Π̂ with δ̄ < δ̄2.

5 Dynamic Equilibrium Paths

In this section, we identify the converging dynamic paths to the steady states and provide the economic

interpretation of the paths.

5.1 Dynamic Paths with Unique Ability Level

In the simplest case of the identical ability level (ā) across the population, we have identified two possible

steady states, assuming the conditions in Proposition 1 are satisfied. Denoting them by El and Eh, they

are El(0, δ̄′ + f ′0) and Eh(1, δ̄′ + f ′0 + q′). To examine the converging dynamic paths to the steady states,

we need a phase diagram with direction arrows, which are displayed in Figure 3, in which the four dynamic

regimes are classified by the two straight lines, Πe
t = c0 − ψā− pst and Πe

t = δ̄′ + f ′0 + q′st. Let us denote the

intersection of the two straight lines by Em: Em( c0−ψā−δ̄
′−f ′0

p+q′ ,
p(δ̄′+f ′0)+q′(c0−ψā)

p+q′ ). The two converging paths to

Eh and El spiral out of the intersection Em. The dynamic path converging to Eh above the two straight lines is

determined by the following dynamic system, ṡt = −αst−α and Π̇e
t = (ρ+α)Πe

t−qst− δ̄−f0 because of xt = 1

in the regime (equations (8) and (9)). The optimistic path is summarized by Πe
t = q

ρ+2αst + δ̄′ + f ′0 + αq′

ρ+2α .

Also, the dynamic path converging to El below the two straight lines is determined by the dynamic system,
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ṡt = −αst and Π̇e
t = (ρ + α)Πe

t − qst − δ̄ − f0 because xt = 0. This pessimistic path is summarized by

Πe
t = q

ρ+2αst + δ̄′ + f ′0. Therefore, we can calculate both the lower bound of st for the converging path to Eh

and the upper bound of st for the converging path to El, denoted by eo and ep for each:


eo = max

{[
p+ q

ρ+2α

]−1 (
c0 − ψā− δ̄′ − f ′0 −

αq′

ρ+2α

)
, 0
}

ep = min
{[
p+ q

ρ+2α

]−1 (
c0 − ψā− δ̄′ − f ′0

)
, 1
}
.

(14)

With an initial social network quality s0 between the two bounds, s0 ∈ [eo, ep], two coordinated equilibrium

paths are available to the social group: the optimistic path to Eh and the pessimistic path to El. If the

coordinated expectation about the future is optimistic across the generations, the expected benefits of the

skill achievement at time zero (Πop
0 ) are q

ρ+2αs0 + δ̄′ + f ′0 + αq′

ρ+2α , and the expected benefits of the skill

achievement among the following newborn cohorts are greater than the level: Πop
t > Πop

0 ,∀t ∈ (0,∞). The

newborn cohort and all following cohorts invest in skills: xt = 1,∀t ∈ [0,∞), which means that the skill level

of the group st improves over time until it reaches one. However, if the coordinated expectation is pessimistic

across the generations, the expected benefits at the initial point (Πpe
0 ) is q

ρ+2αs0 + δ̄′ + f ′0, which is smaller

than Πop
0 by as much as αq′

ρ+2α , and the expected benefits of investment among the following newborn cohorts

are smaller than the level for the current newborns: Πpe
t < Πpe

0 ,∀t ∈ (0,∞). The newborn cohort and all

following cohorts do not invest in skills: xt = 0,∀t ∈ [0,∞), which means that the skill level of the group

deteriorates over time until it reaches zero.

Let us denote the range [eo, ep] by overlap, in which multiple coordinated equilibrium paths are available, as

suggested by Krugman (2001). Outside the overlap, a unique equilibrium path exists that is either optimistic

or pessimistic. If the initial network quality is good enough that s0 > ep, the only reasonable expectation

about the newborns’ investments is xt = 1,∀t ∈ [0,∞). If it is poor enough that s0 < eo, the only reasonable

expectation is xt = 0,∀t ∈ [0,∞).

The size of the overlap, denoted by L(≡ ep − eo), is essential to understand the characteristics of the

economy: L = α
(ρ+2α)(α+ρ) p

q +(α+ρ) , as far as eo, ep ∈ (0, 1). The bigger the L, the more likely it is that the

coordinated expectation about the future is critical in the determination of the final skill level of the group.

Because L is a decreasing function with respect to p/q, we have the following result.

Proposition 3. Given a unique innate ability level ā for all newborns, the size of overlap (L) is positively
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related to the relative strength of the working period network externality in comparison with the education

period network externality (q/p). As the influence of the working period network externalities (q) increases

and the influence of the education period network externalities (p) decreases, the more likely it is that the

coordinated expectation will determine the final state of a social group’s skill level instead of the history.

Moreover, the overlap does not exist under the absence of working period network externalities: L = 0

when q = 0. This means that the skill investment activities of the newborns are subject to the “past” if

network externalities are active only over the education period. That is, the initial quality of the social

network determines the future, and the belief coordination across the generations does not have an effect.

However, the size of the overlap is maximized under the absence of the education period network externality:

arg maxp L = 0,∀q ∈ (0,∞). The belief coordination across generations and the consequent collective action

are most crucial when network externalities are not active over the education period.

Suppose a group’s current skill level is in the overlap range. Then, the economic performance of the group

can be improved simply by increasing expectations of a brighter future. This rationalizes the arguments of

those who suggest that social groups are not constrained by their history but can raise themselves up “by

their bootstraps.” However, suppose that a group is poor enough that its current skill level (s0) is below

the lower bound of the optimistic path (eo). The group cannot escape its miserable condition through belief

coordination or collective actions among the group members. Under this situation, a disadvantaged group is

trapped by its own history.

Definition 1 (Poverty Trap). A social group is in the poverty trap if its network quality (s0) is below the

lower bound of the optimistic path: s0 < eo.

Consider two social groups, A and B, at the different steady states. Group A’s skill level is one, and

group B’s is zero. Assuming that the overlap range is between zero and one, group B is in the poverty trap

and group A is out of it. The disparity between the two groups cannot be overcome without governmental

intervention. Suppose that the government helps group B improve its skill level and enter the overlap range.

At this stage, the crucial point is the belief coordination among group B members. If optimism prevails, the

newborn cohorts invest in skills and the group’s skill level improves consistently up to the level of group A.

If pessimism prevails, the newborn cohorts do not invest in skills and the skill level can even deteriorate over

time until reaching group B’s original level of zero, making the earlier governmental intervention useless.
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In addition, at the lower steady state, group B can escape the poverty trap if the economic condition

changes favorably. The optimistic path to Eh becomes available to the group when eo = 0 in the formula

(14). This implies that the group escapes the poverty trap when the base salary differential (δ̄) increases

up to (ρ + α)
(
c0 − ψā− f ′0 −

αq′

ρ+2α

)
. With the greater benefits of being skilled, it becomes easier to induce

collective actions among the young cohorts in the disadvantaged group.

5.2 Dynamic Paths with Ability Distribution G(a)

In this section, we confirm the findings presented in the earlier section using the more general form of the

ability distribution, S-shaped G(a). Suppose that the condition for multiplicity is satisfied in Theorem 1.

Suppose that the following three distinct steady states exist: El(sl,Πl), Em(sm,Πm) and Eh(sh,Πh), in

which sl < sm < sh. This is achieved with δ̄ ∈ (δ̄2, δ̄1) in Theorem 1. Using equations (8) and (9), ṡt is

positive (negative) above (below) the ṡt = 0 locus, Π̇e
t is positive (negative) above (below) the Π̇e

t = 0 locus.

The phase diagram with direction arrows is displayed in Figure 4. The characteristics of the steady states are

summarized by the following lemma.

Lemma 2. Among the three steady states, El(sl,Πl), Em(sm,Πm) and Eh(sh,Πh), in which sl < sm < sh,

El and Eh are saddle points and Em is a source.

Proof. For the proof, see the appendix. �

We can identify the equilibrium path (saddle path) to each saddle point, El and Eh, as described in Figure

4. The equilibrium paths spiral out of a source Em. The lower bound of the optimistic path to Eh (eo) is

smaller than the upper bound of the pessimistic path (ep): eo < ep. Within the overlap range [eo, ep], multiple

coordinated equilibrium paths exist. If the coordinated expectation is optimistic, the upper path is taken and

the skill level approaches sh. If it is pessimistic, the lower path is taken and the skill level approaches sl.

Outside the overlap, a unique reasonable equilibrium path exists, which is either an optimistic path to sh or a

pessimistic path to sl. Thus, within the overlap, the coordinated expectation determines the final state, and

the history determines the final state outside the overlap.

The existence of the overlap range is related to the existence of working period network externalities. First,

consider the case where working period network externalities are absent (q = 0). Because the benefits of skill

acquisition are fixed as δ̄′ + f ′0 in this case, the expectation about the future does not play any role. This
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is displayed in the phase diagram of Panel A in Figure 5 as the flat Π̇e
t = 0 locus (Πe

t ≡ δ̄′ + f ′0) and the

non-existence of overlap. If the initial network quality is poor, below sm, the group skill level converges to

the low skill equilibrium sl. If it is good, above sm, the skill level converges to the high skill equilibrium sh.

Therefore, the final economic state depends entirely on the initial network quality of the group. Also, the

existence of the overlap range is guaranteed by the existence of working period network externalities (q > 0).

When the future benefits of skill acquisition are affected by the future network quality, one’s skill investment

should be influenced by other group members’ skill investments now and in the future. Collective action to

mange expectation can therefore play an important role in the determination of the overall skill investment

rate among the newborn cohorts.

Proposition 4. Suppose that the condition in Theorem 1 is satisfied with δ̄ ∈ (δ̄2, δ̄1) such that there exist

three distinct steady states (El, Em and Eh). The overlap range does not exist under the absence of the

working period network externalities (q = 0), and it always exists with the existence of the working period

network externalities (q > 0).

Proof. For the proof, see the appendix. �

The size of the overlap is determined by the relative influence of the working period network externalities

over the education period network externalities. This is because, with the greater q given a fixed level of p, the

expected benefits of being skilled are more affected by future network quality. The coordinated expectation

across the generations can play a greater role in the determination of the final state. Thus, with the greater

q, the size of the overlap, in which the coordinated expectation rather than history determines the final state,

tends to be larger. This point is illustrated by the following theorem.

Theorem 2. Suppose that the condition in Theorem 1 is satisfied with δ̄ ∈ (δ̄2, δ̄1) such that there exist

three distinct steady states (El, Em and Eh). With the increased influence of the working period network

externalities (greater q) while holding a steady state Em at (sm,Πm), the optimistic path to Eh with greater q

is placed above the original optimistic path to Eh for any st ≥ sm, and the pessimistic path to El with greater

q is placed below the original pessimistic path to El for any st ≤ sm (Refer to Panel B of Figure 5).

Proof. For the proof, see the appendix. �

The above theorem implies that, with the greater q given any p, the overlap is more likely to be bigger as

the distance between two equilibrium paths gets wider. The result is consistent with the earlier result with a
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unique ability level ā in Proposition 3. Also, the theorem suggests that, given any initial s0 within the overlap,

the difference between the expected benefits of investments with an optimistic view (Πop
0 ) and that with a

pessimistic view (Πpe
0 ) tends to be greater with the increased influence of working period network externalities

(greater q) because the distance between the optimistic path and the pessimistic path gets wider: the greater

Πop
0 −Πpe

0 with the greater q given p. This means that, with the greater q relative to p, we are more likely to

observe a greater difference in the newborns’ skill investment activities between the case with the coordinated

optimism and that with the coordinated pessimism because xop0 − x
pe
0 = G(A(s0,Π

pe
0 )) − G(A(s0,Π

op
0 )) in

equation (3). This further illustrates that the coordinated expectation can generate a greater difference in

newborns’ skill investment activities with the greater influence of working period network externalities relative

to the education period network externalities.

6 Extension to Social Interactions between Groups

In the preceding sections, we examined the dynamics of network externalities within a social group. We extend

this to allow social interactions between social groups. As mentioned earlier, one key difference is that one’s

network quality is no longer equal to the skill level of the group that he belongs to, but is also affected by

the skill levels of other social groups. With this extension, we can examine dynamic structures with different

levels of societal integration and analyze the effectiveness of policy interventions.

The analysis in this section focuses on the two-group economy because the most interesting features as-

sociated with social interactions are contained in the two-group economy. The two social groups are denoted

by group one and group two. Population shares among the two group members are denoted by β1 and β2,

respectively, with β1 +β2 = 1. Let sit denote the fraction of skilled workers in group i ∈ {1, 2} at time t, which

is called group i skill level at time t. The fraction of skilled workers among the two groups’ populations is then

s̄t ≡ β1s1
t +β2s2

t . Let σit denote the fraction of skilled workers in the social network of an individual belonging

to group i at time t, which is called group i network quality at time t. This depends on the levels of human

capital in each of the two groups and the extent of segregation η: σit ≡ ηsit + (1− η)s̄t, as used in Chaudhuri

and Sethi (2008) and Bowles, Loury and Sethi (2007). With full integration (η = 0), σit is equal to s̄t for

any group i, thus indicating no difference in the network quality across social groups. With full segregation
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(η = 1), σit equals sit. The σit is a convex combination of sit and sjt with weights ki and 1− ki,

σit ≡ kisit + (1− ki)sjt , where ki = η + (1− η)βi. (15)

The ki represents the degree of influence of the skill level of one’s own and 1− ki represents that of the other

group’s skill level.

The cost to achieve the skill for a group i agent who is born with an innate ability a is C(a, σit), instead

of C(a, sit). The lifetime net benefits of skill investment to a group i agent born at time t is Πi
t =

∫∞
t

[δ̄ +

f(σiτ )]e−(ρ+α)(τ−t)dτ , in which f(σiτ ) = φss(nσiτ )+φsu(n(1−σiτ ))−φuu(n(1−σiτ ))−φus(nσiτ ), because a group

i worker’s neighbors at time τ , which are n random draws from the two groups’ populations, are composed of

nσiτ number of skilled workers and n(1− σiτ ) number of unskilled workers. An agent born in time t belonging

to group i with an innate ability a commits a skill investment if and only if

C(a, σit) ≤ Π(δ̄, {σiτ}∞τ=t). (16)

This generates the unique threshold ability: ãit ≡ A(σit,Π
i
t). The fraction of individuals born in time t of

group i who invest in the skill, denoted by xit, is expressed by xit = 1 − G(A(σit,Π
i
t)). Because the evolution

rule of group skill level can be expressed as ṡit = α(xit − sit) (equation (8)), we have the evolution rule for the

group i skill level,

ṡit = α[1−G(A(σit,Π
i
t))− sit]. (17)

Also, taking the derivative with respect to time t, we have the evolution rule of the net benefits of skill

investment Πi
t,

Π̇i
t = (ρ+ α)

[
Πi
t −

δ̄ + f(σit)
ρ+ α

]
. (18)

Therefore, the dynamic system with two flow variables s1
t and s2

t and two jumping variables Π1
t and Π2

t is
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summarized by the following four-variable differential equations:

ṡt
1 = α

[
1−G(A(σ1

t ,Π
1
t ))− s1

t

]
ṡt

2 = α
[
1−G(A(σ2

t ,Π
2
t ))− s2

t

]
Π̇1
t = (ρ+ α)

[
Π1
t −

δ̄ + f(σ1
t )

ρ+ α

]
Π̇2
t = (ρ+ α)

[
Π2
t −

δ̄ + f(σ2
t )

ρ+ α

]
,

in which A(σit,Π
i
t) = c0−pσi

t−Πi
t

ψ (equation (12)) and f(σit) = f0 + qσit, and σ1
t and σ2

t satisfy the following

given the societal segregation level η:


σ1
t = k1s1

t + (1− k1)s2
t , with k1 = η + (1− η)β1

σ2
t = k2s2

t + (1− k2)s1
t , with k2 = η + (1− η)β2.

(19)

6.1 Steady States

Suppose that the condition for multiplicity is satisfied in Theorem 1 with δ̄ ∈ (δ̄2, δ̄1) such that the following

three distinct steady states exist in a dynamic system for an isolated social group: El(sl,Πl), Em(sm,Πm)

and Eh(sh,Πh), in which sl < sm < sh. Let (s1∗∗, s2∗∗, σ1∗∗, σ2∗∗,Π1∗∗,Π2∗∗) denote a steady state satisfying

ṡ1
t = ṡ2

t = Π̇1
t = Π̇2

t = 0, where two sets, (s1∗∗, s2∗∗) and (σ1∗∗, σ2∗∗), are bijective with parameters η, β1

and β2. First, let us identify “partial” steady states (si∗, σi∗,Πi∗)|sj which are (sit, σ
i
t,Π

i
t)s that satisfy both

ṡit = Π̇i
t = 0 and σt = kisit + (1− ki)sjt , given sjt . The following three conditions characterize the set of partial

steady states (si∗, σi∗,Πi∗)|sj :

ṡit = 0 condition : si∗ = 1−G(A(σi∗,Πi∗)) (20)

Π̇i
t = 0 condition : Πi∗ =

δ̄ + f(σi∗)
ρ+ α

(21)

clearing condition : σi∗ = kisi∗ + (1− ki)sj . (22)

To combine the first and second conditions, let us introduce a function Ã(σi) ≡ A(σi, δ̄+f(σi)
ρ+α ). Ã(σi)

is a decreasing linear function of σi because Ã(σi) = (c0 − δ̄′ − f ′0 − (p + q′)σi) · ψ−1. Then, the partial

steady states given sj are determined by (si∗, σi∗)s that satisfy both si∗ = 1 − G(Ã(σi∗)) and σi∗ = kisi∗ +
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(1 − ki)sj . Appendix Figure 1 identifies the partial steady states using the two equations. Note that the

si∗ = 1 − G(Ã(σi∗)) locus must pass through three symmetric points, (sl, sl), (sm, sm) and (sh, sh) in the

(σi, si) domain, because sl, sm and sh satisfy equations (10) and (11).

The second step is to collect all partial steady states (s2∗, σ2∗,Π2∗)|s1 and (s1∗, σ1∗,Π1∗)|s2 in order to

identify (global) steady states (s1∗∗, s2∗∗, σ1∗∗, σ2∗∗,Π1∗∗,Π2∗∗). Panel A of Appendix Figure 2 indicates the

former and Panel B indicates the latter. In the top figure of Panel A, the slashed lines with different levels of

s1 help identify (s2∗, σ2∗) for each level of s1. Note that the slope of the slashed line is 1
k2 . Consequently, all

partial steady states are denoted by s2∗(s1) locus in the bottom figure. In the same manner, in the top figure

of Panel B, the slashed lines with different levels of s2 help identify (s1∗, σ1∗) for each level of s2. The slope of

the slashed line is k1. All partial steady states are denoted by s1∗(s2) locus in the bottom figure of the panel.

As we overlap the two partial steady state loci, s2∗(s1) and s1∗(s2), we identify the (global) steady states in

Panel C.5

Using equations (20), (21) and (22), each partial steady state locus si∗(sj) is characterized by

si∗(sj) locus : si∗ = 1−G(Ã(kisi∗ + (1− ki)sj)), ∀sj ∈ [0, 1]. (23)

This implies that a unique sj exists that corresponds to a partial steady state si∗. For further analysis, let us

define a useful function Dj(si∗) as the unique sj given si∗ ∈ [0, 1] that satisfies the above formula (23). That

is, using Ã(σi) = (c0 − δ̄′ − f ′0 − (p+ q′)σi) · ψ−1,

Dj(si∗) =
−ψG−1(1− si∗) + c0 − δ̄′ − f ′0

(p+ q′)(1− ki)
− kisi∗

1− ki
, ∀si∗ ∈ [0, 1]. (24)

Then, the (global) steady states (s1∗∗, s2∗∗) are a set of (s1∗, s2∗)s that satisfy the following two equations:

D2(s1∗) = s2∗ and D1(s2∗) = s1∗.

Lemma 3. The function Dj(si∗) is concave with si∗ < 1−G(â), and convex with si∗ > 1−G(â).

Proof. For the proof, see the appendix. �

Therefore, the partial steady state loci are composed of a concave part and a convex part. The shapes of

the loci for each level of segregation η are summarized by the following lemma.
5Note that k1 < k2 due to β1 < β2 in the given example in Appendix Figure 2, which generates the curvature difference

between the two loci.
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Lemma 4. As η declines, the partial steady state locus si∗(sj) tends to be “flatter”, which means the distance

between the locus and the diagonal |Dj(si∗)− si∗ | shrinks as η declines. Given a segregation level η among the

two social groups, the partial steady state locus si∗(sj) is “steeper” for the larger population group (the bigger

βi) in the sense that the distance between the locus and the diagonal |Dj(si∗) − si∗ | is greater for the larger

population group than for the smaller population group.

Proof. Note that |Dj(si∗) − si∗| =
∣∣∣−ψG−1(1−si∗)+c0−δ̄′−f ′0

(p+q′) − si∗
∣∣∣ · 1

1−ki . The first derivative with respect

to η gives ∂|Dj(si∗)−si∗|
∂η =

∣∣∣−ψG−1(1−si∗)+c0−δ̄′−f ′0
(p+q′) − si∗

∣∣∣ · 1
(1−βi)(1−η)2 > 0. Also, given a segregation level η,

the first derivative with respect to βi gives ∂|Dj(si∗)−si∗|
∂βi =

∣∣∣−ψG−1(1−si∗)+c0−δ̄′−f ′0
(p+q′) − si∗

∣∣∣ · 1
(1−βi)2(1−η) > 0. �

The Dj(si∗) curve gets closer to the diagonal as η declines, which implies the si∗(sj) locus tends to be

“flatter” as η declines. Figure 6 displays how the slopes of the loci change with the different levels of η. The

lemma implies that the bigger the size of the group, the more distant the curve Dj(si∗) is from the diagonal.

Suppose group 1 is the minority and group 2 is the majority (β1 < β2). Figure 6 shows that the locus for

group 2, the s2∗(s1) locus (the D1(s2∗) curve), is “steeper” than that for group 1 for a given segregation level

η and less sensitive to the change in the societal segregation level η because the population size of the group

is bigger than that of group 1.

Let us denote four regions in the (s1, s2) plane by Regions 1, 2, 3 and 4 in clockwise order, which are

divided by one vertical line (s1 = sm) and one horizontal line (s2 = sm). Additionally, the left and top

region is denoted by Region 1, as displayed in Panel C of Appendix Figure 2. The total number of steady

states should be nine with full segregation, as illustrated in Panel A of Figure 6. It should be three with full

integration because the steady states will be equal to those in the case with one social group, as illustrated

in Panel F of the figure. In general, using the above lemmas, we have the following results in terms of the

number of steady states.

Proposition 5. The total number of steady states decreases from nine to three as η declines from one to zero

(from full segregation to full integration): the number of steady states decreases from three to zero in Regions

1 and 3, and there is always a unique steady state in Regions 2 and 4. Regardless of η, three symmetric steady

states always exist (sl, sl), (sm, sm) and (sh, sh). All other steady states are asymmetric.

Proof. For the proof, see the appendix. �
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6.2 Stable Manifolds and Convergence Ranges

For notational simplicity, we adopt a notation rule for steady states in the following sections.

Notation 1. When η = 1, each steady state (si, sj) is denoted by Qij for i, j ∈ {l,m, h} (Refer to Panel A of

Figure 6). As η declines, each steady state is denoted by its original notation at η = 1.

The locations of the symmetric steady states do not change with varying η: Qll, Qmm and Qhh. Other

asymmetric steady states (Qijs with i 6= j) move continuously as η changes, as displayed in Figure 6. With the

above notation rule, when we have less than nine steady states, we can denote each by following its original

notation in the economy with η = 1.

Let us define an economically stable state as a steady state (s1, s2) for which there exists a converg-

ing dynamic path for any (s1
t , s

2
t ) in the neighborhood of the state. For example, the following four states

are economically stable with η = 1: Qll, Qhh, Qlh and Qhl. In geometry, a collection of points on all

converging paths to a limit set Q is called a stable manifold to the limit set Q.6 The stable manifold to

Qij , denoted by SMij , is a collection of (s1
0, s

2
0,Π

1
0,Π

2
0)s that converge to an economically stable state Qij :

SMij ≡ {(s1
0, s

2
0,Π

1
0,Π

2
0) ∈ R4|(s1

t , s
2
t ,Π

1
t ,Π

2
t )|(s10,s20,Π1

0,Π
2
0) → Qij}. The convergence range to Qij , denoted

by Mij , is defined as a projection of the stable manifold to Qij to the (s1, s2) plane: Mij ≡ {(s1
0, s

2
0) ∈

[0, 1]2|(s1
t , s

2
t ,Π

1
t ,Π

2
t )|(s10,s20,Π1

0,Π
2
0) → Qij}.

Before we move to the analysis of the given dynamic system, let us check the simplest case, in which the

social network externalities over the working period are negligible and only those over the education period

are effective (p > 0 and q = 0). When q = 0, history is important such that an initial skill level determines the

final state as we previously checked for the case with one social group. There are a maximum of four stable

states in the given dynamic system: Qll, Qlh, Qhl and Qhh. The basins of attractions (convergence ranges)

for those states are separated by separatrices that connect Qmm to saddle points (Qmh, Qml, Qhm, Qlm). The

convergence ranges to those states given q = 0 are illustrated in Figure 6. Note that the convergence ranges

do not overlap with q = 0. As displayed in Panels E and F, when the two group society is relatively more

integrated (smaller η), the final state tends to be an equal society regardless of the initial skill composition

(s1
0, s

2
0) because only two convergence ranges exist, Mll and Mhh. When the two group society is relatively

more segregated (larger η) and the initial skill disparity (|s1
0 − s2

0|) is great, the final state tends to be an

6A limit set in geometry is the state a dynamic system reaches after an infinite amount of time has passed by either going
forward or backward in time.
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unequal society, either Mlh and Mhl, as displayed in Panels A and B.

Now we move to the analysis concerning the existence of both kinds of network externalities (p > 0 and

q > 0). The first step is to check the stability of the steady states.

Lemma 5. Regardless of η and the combination (β1, β2), steady states Qll, Qhh, Qlh and Qhl are economically

stable states if they exist, and all other steady states are economically unstable states.

Proof. For the proof, see the appendix. �

The economically stable states are illustrated in Figure 7 with dark circles. The number of economically

stable states decreases from four to two as η declines. The convergence ranges and their overlapped areas are

depicted for each level η in the same figure. Two convergence ranges Mlh and Mhl disappear at some level of

η, and two stable states Qlh and Qhl disappear. Two convergence ranges Mll and Mhh tend to expand as η

declines, and the other two convergence ranges, Mlh and Mhl, tend to shrink. All convergence ranges tend to

be larger with the greater influence of working period network externalities (greater q) because, as we have

shown, the size of overlap tends to be bigger with the greater q in the case with one social group (Theorem

2). The following theorem summarizes these characteristics of the convergence ranges.

Theorem 3. As η declines, the convergence ranges Mll and Mhh tend to expand, and the convergence ranges

Mlh and Mhl tend to shrink. All manifold ranges tend to be larger with the stronger influence of working

period network externalities (greater q).

Proof. For the proof, see the appendix. �

The interpretation of the overlapped areas is as follows. Consider a case in which all four economically

stable states exist with a relatively large η, where the following holds sl < eo < sm < ep < sh. (eg. Panels A

and B in Figure 7). The four possible convergence ranges, Mll, Mhh, Mlh and Mhl, overlap in the middle of the

(s1, s2) domain. When both groups’ skill levels are equally mediocre, the final state will be Qll (Qhh) if both

group members’ coordinated expectations are optimistic (pessimistic), and the final state will be either Qlh or

Qhl if the coordinated expectation among members of one social group is optimistic and that among members

of the other group is pessimistic. Two of the four convergence ranges also overlap near the middle. Consider

an overlap of Mlh and Mhh located in the upper middle area, in which group 2’s skill level is relatively good

and that of group 1 is mediocre. The final state is either Qlh or Qhh depending on the coordinated expectation

among the members of group 1. However, the expectation among the members of group 2 does not affect
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the final state, because it is determined as optimistic. Finally, in each corner area, there exists a unique

convergence range without overlaps. Consider a corner range in the upper left area, in which the skill level of

group 2 is good enough but that of group 1 is very bad. Group 1 is in the poverty trap such that the current

network quality of group 1 is so poor that there is no way to recover the skill investment rate of the group

through belief coordination among group members.

Now consider the case of the existence of two economically stable states with a relatively small η (e.g.,

Panels E and F in Figure 7). The two social groups are sufficiently integrated that the final state is either

a high skilled equal state (Qhh) or a low skilled equal state (Qll). In the area with two convergence ranges

overlapped, collective optimism in both groups leads to Qhh and collective pessimism to Qll.

6.3 Policy Intervention for the Egalitarian Society

During the Jim Crow period of US history and until the civil rights movement in the 1960s, African Americans

were segregated from whites and discriminated against in an overt manner in the US labor market. Although

overt discrimination decreased in recent decades, we still observe persistent skill disparities between the blacks

and the whites. In particular, Black youths have significantly lower academic achievement than white youths.

The dynamic model in this paper suggests that Blacks with more low-skilled people in their social network

tend to be trapped by the adverse effects of poor network quality in the segregated American society. Further,

the model implies that the optimistic coordinated expectation is important for behavioral changes among

Black youth. The persistent group disparity that occurs in many other segregated societies including South

Africa, Australia and many countries in Latin America may also be attributable to the poverty trap through

the social externalities channel and the failure of belief coordination.

Consider a society with two social groups in which group 1 is in a poverty trap and group 2 has good network

quality. According to the following proposition, Qhh is a Pareto-dominant steady state. The government has

an incentive to pursue egalitarian policies to mobilize the society toward equality of skills (Qhh).

Proposition 6. For any segregation level η < 1, (sh, sh) is a strictly Pareto-dominant steady state and (sl, sl)

is a strictly Pareto-inferior steady state.

Proof. Because |Dj(si∗) − si∗| is monotonically decreasing as η declines (Lemma 4), both groups’ skill

levels are less than sh at any steady state with η < 1, except the fixed steady state (sh, sh). Also, both groups’
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skill levels are greater than sl at any steady state with η < 1, except the fixed steady state (sl, sl). �

6.3.1 Integration Policy

First, note that the asymmetric stable state Qlh disappears with the facilitation of integration. The threshold

level of segregation η̂ for its disappearance depends on the population size of the disadvantaged group, as

discussed in Bowles, Loury and Sethi (2007) with a simpler setup.

Lemma 6. There exists β̂ such that η̂(β1) is strictly decreasing in (0, β̂) and strictly increasing in (β̂, 1).

Proof. For the proof, see the appendix. �

As integration proceeds, either 1) Qlh and Qmh merge or 2) Qlh and Qlm merge before Qlh disappears.

Therefore, before the steady state Qlh disappears, the state must get into either the convergence range Mhh

or Mll or both ranges because the convergence range Mhh (Mll) always covers the unstable state Qmh (Qlm).

Using this fact together with the Lemma above, we have the full picture of the integration effect, which is

summarized in Figure 8. In the diagram, η∗(β1) indicates the threshold level of η for Qlh’s entering Mhh.

It is obvious that η∗(β1) > η̂(β1) with β1 ∈ (0, β̂), because Qlh enters the convergence range Mhh before it

disappears. η∗∗(β1) indicates the threshold level of η for Qlh’s entering Mll. It is clear that η∗∗(β1) > η̂(β1)

with β ∈ (β̂, 1), because Qlh enter the convergence range Mll before it disappears. Let us denote the β∗ with

which η∗(β∗) = η̂(β∗) and the β∗∗ with which η∗∗(β∗∗) = η̂(β∗∗), where β∗ > β∗∗, as noted in the figure.

The multiple convergence ranges available in each area are displayed in the figure. The multiplicity of

convergence ranges means that the current state is in the overlapped area of convergence ranges, so the final

economic state depends on the coordinated expectation among group members. For example, if the current

state is in the area with two convergence ranges (Mlh and Mhh), the final state will be Qhh if the coordinated

expectation is optimism among group 1 members. Otherwise, it will be the unequal state Qlh.

The results summarized in the figure suggest that, when the population size of the disadvantaged group β1

is small enough (β1 < β∗), integration (η∗(β1)) can help the economic state enter the convergence range to the

high skilled equal state Qhh. (Refer to the shaded area in the figure.) Once the state enters the convergence

range Mhh, the coordinated expectation among the disadvantaged group members plays a key role in moving

into the Pareto-dominant equal society (sh, sh).7 Therefore, the integration policy combined with collective
7However, note that the expectation among the advantaged group is also important in the determination of the final state if

the size of the disadvantaged group is sufficiently large that β∗∗ < β1 < β∗. To achieve the high skilled equal state Qhh with
the facilitated integration, the expectation coordination of the advantaged group should not be pessimism because the economic
state will move to Qll with the group’s pessimism when the segregation level (η) falls below η∗∗(β1), as shown in Figure 8.
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optimism in the disadvantaged group can help mobilize the group in the poverty trap. Without optimism, a

much greater level of integration (η̂(β1) instead of η∗(β1)) is required to start the mobilization, which may

not be achievable due to either political resistance from the advantaged group or homophily effects (Currarini

et al. 2009).

6.3.2 Affirmative Action Policies

We consider two types of affirmative action policies, an asymmetric training subsidy and a quota system.

First, we consider a training subsidy policy under which the government distributes educational resources

in an asymmetric manner: more resources are distributed to disadvantaged group members and less are

distributed to advantaged group members. This generates the decreased c0 for group 1 and the increased c0

for group 2, and consequently the downward shift of the D2(s1∗) curve and the upward shift of the D1(s2∗)

curve, where Dj(si∗) is an increasing function of c0 in equation (24). The curve shifts are illustrated in Panel

A of Figure 9. If the government provides enough subsidies for group 1, the economic state where group 1 is

in a poverty trap can enter the convergence range to Qhh (Mhh). If the expectation is coordinated properly

for optimism among the disadvantaged group members, the economic state can gradually move toward the

high skilled equal state (sh, sh). However, if the subsidy is insufficient or the disadvantaged group fails in the

expectation coordination, the asymmetric subsidy policy will be useless to make significant behavioral changes

among young members of the disadvantaged group.

Secondly, consider a quota policy under which government places some unskilled group 1 members in

skilled positions that would otherwise go to skilled members of group 2. Suppose the current economic state

is Qlh(s′l, s
′
h). The rate of skilled job positions in the economy is then fixed as s̄ = β1s′1 + β2s′h. The

government intervenes to mitigate the skilled job disparity between the two groups, |s2 − s1|, which means

that a higher fraction of group 1 takes the skilled job positions, and a lower fraction of group 2 takes the skilled

job positions under the constraint of s̄ = β1s′l + β2s′h. If this external intervention can lead the economic

state (s1, s2) to enter the convergence range Mhh as displayed in Panel B of Figure 9, society can move toward

the high-skilled equal state if the expectations of the disadvantaged group members are well coordinated for

optimism. However, if the policy intervention is not sufficiently strong, the economic state cannot enter the

overlapped area of two convergence ranges (Mlh and Mhh). The economic state will return to the original

unequal state Qlh. Further, even if the quota is imposed properly, the failure of the belief coordination among
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the disadvantaged group members will make the policy useless.

Therefore, if a social group is trapped by poor network quality, an effective egalitarian policy of either social

integration or affirmative action requires both active governmental intervention and societal belief coordination

to mobilize the group out of the poverty trap and to help it advance as far as the advantaged group. A policy

that fails in either respect would not be successful in eliminating a persistent skill disparity between social

groups. However, if the network quality of a disadvantaged group is already in the overlap range, the active

governmental intervention would not have a significant impact on the advancement of the group. Instead, an

emphasis on coordinated optimism should be pursued, although this point is often ignored in policy debates.

Collective action to manage expectation can generate a significant impact on behavioral changes among young

members of the disadvantaged group.

7 Further Discussion

In the above policy discussion, we assume that the returns to investment in skills do not depend on the skill

composition in the economy. However, if we allow the skill complementarities between high and low skill labor

in production, an increase in the skill share of one group can come at the expense of the welfare of the other

group. The equal steady state Qhh may no longer be Pareto-dominant: there is a potential for group conflict.

A historically advantaged group would resist the introduction of egalitarian policies and would have an interest

in maintaining pessimism about the future in the disadvantaged group. Further analysis that considers skill

complementarity is left to future research.

Adsera and Ray (1998) argue that overlap is generated only when agents have an incentive to choose the

option that offers less appealing benefits at the moment of decision. In my model, the incentive originates

in the overlapping generation structure. Since agents are given only one chance to choose their occupational

type at the early stage of their lives, they choose a type with less appealing benefits at the moment of the skill

investment decision while expecting greater benefits to accrue in his lifetime. The dynamic structure with an

overlapping generational framework provided here can be useful in the examination of other topics in which

external economies exist and populations are replaced by new cohorts. Hauk and Saez-Marti(2002)’s work on

the cultural transmission of corruption and Bisin and Verdier(2001)’s work on intergenerational transmission

of values adopt the similar structure though they do not explicitly analyze the existence of multiple equilibrium
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paths and the size of overlap. I expect future theoretical works that include external economies and overlapping

generations to adopt the given dynamic structure.

The coordinated expectations over the long-term horizon discussed in this paper is also useful to explain

the classic example of the “Big Push” doctrine of Rosenstein-Rodan (1943). He begins by noting that the

development of any particular industry may only be privately profitable if an entire set of interlocking industries

emerged simultaneously. Thus, the willingness of firms to invest depends on their expectation that other firms

will invest in the future. The role of governments in development policy is to create convergent expectations

around the high investment. Murphy, Shleifer, and Vishny (1989) and Matsuyama (1991) formalized this

example with theoretical models demonstrating that multiple stationary states exist because of increasing

returns. The self-fulfilling expectations often allow an escape from the state of pre-industrialization. The

model presented in this paper suggests a theoretical framework to formalize the “Big Push” doctrine in the

context of human capital development. In a modern economy, economic development is determined by the level

of human capital investment, as emphasized by Lucas (1988) and Barro (1991). Suppose that the return to skill

investments is significantly affected by the overall skill investment rate in the economy, the microfoundation

of which is well discussed in Acemoglu (1996) given the matching imperfections in the labor market. The

willingness of newborn cohorts to invest in skills depends on others’ skill investments now and in the future.

Consider an open economy with a low skill investment rate. If the coordination failure of agents’ expectations

is the cause of poverty, the state’s role in initiating the development process should be to promote optimism

within the underdeveloped economy, as noted by Rosenstein-Rodan (1943).

8 Conclusion

This paper examines the effect of coordinated expectation on the improvement of a group’ skill level under the

presence of network effects. This point distinguishes the model presented here from other theoretical models

that focus on the multiplicity of stationary states. The consideration of economic agents’ forward-looking

behaviors contributed to the development of this dynamic model.

Most theoretical works concerning network effects have examined policies that can eliminate a bad equi-

librium by adjusting given parameters. This is appropriate for policy issues for which the number of equilibria

can be changed flexibly, but it is not realistic or too mechanical for other issues for which the multiplicity with
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both good and bad equilibria is natural. The limitation is often generated by their omission of the dynamic

perspectives. With the consideration of players’ forward-looking behaviors, we can examine policies concretely

without maintaining the change of the set of equilibria. The main focus in policy analysis needs to be on the

dynamic equilibrium paths, and not limited to specific equilibria.

32



9 Appendix: Proofs

9.1 Proof of Theorem 1

Lemma 1 indicates the slope of the ṡt = 0 locus can be represented by dΠe
t

dst

∣∣
ṡt=0

= ψ
g(G−1(1−s)) − p, in which

dΠe
t

dst

∣∣
ṡt=0

=∞ as either s→ 0 or s→ 1. This implies that there must be at least one steady state. The slope

is minimized at ŝ(= 1−G(â)) with its minimum ψ
g(â) − p, and the slope is decreasing in (0, ŝ), and increasing

in (ŝ, 1). Therefore, if the slope of the Π̇e
t = 0 locus (q′) is greater than the minimum ψ

g(â) − p, we can find

two network quality levels, s1 and s2, with which the slopes of the two loci are equalized: ψ
g(G−1(1−s)) − p = q′

for s ∈ {s1, s2}, in which s1 < ŝ < s2. When the Π̇e
t = 0 locus is tangent to the ṡt = 0 locus at either s1 or s2,

the corresponding Π1 and Π2 on the ṡt = 0 locus are Πj = −ψG−1(1− sj)− psj + c0,∀j ∈ {1, 2}, because of

equations (10) and (12). Therefore, noting that the Π̇e
t = 0 locus shifts up with the greater δ̄, we can find the

corresponding δ̄1 and δ̄2 at s1 and s2: δ̄j(= Πj(ρ+α)−qsj−f0) = (ρ+α)(c0−ψG−1(1−sj)−(p+q′)sj−f ′0),∀j ∈

{1, 2}. Given the slope q′ of the Π̇e
t = 0 locus greater than ψ

g(â) − p, there exist multiple steady states with

δ̄ ∈ [δ̄2, δ̄1] and the number of steady states is three with δ̄ ∈ (δ̄2, δ̄1).

If the slope of the Π̇e
t = 0 locus (q′) is smaller than the minimum ψ

g(â) − p, we have only one intercept

between the two loci for any level of δ̄, because the slope of the ṡt = 0 locus is greater than that of the Π̇e
t = 0

locus (q′) for any st ∈ (0, 1). In the same reason, if the slope of the Π̇e
t = 0 locus (q′) equals the minimum

ψ
g(â) − p, the two loci cross each other only one time, because the slope of the ṡt = 0 locus is greater than that

of the Π̇e
t = 0 locus for any st ∈ (0, 1), except for st = ŝ. �

9.2 Proof of Lemma 2

Given the dynamic system in equations (8) and (9), its linearization around a steady state (s̄, Π̄) is

ṡt = α[−G′A′s − 1](st − s̄) + α[−G′A′Π](Πe
t − Π̄)

Π̇e
t = −f ′(st − s̄) + (ρ+ α)(Πe

t − Π̄).

The Jacobian matrix JE evaluated at a steady state is

JE ≡

−αG′A′s − α −αG′A′Π
−f ′ ρ+ α


(s̄,Π̄)

=

α · g(ã′)kψ − α α · g(ã
′)

ψ

−q ρ+ α


(s̄,Π̄)

,

, in which ã′ = A(s̄, Π̄). Consequently, its transpose is trJE = α · g(ã
′)p
ψ + ρ and the determinant is |JE | =

α(α+ρ)g(ã′)
ψ

[
p+ q′ − ψ

g(ã′)

]
. Since trJE is positive, every steady state is unstable. The slope of the ṡt = 0

locus is ψ
g(ã′) − p (Lemma 1) and the slope of the Π̇e

t = 0 locus is q′. At the steady states El and Eh, the

slope of the ṡt = 0 locus is greater than the slope of the Π̇e
t = 0 locus: p+ q′ < ψ

g(ã′) . At the steady state Em,

the slope of the ṡt = 0 locus is smaller than the slope of the Π̇e
t = 0 locus: p + q′ > ψ

g(ã′) . Therefore, |JE | is

negative at El and Eh, and positive at Em, which implies El and Eh are saddle points and Em is a source. �
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9.3 Proof of Proposition 4

First, consider the case with q = 0. Since the benefits of being skilled is δ̄ at each point of time, the benefits

for skill achievements is fixed as δ̄′ + f ′0 because Πe
0 =

∫∞
0

(δ̄ + f0) · e−(ρ+α)τdτ , for any s0. Therefore,

there cannot be multiple choices of the level of Πe
0 for any given s0. Second, consider the case with q > 0.

Consider an initial network quality s0 = sm + ε and its converging sequences {sτ}∞0 to sh. Then, we have

Πop
0 =

∫∞
0

[δ̄+f0+qsτ ]e−(ρ+α)τdτ > δ̄+f0+q(sm+ε)
ρ+α because Πop

0 = δ̄+f0+q(sm+ε)
ρ+α +

∫∞
0
q(sτ−(sm+ε))e−(ρ+α)τdτ

and sτ > sm + ε,∀τ ∈ (0,∞). Πop
0 is above the Π̇e

t = 0 locus for s0 = sm + ε for any small ε. Therefore,

the converging path to Eh is placed above the Π̇e
t = 0 locus around sm, implying eo < sm. Also, consider an

initial network quality s0 = sm − ε and its converging sequences {sτ}∞0 to sl. Then, in the same way, we can

show that Πpe
0 is below the Π̇e

t = 0 locus for s0 = sm− ε for any small ε. Therefore, the converging path to El

is placed below the Π̇e
t = 0 locus around sm, implying ep > sm. These imply the existence of an overlap in

the neighborhood of sm. �

9.4 Proof of Theorem 2

Holding a steady state Em at (sm,Πm) requires the Π̇e
t = 0 locus to pass through (sm,Πm) for different levels

of q: the combination (δ̄, q) should satisfy Πm = δ̄+f0+qsm

ρ+α . The q increase by ∆q must come with δ̄ decrease

by sm∆q: ∆δ̄ = −sm∆q. Note that the Π̇e
t = 0 locus is rotated in a counter-clockwise direction as displayed

in Panel B of Figure 5. We compare the converging dynamic paths in a dynamic system with q0 > 0 with

those in a dynamic system with q0 + ∆q. Let us denote two stable steady states in the dynamic system with

q0 by El(sl,Πl) and Eh(sh,Πh), and those in the system with q0 + ∆q by E′l(s
′
l,Π
′
l) and E′h(s′h,Π

′
h). The

Π̇e
t given q0 + ∆q, denoted by Π̇e

t (q0 + ∆q), is smaller (greater) than the Π̇e
t (q0) for any st > sm (st < sm),

because Π̇e
t (q0 + ∆q) is, using equation (9):

Π̇e
t (q0 + ∆q) = (ρ+ α)

[
Πe
t −

(δ̄ + ∆δ̄) + f0 + (q0 + ∆q)st
ρ+ α

]
= (ρ+ α)

[
Πe
t −

(δ̄ − sm∆q) + f0 + (q0 + ∆q)st
ρ+ α

]
= Π̇e

t (q0)−∆q(st − sm) (25)

There always exist sc ∈ (sm, sh) such that the optimistic path to Eh in the dynamic system with q0

intercepts the Π̇e
t = 0 locus in the dynamic system with q0 + ∆q at st = sc. Let us denote Πop

t on the

optimistic path in the dynamic system with q0 (q0 + ∆q) by C (C ′) at st = sc , A (A′) at st = 1, and B (B′)

at st = sm. First, it is obvious that, over the range [sc, sh), the optimistic path to E′h with q0 + ∆q is

above the Π̇e
t = 0 locus with q0 + ∆q, and the optimistic path to Eh with q0 is below the Π̇e

t = 0 locus

with q0 + ∆q. Secondly, we show that the optimistic path to E′h is above the optimistic path to Eh over the

range [sh, 1]. Consider a start point at st = 1: (1, x). In order that the path from the point in the dynamic

system with q0 + ∆q passes through Eh, x should be greater than A because the state moves down faster with

Π̇e
t (q0 + ∆q) < Π̇e

t (q0). A′ should be greater than x because the path from the point (1, A′) approaches E′h,

in which s′h > sh. Therefore, we have A′ > x > A . The same logic can be applied for any st over the range

34



[sh, 1]. Thus, the optimistic path to E′h is above the optimistic path to Eh at any st ∈ [sh, 1]. Lastly, we show

that the optimistic path to E′h is above the optimistic path to Eh over the range [sm, sc). Consider a start

point at st = sm: (sm, y). In order that the path from the point in the dynamic system with q0 + ∆q passes

through C, y should be greater than B because the state moves up more slowly with Π̇e
t (q0 +∆q) < Π̇e

t (q0). B′

should be greater than y because the path from the point (sm, B′) approaches (sc, C ′) and C ′ > C. Therefore,

we have B′ > y > B. The same logic can be applied for any st in the range [sm, sc). In sum, we conclude that

the optimistic path to E′h with q0 + ∆q is above the path to Eh with q0 for any st ≥ sm. In a symmetric way,

we can show that the pessimistic path to E′l with q0 + ∆q is below the path to El with q0 for any st ≤ sm. �

9.5 Proof of Lemma 3

The first and second derivatives of the function Dj(si∗) are

dDj(si∗)
dsi∗

=
ψ

(p+ q′)(1− ki) ·G′(G−1(1− si∗))
− ki

1− ki
, (26)

d2Dj(si∗)
dsi∗2

=
ψ ·G′′(G−1(1− si∗))

(p+ q′)(1− ki) · [G′(G−1(1− si∗))]3
. (27)

Because G′′(ã) is negative for ã > â, G′′(G−1(1 − si∗)) is negative for si∗ < 1 − G(â), implying the second

derivative is negative. Also, G′′(ã) is positive for ã < â, G′′(G−1(1 − si∗)) is positive for si∗ > 1 − G(â),

implying the second derivative is positive. �

9.6 Proof of Proposition 5

It is obvious that the total number of steady states is nine with η = 1. Regardless of η, the three symmetric

states, (sl, sl), (sm, sm) and (sh, sh), are steady states because {sl, sm, sh} are skill levels of steady states for

one social group case. First of all, I claim that there does not exist a symmetric steady state other than

those three. Suppose that there exists a symmetric steady state (ŝ, ŝ) that is not one of the three. Since

σ1 = σ2 = s1 = s2 = ŝ, this implies ṡt1 = α
[
1−G(A(ŝ,Π1

t ))− ŝ
]

= 0, ṡt2 = α
[
1−G(A(ŝ,Π2

t ))− ŝ
]

= 0,

Π̇1
t = (ρ + α)

[
Π1
t −

δ̄+f(ŝ)
ρ+α

]
= 0 and Π̇2

t = (ρ + α)
[
Π2
t −

δ̄+f(ŝ)
ρ+α

]
= 0. This contradicts that there are only

three skill levels (sl, sm, sh) that satisfy equations (8) and (9). Secondly, let us prove that the total number

of steady states is three with η = 0. This is true when there are no asymmetric steady states with η = 0.

Suppose an asymmetric steady state (ŝ1, ŝ2) exists, where ŝ1 6= ŝ2. Since two groups are fully integrated,

σ1 = σ2 = s̄. Because it is a (global) steady state, it should be a partial steady state as well. By equations

(20) and (21), si∗ is uniquely determined by σi∗, which implies that ŝ1=ŝ2 when σ1 = σ2. This contradicts

that (ŝ1, ŝ2) is an asymmetric steady state. Finally, the total number of steady states monotonically decreases

from nine to three as η declines, because the distance between the partial steady state locus and the diagonal,

|Dj(si∗) − si∗|, is monotonically decreasing as η declines (Lemma 4) and there is a unique inflection point

(si∗ = 1 − G(â)) in the partial steady state loci (D2(s1∗) and D1(s2∗)) (Lemma 3). The above claims imply

that the number of steady states decreases from three to zero as η declines, in Regions 1 and 3, and there is

always a unique steady state in Regions 2 and 4. �
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9.7 Proof of Lemma 5

First, check the local stability at one steady state Qhh. We have the following Jacobian matrix at the steady

state (sh, sh,Πh,Πh):

JQhh
=


α[−G′A′σ(η + (1− η)β1)− 1] α[−G′A′σ(1− η)β2] α[−G′A′Π] 0

α[−G′A′σ(1− η)β1] α[−G′A′σ(η + (1− η)β2)− 1] 0 α[−G′A′Π]

−f ′σ(η + (1− η)β1) −f ′σ(1− η)β2 ρ+ α 0

−f ′σ(1− η)β1 −f ′σ(η + (1− η)β2) 0 ρ+ α


Qhh

.

Let us denote JQhh
− λI using 2 × 2 matrices Jijs: JQhh

− λI =

J11 J12

J21 J22

. We need to calculate the

determinant of JQhh
− λI in order to find eigenvalues. Note that |JQhh

− λI| ≡ |J22| · |J11 − J12J
−1
22 J21|. Let

us denote the second term by J ′: J ′ ≡ J11 − J12J
−1
22 J21. Using the explicit forms of Jijs, J ′ is

J ′ = J11 −

α[−G′A′Π] 0

0 α[−G′A′Π]

 ·
(ρ+ α− λ)−1 0

0 (ρ+ α− λ)−1


·

−f ′σ(η + (1− η)β1) −f ′σ(1− η)β2

−f ′σ(1− η)β1 −f ′σ(η + (1− η)β2)

 . (28)

After a bit messy calculation, we find its determinant

|J ′| =

∣∣∣∣∣∣J11 − αξ

η + (1− η)β1 (1− η)β2

(1− η)β1 η + (1− η)β2

∣∣∣∣∣∣ , where ξ =
G′A′Πf

′
σ

ρ+ α− λ
,

= [λ− α(−G′A′ση − 1) + αξη] · [λ− α(−G′A′σ − 1) + αξ]. (29)

Therefore, the determinant of JQhh
− λI is

|JQhh
− λI| = |J22| · [λ− α(−G′A′ση − 1) + αξη] · [λ− α(−G′A′σ − 1) + αξ]

= [λ2 − λ(−αG′A′σ + ρ)− α(α+ ρ)(G′A′σ + 1)− αG′A′Πf ′σ]Qhh

·[λ2 − λ(−αG′A′ση + ρ)− α(α+ ρ)(G′A′ση + 1)− αG′A′Πf ′ση]Qhh
. (30)

Taking |JQhh
− λI| = 0, we obtain four eigenvalues at the steady state. First, note that [−α(α + ρ)(G′A′σ +

1) − αG′A′Πf ′σ]Qhh
= α(α+ρ)g(ã′)

ψ

[
p+ q′ − ψ

g(ã′)

] ∣∣∣
ã′=A(sh,Πh)

< 0, as shown in the proof of Lemma 2. Thus,

the first term of the determinant has one positive and one negative eigenvalue. That is, the local stability

condition at Eh in the case with one social group implies one negative and one positive eigenvalue at Qhh

in this two-group economy. Also, in the second term, we have [−α(α + ρ)(G′A′ση + 1) − αG′A′Πf ′ση]Qhh
< 0

because −α(α+ρ)(G′A′ση+1)−αG′A′Πf ′ση = η(−α(α+ρ)(G′A′σ+1)−αG′A′Πf ′σ)−α(α+ρ)(1−η). Therefore,

there are two positive and two negative eigenvalues.

There exists a unique equilibrium path if the number of jumping variables equals the number of eigenvalues
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with a positive real part (Buiter, 1984). Since we have two jumping variables, Π1
t and Π2

t , and two positive

eigenvalues, we know the existence of the unique equilibrium path in the neighborhood of (sh, sh). Therefore,

Qhh is an economically stable state. The four steady states Qll, Qhh, Qlh and Qhl are identical in terms of

their local dynamic structures. Without loss of generality, we can infer that two positive and two negative

eigenvalues are at those states, and they are economically stable states, if they exist.

All other steady states, Qlm, Qmh, Qml, Qhm and Qmm, are economically unstable steady states. For

example, check the local stability of Qmm. Using equation (30), we have the determinant JQmm
− λI:

|JQmm
− λI| = [λ2 − λ(−αG′A′σ + ρ)− α(α+ ρ)(G′A′σ + 1)− αG′A′Πf ′σ]Qmm

·[λ2 − λ(−αG′A′ση + ρ)− α(α+ ρ)(G′A′ση + 1)− αG′A′Πf ′ση]Qmm . (31)

We know that [−α(α+ρ)(G′A′σ+1)−αG′A′Πf ′σ]Qmm
= α(α+ρ)g(ã′)

ψ

[
p+ q′ − ψ

g(ã′)

] ∣∣∣
ã′=A(sm,Πm)

> 0, as shown

in the proof of Lemma 2. Also we know that −αG′A′σ + ρ > 0 because of A′σ = −p
ψ < 0. Thus, the first

term of the determinant implies two eigenvalues with positive real parts. The second term implies at least one

eigenvalue with positive real part because −αG′A′ση+ρ > 0. Therefore, at least three eigenvalues have positive

real parts. Since we have only two jumping variables, we cannot always find a unique equilibrium path in

the neighborhood of (sm, sm) (Buiter, 1984). Thus, Qmm is an economically unstable state. Now check other

states. Since all other four are identical in terms of their dynamic structures, we need to check only one of

them. Consider Qmh. When η = 1, there must be three eigenvalues with positive real parts and one negative

eigenvalue, because group 1 is at an economically unstable state Em and group 2 is at an economically stable

state Eh in the case with one social group. Thus, Qmh with η = 1 is an economically unstable state since

the number of positive eigenvalues, which is three, exceeds the number of jumping variables: except for initial

points that s1
0 exactly equals sm, there does not exist a converging path to the state in the neighborhood of

(sm, sh). We cannot explicitly calculate the signs of eigenvalues with η < 1. However, the qualitative approach

helps us to conclude that it cannot be an economically stable state, because we can easily find at least one

point (s1, s2) in the neighborhood of Qmh, in which a converging equilibrium path to Qmh does not exist. �

9.8 Proof of Theorem 3

First consider the case with the absence of working period network externalities q = 0, in which convergence

ranges are not overlapped at all, as illustrated in Figure 6. With q = 0, the dynamic structure can ignore two

jumping variables Π1
t and Π2

t , because they are fixed as a constant (δ̄′). Each convergence range is a basin of

attraction for an attractor (an economically stable state). The basins are separated by separatrices that are

connecting saddle points (economically unstable states). As partial steady states loci, D1(s2∗) and D2(s1∗)

curves, get closer to the diagonal with the declined η (Lemma 4), the basins for economically stable asymmetric

states (Qlh, Qhl) should be shrinking, while those for economically stable symmetric states (Qll, Qhh) should

be expanding, as manifested in Figure 6. This analysis for the special case with q = 0 is directly applied to

the general case with q > 0, because the only difference is the bigger convergence ranges with the greater

working period network externalities (greater q). The second argument in the theorem is true because the
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overlap of equilibrium paths in one social group case is analogous to the overlaps of the convergence ranges in

the given two group case. When q = 0, there exists no overlap of convergence ranges (Figure 6). With greater

q, overlaps tend to get larger, as Theorem 2 implies. �

9.9 Proof of Lemma 6

As integration proceeds, either Qlh and Qmh are merged together or Qlh and Qlm are merged together before

Qlh disappears. First, envision a threshold segregation level for a sufficiently small β1′: η̂(β1′). With the

threshold level, the D2(s1∗) curve will be tangent to the D1(s2∗) curve and Qlh will be merged with Qmh,

as Panel C of Figure 7 illustrates roughly. Now, let us increase β1′ to β1′ + ε holding η = η̂(β1′). With this

increase, D2(s1∗) moves away from a diagonal because of the increased β1 and D1(s2∗) curve moves closer to

the the diagonal because of the decreased β2, according to Lemma 4. Thus, two steady states, Qlh and Qmh,

get more distant from each other. In order to merge them and to make D2(s1∗) curve tangent to the D1(s2∗)

curve again, the lower segregation level is required. Therefore, η̂(β1′) > η̂(β1′ + ε), which implies η̂(β1) is a

strictly deceasing function with respect to β1 in the lower range of β1. In the same way, we can prove that

η̂(β1′′) > η̂(β1′′ − ε) for a sufficiently large β1′′, which implies that η̂(β1) is a strictly increasing function with

respect to β1 in the higher range of β1.

Finally, imagine a group 1 population size of β̂, with which all three steady states, Qlh, Qmh and Qlm,

are merged together at some level of segregation: η̂(β̂). With an increase of β1 to β̂ + ε, the D2(s1∗) curve

moves away from a diagonal and the D1(s2∗) curve moves close to the the diagonal, which means only one

steady state Qmh survives and the other two disappear. This implies the threshold level of segregation should

be higher with β̂ + ε: η̂(β̂) < η̂(β̂ + ε). With a decrease of β1 to β̂ − ε, the D1(s2∗) curve moves away from

a diagonal and the D2(s1∗) curve moves closer to the the diagonal, which means only one steady state Qlm

survives and the other two disappear. This implies the threshold level of segregation should be higher with

β̂ − ε: η̂(β̂) < η̂(β̂ − ε). Therefore, η̂(β̂) is a local minima. �

38



Reference

Acemoglu, Daron: A Microfoundation for Social Increasing Returns in Human Capital Accumulation, The

Quarterly Journal of Economics 111: 779-804 (1996)

Adsera, A and D. Ray: History and Coordination Failure, Journal of Economic Growth 3: 267-276 (1998)

Akerlof, George: Social Distance and Social Division, Econometrica 65: 1005-1027 (1997)

Barro, Robert: The Economic Growth in a Cross Section of Countries, The Quarterly Journal of Economics

106: 363-94 (1991)

Becker, G. and N. Tomes: An Equilibrium Theory of the Distribution of Income and Intergenerational

Mobility, Journal of Political Economy 87: 1153-89 (1979)

Bisin, A. and T. Verdier: The Economics of Cultural Transmission and the Dynamics of Preferences,

Journal of Economic Theory 97: 298-319 (2001)

Blau, D. M. and P. K. Robins: Job Search Outcomes for the Employed and Unemployed, Journal of

Political Economy 98: 637655 (1990)

Borjas, George: Ethnicity, Neighborhoods, and Human Capital Externality, American Economic Review,

85: 365-390 (1995)

Bowles, S., G. Loury and R. Sethi: Group Inequality, unpublished manuscript, Barnard College, Columbia

University (2007)

Buiter, Willem: Saddlepoint Problems in Continuous Time Rational Expectations Models: A General

Method and Some Macroeconomic Examples, Econometrica, 52: 665-680 (1984)

Castilla, Emilio: Social Networks and Employee Performance in a Call Center, American Journal of Soci-

ology 110: 1243-83 (2005)
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Figure 1.  Steady States with Unique Ability Level
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Figure 2. Steady States with Ability Distribution G(a)
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Figure 3. Equilibrium Paths with Unique Ability Level
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Figure 4. Equilibrium Paths with Ability Distribution G(a)
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Panel B q Increase by ∆ q

Figure 5. Different Levels of Working-period Network Externalities
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Figure 6. Steady States for Each Segregation Level η (given β1 < β2)

- η declines in Panel A, B, C, D, E, F order, with η=1 in Panel A and η=0 in Panel F.

s

sh

s

sh

Panel A Nine Steady states with η=1 Panel B Nine Steady states

Qlh

Qlm

Qmh

Qmh

Qhh

Qhm

sl

sm

sl

sm

e e

Qll Qml Qhl

sl sm sh sl sm sh

sh sh

eo ep

Panel C Nine Steady States Panel D Seven Steady states

sm sm

sl sm sh

sl

sl sm sh

sl

Panel E Five Steady states Panel F Three Steady States with η=0

sm

sh

sm

sh

sl sm sh sl sm sh

sl sl



Figure 7. Convergence Ranges for Each Segregation Level η (given β1 < β2)

- η declines in Panel A, B, C, D, E, F order, with η=1 in Panel A and η=0 in Panel F.

s

sh sh

Panel A Four stable states with η=1 Panel B Four stable states

s

MhhMlh

sl

sm

sl

sm

e e

MhlMll

sh sl sh

sh sh

Panel C Four stable states Panel D Three stable states

smsl sm
eo ep

sm sm

sh sl sh

Panel E Two stable states Panel F Two stable states with η=0

sm

sl sl

sl sm

sm

sh

sm

sh
Mhh

sh sl shsm

sl sl

sl sm

Mll



Figure 8. Integration Policy (with η Declining from One)
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Figure 9. Affirmative Action Policies
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Appendix Figure 1. Partial Steady States (si*,σi*) Given sj
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Appendix Figure 2. Global Steady States (given β1 < β2)

Panel A  s2*(s1) Locus with s2=Π2=0 .
Panel B s1*(s2) Locus with s1=Π1=0 

k2

.

σ1

(sh, sh)(sh, sh)

s2

k2

(sm, sm)

(sl, sl)

(sm, sm)

(sl, sl)

s2=1

s2=sm

k1

s1σ2
s2=0s1=0 s1=sm s1=1 

(sh, sh)

s2* s2

(sh, sh)
s1*(s2) locus
:D2(s1*) curve 

s2*(s1) locus 
:D1(s2*) curve

(sm, sm) (sm, sm)

s1

(sl, sl) (sl, sl)

s1*

Panel C  Global Steady States (s1**,s2**) s2 Region 1 Region 2y ( , ) g g

(sm, sm)

(sh, sh)

(sl, sl)

s1

Region 4 Region 3


