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We examine the mapping of the distribution of ability onto earnings
in a hierarchical job assignment model. Workers are assigned to a
continuum of jobs in fixed proportions, ordered by sensitivity to ability.
The model implies a novel marginal productivity interpretation of
wages. We derive comparative statics for changes in technology and
in the distribution of ability. We find conditions under which a more
unequal distribution of ability maps onto a more/less unequal distri-
bution of earnings. We also analyze an assignment model with variable
proportions and find that in the Cobb-Douglas case, a rise in the
inequality of ability always narrows the range of earnings.

I. Introduction

This is a paper about the role of job assignment in the distribution of
earnings. The importance of job assignment can be understood from
a simple nondistributional question: Does better information about in-
dividual ability raise aggregate output? In a one-job model, the answer
is no: better information affects the distribution of income, but not the
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total. If better information does raise output, the reason is that there
are productivity gains to be had from improving the match between
workers and jobs, a phenomenon that can be analyzed only in an as-
signment model.1 Specifically, in models such as the one we present,
the sensitivity of output to ability varies across jobs, so improved infor-
mation raises output by better sorting high-ability individuals into more
ability-sensitive jobs. The light that job assignment can shed on distri-
butional questions is less well appreciated. Changes in other people’s
ability may affect our earnings by changing what job we are assigned
to, as well as the rewards attached to each job. Understanding the as-
signment mechanism can help explain such questions as whether and
why better information about individual ability—or a rise in inequality
of ability itself—increases or decreases the inequality of earnings.

To flesh this out, suppose that production takes place in teams of
workers, assigned to varying tasks (or jobs) on the basis of their ability,
and that output depends on the quantity or quality of the various tasks
performed. What gives an assignment model its analytical force is the
fact that the assignment of workers to tasks is endogenous. In models
of the type considered in this paper, workers cannot simply be added
to any given task without some reshuffling of personnel among other
jobs. In the simplest example, there may be some fixed relationship
between the number of production and nonproduction workers: one
cannot increase without the other. More generally, if there is a hierarchy
of jobs, the addition of low-skill workers toward the bottom of the hi-
erarchy will allow other workers to move up the job ladder. Such an
assignment process may be thought of as lying in the background of a
conventional production function in discrete grades of labor, F(L ,1

. Spelling out the assignment process imposes structure on the… , L )n

production function. More to the point, it imposes structure on the
wage or marginal productivity functions , which mustw p F(L , … , L )i i 1 n

be interpreted to include the productivity effect of the endogenous
reassignments, upon adding an increment of type i labor.

The mapping of the distribution of ability to that of earnings depends
on the following features of the underlying technology we have just
described.

First, it depends on the gradient across tasks of how sensitive perfor-
mance is to ability. Whether that gradient—and, hence, the sensitivity
of output to proper job assignment—is concentrated in the high-skill
or low-skill jobs will be important. For example, we shall show that if
this gradient in skill sensitivity is concentrated among high-skill jobs,

1 See Hartigan and Wigdor (1989, p. 241ff.) for a clear statement of this point in the
employment testing literature. There had been some confusion between the partial and
general equilibrium gains from information, a confusion that seems to persist in some
popular treatments, such as Herrnstein and Murray (1994, pp. 64, 85–86).
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then a rise in inequality of ability will tend to reduce inequality of earn-
ings. To sketch the argument, note that the value of an additional low-
ability worker is enhanced by the productivity gains of those workers
who can now be promoted to more ability-sensitive jobs. Conversely, the
value of an additional high-ability worker is reduced by the productivity
losses of those workers who must be demoted to make room for him
at the top. If these gains and losses are concentrated in high-skill jobs,
occupied by workers in the right tail of the distribution, then a rise in
the inequality of ability (which raises those workers’ ability) will magnify
the effect of reassignment. Hence, wages will rise at the bottom and fall
at the top, reducing the inequality of earnings. This result involves in
an essential way the reassignment of workers and therefore could not
be understood outside of an assignment model.

A second feature of the technology is the degree of complementarity
of workers in the team across tasks. If the degree of complementarity
is high, then two heads are no better than one on any given task without
the addition of a full complement of workers on other tasks. The nature
of the mapping from ability to earnings depends on this complemen-
tarity, on how much better two heads (or pairs of hands) are than one.
To analyze this, we advance the assignment literature a major step be-
yond the traditional assumption of fixed proportions between workers
and tasks. Under variable proportions, firms face a nontrivial assignment
problem of choosing the optimal density of workers across tasks. We
find a simple but powerful relationship between the wage profile and
the first-order (Euler) condition for the optimal assignment. This allows
us to explore further the conditions under which a rise in the inequality
of ability reduces the inequality of earnings. We find that if the degree
of complementarity of workers across tasks is reduced from that of fixed
proportions to that of Cobb-Douglas, then a rise in the inequality of
ability will always narrow the wage gap between the top and bottom.2

The assignment literature, surveyed by Sattinger (1993), distinguishes
between models in which assignment is based on workers’ preferences
over job characteristics (e.g., Tinbergen 1951), comparative advantage
(e.g., Roy 1951; Sattinger 1975; Heckman and Sedlacek 1985; Teulings
1995), and production complementarities across jobs (e.g., Sattinger
1979, 1980). This third type of assignment model, less familiar than the
others, is the basis for our paper. As outlined above, the model captures

2 A third feature of the technology that matters to this mapping is the manner in which
performed tasks are combined to generate output. It matters whether performed tasks
are highly substitutable (e.g., output is linear in performed tasks) or whether technology
is more like O-rings (Kremer [1993], where output is Cobb-Douglas in performed tasks).
As Kremer and others have shown, if there is complementarity across tasks, which implies
positive cross partials in ability, at least some assortative matching by ability will obtain
across firms. In this paper, we confine our attention to perfect substitutability across tasks,
with no assortative matching, as discussed further in n. 5.
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key features of a hierarchical production technology under which jobs
can be ordered by sensitivity to ability, but all must be filled in more
or less fixed proportions. Workers of the highest general ability are
assigned to the most ability-sensitive jobs and those of least ability are
assigned to the least sensitive jobs. This is very different from a com-
parative advantage model, since the assignment does not rest on het-
erogeneous skills: ability is one-dimensional in the model’s purest form.
Conversely, in a comparative advantage model, there is typically no tech-
nological constraint on the proportions of workers across jobs. Com-
parative advantage models have proved quite fruitful for several decades,
but there is some recent literature that suggests an erosion of the role
of comparative advantage in explaining the distribution of income. This
is the finding of Gould (2002), who explains that the rising importance
of general or cognitive skills is raising the correlation of skill valuation
across broad occupational groups. If so, a model of the type developed
here might be increasingly relevant.

Sattinger’s (1979, 1980) model is the most direct precedent of ours.
He considers a continuum of jobs in which labor of varying quality
works with complementary machines of varying size. Workers of higher
ability are optimally assigned to jobs with more capital. Sattinger solves
for the prices of labor and machine rental of varying quality. The slopes
of the wage and rental functions are derived from no-arbitrage condi-
tions, and the levels are set by outside options for labor and capital. He
uses this setup to explore the effect of capital heterogeneity on the
distribution of labor earnings.

Our model in Sections III and IV has some formal similarities with
the Sattinger model because it also assumes fixed proportions between
the continua of workers and tasks, that is, a fixed “production hierarchy.”
This implies that we have the same no-arbitrage condition for the slope
of the wage function. But the level of the wage function is determined
differently—by the zero-profit condition—because our model focuses
on complementarities among types of labor in the same enterprise
rather than capital-labor complementarities on jobs that are indepen-
dent of one another.

Our analysis of this fixed-proportions model offers several major ad-
vances. First, we show that wages are in fact marginal productivities of
a reduced-form production function (in continuous form), where an
increment of labor of a given quality leads to reassignment of all other
workers.3 The effect of that reassignment on output depends critically

3 Sattinger claims that marginal productivities are undefined in his model because of
fixed proportions between capital and labor on any given job. However, this claim implicitly
presupposes a definition of marginal productivities as the addition to output associated
with a marginal increase in an input, with not only the quantity of other inputs but also
their assignment held constant.
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on the gradient of ability sensitivity across jobs, in a way that sheds light
on the comparative statics of the ability-wage mapping.

Second, we find the assignment model’s analogue (in continuous
ability) of the production function’s cross partials, . ThisF (L , … , L )ij 1 n

allows us to characterize Hicks substitutability or complementarity across
ability types and show how that depends on the assignment model’s
technology. This in turn helps us analyze who wins and who loses from
changes in the skill mix, such as immigration drawn from one part of
the ability distribution or another.

Third (as mentioned above), we ascertain the conditions under which
an increase in inequality of ability leads to an increase or decrease in
the spread of wages. We show that this analysis directly applies to the
issue of improved information about employees, since better informa-
tion increases the inequality of expected ability. Our results may there-
fore be pertinent to recent discussions about whether or not testing and
other forms of information generate an efficiency-equity trade-off, by
improving the match of workers to jobs, while making it easier for firms
to distinguish high- from low-ability workers. By providing a general
equilibrium analysis of this question, we find conditions under which
this trade-off does or does not exist.4

Another change in the distribution of abilities arises from integrating
workers from two distinct ability distributions. Two different groups,
regions, or countries may differ either in their underlying distributions
of ability or in the precision of information available about the abilities
of their members. We analyze what we believe to be a novel question:
If one can estimate more accurately the ability of workers in country
(group or region) A than in B, who gains, and how much, when the
two countries (groups or regions) integrate into a single market?

In sum, we offer an extensive exploration of the comparative statics
of the wage distribution with respect to the distribution of ability (and
also technology), thereby extending the assignment literature that is
based on fixed proportions between workers and jobs. We then go on,
in Section V, to relax the assumption of fixed proportions between
workers and tasks, as described above. Finally, in Section VI, we briefly

4 Rothschild and Stiglitz (1982) provide a model with a continuum of jobs, which posits
a quadratic loss in productivity for any mismatch between the individual’s ability and the
skill requirement of the job. With normally distributed ability, they find that finer infor-
mation generates higher mean earnings and higher variance, i.e., an efficiency-equity
trade-off. By contrast, Heckman and Honore (1990) show that in the Roy model, perfect
assignment not only raises mean earnings but reduces the inequality of earnings, compared
to random sectoral assignment in the same proportions. This might be interpreted as
comparing a perfect test and no test. MacDonald (1982) also analyzes the effect of im-
perfect substitutes in the production of output (as discussed in n. 2 above). Although
MacDonald does show that information raises output, he finds ambiguous effects on wage
levels and does not examine the effect on wage inequality.
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discuss some limitations of our assumptions and conclude with some
reflections on what light our analysis might shed on recent decades’
trends in the distribution of income.

II. A Two-Job Model

In this work we investigate the relationship between the distribution of
workers’ abilities and the resulting distribution of wages that obtains in
competitive equilibrium. A worker’s contribution to total firm output
depends on his own ability and also on the job he occupies. We begin
by finding the equilibrium distribution of wages in a simple two-job
model.

The key feature of the model is that jobs must be filled in fixed
proportions to one another, v and . Consider a world, for example,1 � v

of production and supervisory jobs, with a fixed span of control. Alter-
natively, suppose that production takes place in teams of fixed com-
position, for example, two-person teams of an electrician and an elec-
trician’s helper. One may think of software teams with coders and
debuggers in proportions that are hard to vary, or research teams with
lead researchers and research assistants, where, again, the quantity of
workers cannot be substituted for quality in one or the other type of
job.

In the simplest case, output depends only on the ability of those in
production jobs; support jobs generate no output, but must be filled to
keep the operation going. More generally, suppose that one job is more
ability-sensitive than the other, such that output per unit of ability on
the two jobs is . Thus v, b0, and b1 completely characterizeb 1 b ≥ 01 0

the technology.
Let denote a worker’s ability (or expected ability, givenm � [0, 1]

available information). The distribution of ability is exogenous and is
characterized by the cumulative distribution function (CDF) , soF(m)

denotes the ability quantile of a worker with ability m. Equiv-p p F(m)
alently, let denote the ability at rank p. Workers will be�1m(p) { F (p)
assigned to job 1 or 0 as . Output isˆm � m { m(v)

v 1

Q p b m(p)dp � b m(p)dp.0� 1�
0 v

It is important to be clear on how the complementarities under con-
sideration in this model (and in the continuous job version below)
pertain to the number of workers across jobs versus their abilities. Under
the strict complementarity we have posited (which will be relaxed in
Sec. V), the effect on output of adding another worker of any given
ability to a given job depends very much on the number of workers in
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the other jobs: they must remain in strict proportion. By contrast, the
effect on output of raising the ability of a worker in one job is assumed
independent of the abilities of workers in the other jobs.5

The wage schedule is derived from two conditions. The no-arbitrage
condition on job assignment gives the slope of the wage function:

for any m, m′ on job i. Otherwise profits could′ ′W(m) � W(m ) p b(m � m )i

be raised by substituting one type of worker for another. The no-profit
condition, , sets the level of the wage function. Spe-1Q p W(m)dF(m)∫0
cifically, these conditions imply

ˆ ˆW(m) p b m � (1 � v)(b � b )m, m ≤ m, (1)0 1 0

and

ˆ ˆW(m) p b m � v(b � b )m, m ≥ m, (2)1 1 0

as depicted in figure 1.
These expressions have a straightforward marginal productivity in-

terpretation. An additional worker of ability adds to outputˆm ! m b m0

directly on job 0, but also allows the promotion of workers to job1 � v

1. These workers will be promoted from the margin between the jobs,
so they will have ability . The output from each of thesem̂ { m(v) 1 �

workers will rise by , so this indirect contribution to outputˆv (b � b )m1 0

is captured in the second term of (1). Thus low-ability workers earn
more than their direct contribution to output. Similarly, an additional
worker of ability , placed on job 1, earns less than his or her directˆm 1 m

contribution to output, . The reason is that placement in job 1b m1

requires the demotion of v workers of ability to job 0, with the atten-m̂

dant loss of output, as reflected in the second term of (2).6

5 The model implicitly assumes that performed tasks are perfect substitutes in generating
output, as mentioned in n. 2 above: output is simply the sum of performed tasks. For
industries adequately approximated by the two-job case with , this assumption entailsb p 00

no further loss of generality: a different degree of task substitutability would have no effect.
The assumption may also capture essential features in other cases, e.g. (to take perhaps
only a slight caricature), academic departments in which output is the (quality-adjusted)
sum of articles produced; some departmental jobs that leave less time for research (i.e.,
low-b jobs) must nonetheless be filled. For other industries, however, the degree of cross-
task complementarity may be important, as in Kremer’s O-ring analysis. This leads to
assortative matching, which, the literature has shown, leads to greater inequality of earnings
from any given distribution of ability. Our own analysis (available on request) finds that
even if we abstract from assortative matching, the relaxation of perfect substitutability
across tasks makes it more likely that a mean-preserving spread of ability widens the wage
span.

6 These expressions also show the sense in which the quantity of workers cannot sub-
stitute for their quality. If we consider a team of workers with ability below or above ,m̂
then integrating over (1) or (2), we see that the value of this team has two terms. The
first is the value of the tasks they perform, based on their ability, and the second is based
only on their number. Thus, in a market for services provided by a labor contractor, the
contract does not simply pertain to a certain level of services, but also depends on the
number of workers supplying those services. By contrast, this paper’s model does not apply
to industries such as contracted after-hours office cleaning, where the size of the cleaning
crew is irrelevant.
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Fig. 1

Note that the technology is one of constant returns to scale: doubling
inputs of all ability levels leaves and the wage schedule unchangedm̂

and doubles output. Thus, as implied by Euler’s theorem in the standard
production model, marginal productivity payments exhaust output and
the zero-profit condition obtains, as stated. There are no externalities
at work here, despite the fact that workers receive more or less than
the direct value of the tasks they perform. There is, in principle, nothing
different going on here than usual, since marginal productivities always
depend on the interaction between marginal and incumbent workers
of different abilities. This model merely specifies that interaction in a
particular way that distinguishes between the direct value of tasks per-
formed by the marginal worker and the effect on the value of tasks
performed by incumbent workers, by virtue of the optimal reassignment.

We now consider comparative statics of the wage function. (The re-
sults presented here generalize beyond the two-job model to one with
a continuum of jobs, presented below.) Technological progress is rep-
resented here by a rise in or or both. This results in an unambig-b b0 1

uous widening of the income distribution: for , is′ ′m 1 m W(m) � W(m )
nondecreasing in and .7 This result becomes intuitive once one isb b0 1

clear that is the incremental price of ability for a worker on job i; sobi

a rise in widens the gap between two workers of different ability.bi

7 For individuals on the same job i, rises with . For indi-′ ′W(m) � W(m ) p b (m � m ) bi i

viduals in different jobs, , rises with′ ′ ′ˆ ˆ ˆm 1 m 1 m W(m) � W(m ) p b (m � m) � b (m � m ) b1 0 0

and .b1
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In gauging the effect of technology on the bottom of the distribution,
note that depends entirely on b’s gradientˆW(0) p (1 � v)(b � b )m1 0

. If productivity rises on the low-skill jobs, falls, perhaps(b � b ) W(0)1 0

counterintuitively to a simple notion of biased technical progress. That
is, one might think that a rise in would raise the wages of those withb0

lesser skill, because it does raise their direct contribution to output,
. However, for those with the very least skill, this is outweighed byb m0

the fact that a rise in reduces the indirect contribution to output,b0

, the productivity gain from promoting workers up theˆ(1 � v)(b � b )m1 0

hierarchy. Indeed, in the limit, as , we approach the one-jobb r b0 1

model, where wages equal ability and .W(0) r 0
We now turn to comparative statics with respect to the ability distri-

bution. Note that in this simple two-job model, the role of the ability
distribution in the wage function is entirely captured by , the�1m̂ { F (v)
ability of the worker on the margin between the two jobs. Thus, as figure
1 illustrates, any shift in the ability distribution on fixed support [0, 1]
that raises to, say, will raise the earnings of low-ability workers and′ˆ ˆm m

reduce the earnings of high-ability workers, and conversely for any shift
that reduces .m̂

For example, a first-order stochastic improvement in the ability dis-
tribution raises (or does not reduce) ability at all quantiles, including
ability at the critical v quantile, . Thus a general improvement in abilitym̂

not only raises output but also improves the distribution of income.
The reward to low-ability types rises because they now support the pro-
motions of workers with higher ability than before, and, for the same
reason, the reward to high-ability types falls.

Consider instead a more unequal ability distribution, a mean-pre-
serving spread on fixed support. This improves ability in the right tail
and reduces ability in the left tail (with possible multiple crossings in
between). The effect depends on whether the worker on the margin
between jobs, at quantile v, lies in the upper or lower tail of the ability
distribution. More generally, it is useful to think of the technology as
one in which the sensitivity to job assignment (gradient of b) is con-
centrated in jobs filled by low-skill or high-skill workers. If proper job
assignment is most critical in the top jobs (i.e., if most jobs are not skill-
sensitive—v is high), then the worker on the margin is in the right tail;
so a more unequal ability distribution raises and narrows the wagem̂

distribution. Conversely, if assignment matters most toward the bottom
of the spectrum (v is low), then a more unequal distribution reduces

and widens the wage distribution (see fig. 2).m̂

Finally, let us examine the effect on the income distribution of an
increment to the workforce at any arbitrary point of the ability distri-
bution. It is easy to show that this reduces wages of all workers with
abilities on the same side of , so they are (Hicks) substitutes, and thosem̂
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Fig. 2

on the opposite sides of are complements. To see this, note first thatm̂

the addition of a worker with ability will shift down (up) the quantiles′m

of all workers with ability below (above) : the CDF, , will pivot at′m F(m)
as depicted in figure 3. Thus the addition of a worker with any ability′m

level will raise . As we have seen, this raises earnings of all workers′ ˆ ˆm 1 m m

with ability and reduces earnings of all workers with abilityˆm ! m m 1

. The converse holds for the addition of a worker with ability .′ˆ ˆm m ! m

As a result, workers of any abilities m and that bracket are comple-′ ˆm m

ments, whereas those on the same side of are substitutes.m̂

III. A Continuum of Jobs in a Fixed Production Hierarchy

A. Wage Profile

In this section and the next, we generalize the model to a continuum
of jobs and extend our comparative static results. Let us order jobs, or
tasks, within a firm by the sensitivity of output on a task to the ability
of workers filling it. Denote the rank order of a task by . Definet � [0, 1]

as the direct contribution to output per unit of ability from a workerb(t)
placed in task t, where is nondecreasing.8 In a fixed productionb(t)

8 The two-job model is a special case in which is a step function with a single pointb(7)
of discontinuity.
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Fig. 3

hierarchy, workers within a firm must be assigned to tasks in a fixed
distribution (which we normalize to be uniform, without further loss of
generality). With this assumption, completely characterizes the econ-b(7)
omy’s technology.

Higher-ability workers are placed in more ability-sensitive positions;9

under the assumption of fixed proportions, mapping people to tasks
one to one, we have . That is, output is maximized by assigning ap p t
worker of ability to the task with . Thus in an efficientm(p) b(t p p)
assignment, a worker’s direct contribution to output is10

q(p) { b(p)m(p). (3)

9 If workers of abilities m and are assigned to tasks t and , respectively, with ,′ ′ ′m t m 1 m
their joint output is . If they switch positions, their joint output would be′ ′mb(t) � m b(t )

. For there to be no gain from switching, we require′ ′ ′m b(t) � mb(t ) (m � m) 7 [b(t) �
, which in turn requires .′ ′b(t )] ≤ 0 b(t ) ≥ b(t)

10 Nothing of substance would be altered by generalizing (3) to q(p) { a(p) �
. The output that is independent of ability, , affects only the zero-profitb(p)m(p) a(7)

condition, so the integral over gets folded into , as derived below. That is,a(7) w(0)
affects only the level of , not its slope. No restrictions need be placed on ,a(7) w(7) a(7)

so there need be no presumption that the most ability-sensitive job is also the job that
generates the most output. But even if not, the worker filling that job, with the highest
ability, will still earn the highest wage.
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Total output in the hierarchy, Q, is

1 1

Q(F ) p q(p)dp p mb(F(m))dF(m). (4)� �
0 0

What is the distribution of wages for workers in such hierarchies? We
use two conditions to derive the wage profile, , the wage as a func-w(p)
tion of the worker’s ability quantile. (We distinguish from ,w(p) W(m)
which gives the wage as a function of ability itself.) First, from the no-
arbitrage condition we find the slope of the profile,

′ ′w (p) p b(p)m(p), (5)

which equals the derivative of with respect to p, evaluated atb(t)m(p)
. This follows from observing that no profitable arbitrage oppor-t p p

tunity exists if and only if, for all p, ,′p

′ ′b(p)m(p) � w(p) ≥ b(p)m(p ) � w(p )

or, equivalently,

′ ′ ′ ′b(p)[m(p) � m(p )] ≥ w(p) � w(p ) ≥ b(p )[m(p) � m(p )].

We assume (though nothing important hinges on this) that the ability
distribution is atomless with full support on [0, 1], so that is con-F(7)
tinuous and strictly increasing on [0, 1]; thus is differen-�1m(7) { F (7)
tiable almost everywhere on [0, 1]. Divide by and let to′ ′p � p p r p
get (5). Note that is the marginal return to ability for someone ofb(p)
ability level , .11m(p) dw(p)/dm(p)

We can see from (5) and (3) that the wage profile is flatter than the
productivity profile of workers’ direct contribution to output:

′ ′ ′ ′ ′w (p) p b(p)m(p) ≤ q (p) p b(p)m(p) � b (p)m(p).

The higher wage earned by someone slightly up the hierarchy reflects
his higher ability, not the higher job placement per se; the gain in output
from promoting a worker of ability to a higher job, , does′m(p) b (p)m(p)
not accrue to that worker, but rather (as we shall see) to those who
make that promotion possible.

The second condition is the zero-profit condition, 1 q(p)dp p∫0
. This immediately implies that the wage profile crosses the1 w(p)dp∫0

productivity profile from above: those in low job placements earn more

11 It immediately follows that wages are a convex function of ability, since the marginal
return to ability, , is nondecreasing. The wage is linear in m on any task,dW/dm p b(F(m))
but a higher m moves one up to a higher task. This convexity of skews the distributionW(m)
of wages to the right, relative to the distribution of ability, consistent with the empirical
phenomenon that has motivated a very long previous literature (e.g., Mayer [1960], Sat-
tinger [1975], and Rosen [1982], to name just a few).
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than their direct contribution to output, and those in high job place-
ments earn less.

These two conditions (assured, e.g., by Bertrand-competitive wage-
setting firms) suffice to establish the wage profile, by the following result.

Proposition 1. Let the ability distribution be atomless with full sup-
port on [0, 1]. Then the fixed hierarchy model of production yields
the competitive wage profile:

1 y

w(p) p b(p)m(p) � m(z)db(z)dy. (6)� �
0 zpp

Proof. Since ,′ ′w (p) p b(p)m(p)

p

w(p) p w(0) � b(z)dm(z). (7)�
zp0

Integrating by parts, we get

p

w(p) p w(0) � b(p)m(p) � m(z)db(z). (8)�
zp0

Using the zero-profit condition, we find

1 y

w(0) p m(z)db(z)dy. (9)� �
0 zp0

Substituting in (8) gives

1 y p

w(p) p b(p)m(p) � m(z)db(z) � m(z)db(z) dy� � �[ ]
0 zp0 zp0

and the result stated in (6). Q.E.D.
Discussion.—The wage profile, given in (6), clearly shows the rela-

tionship to the productivity profile, , since that is given by the firstq(p)
term in (6). The second term, , decreases in p: low-wagew(p) � q(p)
workers earn more than their direct contribution to output, and high-
wage workers earn less, as stated earlier. Further insight into this rela-
tionship can be gleaned from the following marginal productivity in-
terpretation of (6).

As in the two-job model, (1) and (2), the second term of (6),
, is the indirect contribution to (or detraction from)1 y

m(z)db(z)dy∫ ∫0 zpp

output. It is the effect of reallocating workers up and down the hierarchy
in order to restore the one-to-one assignment of workers to tasks, fol-
lowing the introduction of an additional worker of ability . Them(p)

term represents the productivity gains/losses from the reassign-db(z)
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ments, as did the terms in (1) and (2). The only new bit ofb � b1 0

analysis here is to understand how the rate of reassignment varies up
and down the hierarchy and how this is represented by the double
integral.

Consider , the wage of an individual with ability . His in-w(0) m p 0
direct (indeed, only) contribution to output is the productivity gain
from pushing higher-ability workers up the hierarchy, given in (9),

. The addition of a mass of workers at leads to1 y
m(z)db(z)dy m p 0∫ ∫0 zp0

the most intensive rate of reassignment at or near rank zero. Further
upward reassignments diminish in intensity the further up the hierarchy
we go, until workers are once again uniformly distributed across tasks.12

This diminution of the rate of reassignment as we move away from the
point of insertion is captured by the double integral, since the greatest
weight is accorded to for the lowest values of z. In economicm(z)db(z)
terms, this means that wages at the bottom of the distribution depend
most heavily on the sensitivity of output to job assignment in the lower-
skilled jobs, and less so in the higher-skilled jobs.

Conversely, at the opposite end of the wage profile, we have

1 1

w(1) p b(1) � m(z)db(z)dy. (10)� �
0 zpy

Wages at the top of the profile are less than the direct contribution to
output because workers must be demoted to lower positions, with re-
duced output, to accommodate an additional worker at the top. Again,
the most intensive reallocation occurs at jobs that are closest to that of
the new worker—the top jobs, in this case. More generally, for a worker
of rank , (6) shows that the indirect contribution to outputp � (0, 1)
consists of the productivity gains and losses from reallocating workers
up and down the hierarchy from task , with the intensity of thet p p
reallocation diminishing as one moves farther from job p, occupied by
the worker in question, toward jobs 0 and 1.13

12 Consider a simple case of three jobs (with parameters , , and ) filled by threeb b b1 2 3

workers, with abilities , , and . (This can be represented in the present modelm p 0 m m1 2 3

by step functions for and , which have two [common] points of discontinuity.)b(7) m(7)
The addition of a zero-ability worker at the bottom of the hierarchy allows the scale of
operations to expand to one and one-third workers on each job. The worker on job 2m2

now reallocates one-third of his time to the top job, for a productivity gain of 1
m (b �2 33

. The worker on job 1 reallocates two-thirds of his time to job 2, for a1
b ) p m Db m2 2 2 13
gain of . Thus the rate of reassignment is greatest (two-thirds vs. one-third) closest2

m Db1 13
to the rank of new workers.

13 An alternative way of seeing the reallocation process, directly related to (6), is to
consider a wave of reallocations from job p to the adjacent job, and so on, to job y. The
output gain (or loss) from this wave is . If we insert at job p a mass dp ofy

m(z)db(z)∫zpp

workers with ability , then one restores the uniform assignment of workers to jobsm(p)
with a series of waves, just like the one described, with the endpoints of such waves, y,
distributed uniformly on [0, 1]. That is precisely what the double integral in (6) describes.
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Note that although workers of high ability earn less than their direct
contribution to output, firms cannot gain ex post by bidding these
workers away from one another. Any such move would require shifting
downward the assignments of less able incumbents. The attendant re-
duction in output would absorb all of the apparent gain from the ac-
quisition. Similarly, although low-ability workers earn more than their
direct contribution to output, firms cannot gain by firing such workers,
since this would necessitate (after rescaling the level of the firm’s op-
eration) the demotion of others to take up their tasks, with the attendant
reduction in their output.

We have thus provided an explanation of why the wages of members
of an academic department (say) may be less variable than their pro-
ductivities in any particular task. If agents work in teams with varied
tasks that require the application of person-hours in fixed relative pro-
portions, the total returns to ability cannot be proportional to agents’
direct contributions to output. This is so even when, as in our model,
more able agents are proportionately better at every conceivable task,
because adding such an agent to the team incurs the cost of reassigning
all the other team members.

B. Substitutes and Complements

We now turn to the question of Hicks substitutability or complemen-
tarity, the effect of an increase in one type of labor on the wage of
another. The wage effects of any change in the distribution of ability—
the effect of immigration, educational tracking, and so forth—rest on
these relationships. Under a production function with discrete ability
types, we would examine the cross partials, Here, weF (L , … , L ).ij 1 n

shall perform the analogous exercise pertinent to a continuous ability
distribution and consider how these relationships depend on the tech-
nology, . Specifically, we consider the addition to the labor force Lb(7)
of a mass of labor , with ability , and find the effect on the wage ofD mp p

a worker with ability . (The notation is chosen to indicate that andm mr p

are constants that correspond to the ability at quantiles p and r, priormr

to the addition of .)Dp

The key to the analysis is the effect that an increment of labor hasDp

on the assignment of ability types to quantiles above and below it. As
figure 3 depicts, the insertion of labor raises the ability levels assigned
to lower quantiles and reduces those assigned to higher ones. Specifi-
cally, the assignment of ability m to quantile z, , is implicitly givenm(z; D )p

by

L
z p F(m) for m ! mp( )L � Dp
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and

L
1 � z p [1 � F(m)] for m 1 m .p( )L � Dp

The assignment of ability to any quantile z responds to an infinitesimal
as follows:Dp

z′m(z) z ! p
L�m(z; D )p p (11)

�D 1 � zp ′{�m(z) z 1 p.
L

We can now derive the marginal product for a worker of ability .mr

Since output is given by
1

Q(D ) p (L � D ) b(z)m(z; D )dz,r r � r
0

we have
1 r 1

�Q ′ ′p b(z)m(z)dz � b(z)m(z)zdz � b(z)m(z)(1 � z)dz, (12)� � �
�D r 0 0 r

using (11). The marginal productivity interpretation of (6) can then
readily be verified (see the Appendix):

1 y
�Q ′p b(r)m � m(z)b (z)dzdy p W(m ) p w(r).r � � r
�D r 0 r

We now turn to the result we are looking for (see the Appendix for
the proof).

Proposition 2. For quantiles ,p ! r
1 y

� �Q �W(m ) �m(z; D )r pp p db(z)dy� �( )�D �D �D �Dp r p 0 r p

p r
1 2 ′ ′p � z m(z)db(z) � z(1 � z)m(z)db(z)� �( ) [L 0 p

1

2 ′� (1 � z) m(z)db(z) . (13)� ]
r

By Shepherd’s lemma, this expression also gives us .�W(m )/�Dp r

Discussion.—The net effect on of adding workers of abilityW(m ) mr p

works entirely through the worker’s indirect marginal productivity.mr
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First, the addition of workers raises the ability of individuals assignedmp

to lower quantiles, so the demotions over (0, p) required to accom-
modate a worker of become more costly. This effect tends to reducemr

, as the first term within the brackets of (13) indicates. The secondW(m )r
term concerns the quantile range (p, r). Since the addition of workersmp

decreases ability over that interval, the demotions in that range to ac-
commodate a worker of become less costly, thereby raising .m W(m )r r

Finally, the addition of workers decreases the abilities assigned tomp

higher quantiles, too (r, 1). This reduces the productivity gains from
the promotions supported by workers, reducing , as the thirdm W(m )r r

term indicates. Thus the first and third terms contribute to Hicks sub-
stitutability and the second term to complementarity.

Naturally, the more similar two workers are (i.e., the closer p is to r),
the more likely they are to be substitutes. In the limiting case, as p r
, the second term of (13) vanishes, and we simply have diminishingr

marginal productivity. At the opposite extreme, as and , thep r 0 r r 1
first and third terms vanish, and we have complementarity: top-ability
workers are helped by an increased supply of the least skilled, and
conversely.

Consider more closely the addition of low-ability workers, near m p
, for example, from the low-skilled range of immigrants. What deter-0

mines how many low-skill workers are hurt versus high-skill workers who
are helped? In this model, the nature of the technology determines the
answer. Examining (13), one can show that if is convex, then moreb(7)
low-skill workers are likely to be hurt than if were concave. That is,b(7)
more people of low ability would be hurt by additional workers of lesser
ability if the gradient of —the sensitivity of output to proper jobb(7)
assignment—were concentrated in the high-skill jobs. The reason is that
under such a technology, the main effect of new low-skill workers, which
reduces ability levels assigned to all quantiles, is the adverse effect on
the value of promotions supported by most workers, up through the
high-skill jobs. Conversely, if the technology is such that the sensitivity
of output to proper job assignment is concentrated in low-skill jobs,
then the infusion of very-low-skill workers helps most workers by re-
ducing the cost of demotions required to accommodate them.

Similarly, we may consider the addition of high-ability types, near
, for example, from the top end of the immigrant spectrum. Again,m p 1

the concavity or convexity of affects the gains and losses. Moreb(7)
people of low ability would be helped by additional high-ability workers,
to the extent that the sensitivity of output to job assignment is concen-
trated in high-skill jobs. Here, the main effect of the rise in ability is to
raise the value of promotions through the high-skilled jobs, which are
supported by most workers. Again, the converse holds for the opposite
type of technology.
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In Section IV, we analyze broader changes in the ability distribution,
using different methods. However, it is worth bearing in mind that the
effects of any change in the ability distribution ultimately rest on a series
of point insertions such as those we have analyzed here.

IV. Comparative Statics of Technology and Ability in the Fixed
Hierarchy Model

A. The Distributional Effect of Technical Progress

Technical progress, a rise in output for given inputs, is represented by
a rise in . This widens the income distribution, a result that gener-b(7)
alizes from the two-job model.

Proposition 3. Technical progress widens the wage gap between the
top and the bottom, , and, indeed, between individuals onw(1) � w(0)
either side of any affected tasks: for any such that rises for′p 1 p b(z)
some and does not fall, rises.′ ′z � (p , p) w(p) � w(p )

The result follows directly from (5):

p

′w(p) � w(p ) p b(z)dm(z). (14)�
′zpp

Since is the marginal return to ability, a rise in widens the gapb(7) b(7)
between wages of workers of different ability, as in the two-job model.

The effect of technical progress on wages of the least skilled, ,w(0)
is also similar to that found in the two-job model: it depends on what
happens to the gradient of . This can be immediately seen by writingb(7)
(9) as . A parallel shift in has no effect on1 y ′w(0) p m(z)b (z)dzdy b(7)∫ ∫0 zp0

. If technical progress is concentrated in the higher-skilled jobs,w(0)
then gets steeper and rises. Conversely, if technical progressb(7) w(0)
is concentrated in the low-skilled jobs, this flattens and reducesb(7)

. As in the two-job case, this possibly surprising result is easily ex-w(0)
plained. The rise in for jobs filled by the least skilled raises theirb(7)
direct contribution to output, but vanishingly so as . This ism(p) r 0
outweighed by the fact that a rise in for the low t’s toward that ofb(7)
the high t’s reduces the productivity gain from shifting workers up the
hierarchy, which is the zero-ability worker’s sole contribution to output.
As flattens out entirely, we approach the one-job model andb(7) w(0)
vanishes.

B. The Distributional Effect of Improved Ability

Consider an improvement in the endowment of ability. That is, consider
a CDF on the distribution of m, , that exhibits first-order stochasticG(7)
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dominance over : for all . Then we can im-F(7) G(m) ≤ F(m) m � [0, 1]
mediately establish the following result.

Proposition 4. A first-order stochastic improvement in the distri-
bution of ability raises and reduces .w(0) w(1)

Proof. Since and are nondecreasing,F(7) G(7)

�1 �1G(m) ≤ F(m) r m(z; G) { G (z) ≥ F (z) { m(z; F )

for all . The result then follows by inspection of (9) and (10).z � [0, 1]
Q.E.D.

The logic is the same as we found in the two-job model. A rise in the
population’s ability makes the promotions supported by a zero-ability
worker more valuable, and it makes more costly the demotions that are
required to accommodate a top-ability worker.

Thus an improvement in the population’s ability distribution has the
opposite effect on the wage span from an improvement in technology.
As we saw, technical progress raises the price of incremental ability,

, widening the wage gap . By contrast,1 ′b(7) w(1) � w(0) p b(z)m(z)dz∫zp0

a general rise in ability between and 1 reduces at high z’s′m p 0 m(7)
and raises it at low z’s, thereby redistributing the gradient of ability
toward the lower-skilled jobs, where it fetches a lower price. Thus a
general rise in ability reduces the average price over the full span of
ability, narrowing the wage span.

C. The Output and Distributional Effects of Ability Dispersion

We now turn to the paper’s main question: Under what conditions does
a more unequal ability distribution map onto a wider or narrower wage
distribution? The question can be motivated by a comparison of econ-
omies with identical means but different dispersions of ability, as might
be occasioned by more or less stratified processes of human capital
development (e.g., educational tracking, according to its critics).

The question also arises when considering the effect of improved
information. Suppose that employers do not observe a worker’s ability,
but receive an imperfectly informative signal (e.g., a test or school at-
tendance records).14 Each worker’s expected ability is assessed condi-
tional on the information available about him. Since output is linear in
worker abilities, expected output depends only on the distribution of
expected abilities. That is, it makes no difference whether the workers

14 We keep matters simple by assuming that workers and employers have the same
information, so workers too are uncertain about how well they will perform. We continue
to assume that worker abilities are exogenous. Thus we are neglecting here the important
issue of how changing the quality of information available to employers about worker
abilities affects the incentives that workers have to acquire skills. We further discuss this
issue briefly in Sec. VI.
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assigned to a given job all have the same known ability or have an array
of unknown abilities with the same average. Thus, when the distributions
are taken as a whole, there is no difference for risk-neutral firms between
facing a population with a given distribution of known abilities and
facing a different population with the same distribution of conditional
expected abilities (but of course a different, more disperse, distribution
of underlying unknown abilities). Both cases result in the same expected
output and the same wage distribution.15

Now, better information will lead to a different, more disperse, dis-
tribution of expected ability in the worker population. We can formally
establish a rather general and quite useful result (see the Appendix for
the proof) on the precise sense in which better information leads to a
more unequal distribution of expected ability.16

Theorem 1. Consider two tests of worker abilities, and suppose that
test 1 is more informative than test 2 in the sense of Blackwell (1953).
Then the population distribution of estimated mean productivities in-
duced by test 1 (viewed as a random variable ex ante) is riskier (in the
sense of second-order stochastic dominance) than that induced by test
2.

The significance of the result is this: to do comparative statics of the
effect of “improved information” in a model with uncertain worker
abilities, it is sufficient to study the effect of a mean-preserving spread
of abilities in a corresponding model in which abilities are known. That
is, our analysis of the effects of a more unequal (i.e., riskier) ability
distribution can be interpreted as applying either to the underlying
distribution itself or to an improvement in information about each
worker’s place in it.17

Either way, however, we confine ourselves to the case of fixed support
. Under the informational interpretation, this means that wem � [0, 1]

shall compare situations in both of which there is sufficient information
to assign individuals to the bottom and top of the distribution. This
rules out the case of zero information, where the distribution of ex-
pected ability is concentrated at the mean, a restriction that should be
borne in mind below.

15 Rank workers of unknown ability a by the value of their signal s, scaled in percentiles.
Then expected output is . This is isomorphic to the certainty case,1E(Q) p b(s)E[aFs]ds∫0

, for a hypothetical population in which the distribution of known ability,1Q p b(p)m(p)dp∫0
, is identical to the first population’s distribution of expected ability, .m(p) E[aFs]

16 This theorem generalizes the well-known case of the normal testing model, where
the posterior distribution of expected ability is widened by a reduction in the noise of
the test (less regression to the mean). Cornell and Welch (1996) present a related result,
but our theorem is somewhat stronger.

17 Some readers of earlier versions of this paper have commented that improved infor-
mation affects earnings only early in one’s career, before one’s true abilities are established
on the job. The point is well taken, so the noninformational interpretation may be more
compelling for some readers.
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We may now establish an important result: A mean-preserving rise in
the riskiness of the ability distribution raises total output and, therefore,
the mean wage. We can see this intuitively in the simple case of a single
crossing of CDFs, where ability rises in the right tail of the distribution
and drops in the left tail. The rise in ability occurs for those filling the
nearly top jobs, which are the most ability-sensitive. Thus the output
effect here outweighs that from the drop in ability among those filling
the ability-insensitive jobs. This result holds more generally for a mean-
preserving spread with possibly multiple crossings (see the Appendix
for the proof).

Proposition 5. Suppose that the ability distribution is “riskier”G(7)
than , but the two distributions have the same mean. ThenF(7)

.Q(G) ≥ Q(F )
We turn now to our principal question: How does a more unequal

distribution of ability, or better information about abilities, affect the
equilibrium degree of wage inequality? With regard to better infor-
mation, it is often assumed that there is a sacrifice in equity that is
necessarily incurred for the efficiency gains (proposition 5) from im-
proving the quality of matches between workers and jobs. The following
comparative static analysis should shed some light on the conditions
under which this equity-efficiency trade-off holds or whether better in-
formation advances both efficiency and equity goals. From a noninfor-
mational viewpoint, our result will address the question of whether a
more unequal ability distribution necessarily implies more wage
inequality.

Let denote the wage profile under ability distribution F. Fromw (p)F

(14), we have

1

�1Dw { w (1) � w (0) p b(y)dF (y), (15)F F F �
0

where denotes the wage span. We can also write18DwF

1 1

�1w (0) p [b(z) � b(y)]dzdF (y) (16a)F � �
0 y

18 To see this, integrate (9) by parts to get
1 1 z

�1 �1w (0) p F (z)b(z)dz � b(y)dF (y)dzF � � �
0 0 yp0

1 z

�1p [b(z) � b(y)]dF (y)dz.� �
0 yp0

Changing the order of integration gives the result in (16a). Substituting into (15) gives
the expression for in (16b).w (1)F
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and

1 1

�1w (1) p yb(y) � b(z)dz dF (y). (16b)F � �[ ]
0 y

Suppose now that and are two distinct distributions of esti-F(7) G(7)
mated abilities in the worker population. Invoking second-order dom-
inance, we shall write “G is more unequal (or riskier) than F” (hereafter
G MUT F) if and for all1 m[G(y) � F(y)]dy p 0 [G(y) � F(y)]dy ≥ 0 m �∫ ∫0 0

. We may now state the main result for the fixed hierarchy model.[0, 1]
Proposition 6. Let F and G be atomless with full support on [0, 1].

Let G MUT F: (i) if is concave, then and ;b(7) w (0) ≤ w (0) Dw ≥ DwG F G F

(ii) if is convex, then and .b(7) w (1) ≤ w (1) Dw ≤ DwG F G F

Proof. The results follow immediately from the following lemma.
Lemma 1. G MUT F and convex [concave] implyw(7)

1 1

�1 �1w(y)dG (y) ≤ [≥] w(y)dF (y).� �
0 0

Proof of lemma 1. Since abilities lie in the unit interval and both F(7)
and are atomless with full support, we conclude that �1G(7) F (0) p

, , and both and are con-�1 �1 �1 �1 �1G (0) p 0 F (1) p G (1) p 1 F (7) G (7)
tinuous and strictly increasing on [0, 1]. Taking these inverse functions
as CDFs in their own right, we further conclude that G MUT F implies

MUT (see the proof of proposition 5). So the inequality of the�1 �1F G
lemma is the principal characterization result for second-order sto-
chastic dominance (the expectation of a convex function is no less under
a riskier distribution). Q.E.D.

To complete the proof of proposition 6, employ (15) and (16) to see
that

1 1

�1w (0) p w (y)dF (y), for w (y) { [b(z) � b(y)]dz,F � 0 0 �
0 y

1 1

�1w (1) p w (y)dF (y), for w (y) { yb(y) � b(z)dz,F � 1 1 �
0 y

and

1

�1Dw p w (y)dF (y), for w (y) { w (y) � w (y) p b(y).F � 2 2 1 0
0

Since is nondecreasing, convex implies that and areb(7) b(7) w (7) w (7)1 2
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convex, whereas concave implies that is convex and isb(7) w (7) w (7)0 2

concave. This proves proposition 6.
Proposition 6 assesses the impact of a more unequal ability distri-

bution (or a more informative test of worker abilities) on the equilib-
rium range of wages. If output per unit of ability, , is a convexb(7)
(concave) function of a worker’s position in the hierarchy, then a greater
dispersion of ability (on fixed support) lowers wages for the most (least)
skilled workers and compresses (widens) the wage span.

The way that ’s curvature conditions the effect of ability dispersionb(7)
on , , and can be understood by noting first that suchw(0) w(1) Dw
dispersion raises the ability of those in the high-skilled jobs and reduces
it in the low-skilled jobs. Recall that represents the productivityw(0)
gains from promoting workers up the hierarchy, especially through the
low-skill jobs, since that is where the intensity of the rate of promotions
is greatest upon the addition of a worker. Thus, by reducing them p 0
ability of workers on these jobs, a rise in ability dispersion tends to
reduce the productivity gains from these promotions, provided that the
gradient in these jobs is at least as high as in the more skilled jobs.′b (7)
Thus, if is concave, falls with a rise in ability dispersion; indeed,b(7) w(0)

falls relative to , so the wage span widens. Conversely, thew(0) w(1)
earnings distribution is compressed by a more unequal ability distri-
bution when is convex. Here the gradient is steepest among theb(7)
high-skill jobs, whose occupants are the ones most intensively demoted
from the addition of a worker. Since their ability rises with a morem p 1
unequal distribution, the cost of demoting them rises; so falls andw(1)
the wage span narrows.19

The same logic holds when we consider technologies in which isb(7)
S-shaped rather than convex or concave, as in the two-job model. What
matters is the location of the near-vertical region of the S, that is, the
steepest region of . This is the region in which the gains or lossesb(7)
from reassigning workers are concentrated, so that is where the distri-
butional effect of a change in the ability distribution will play out. If
this region lies in the low-skilled jobs, where a more unequal ability
distribution reduces m, then will fall and will rise. Conversely,w(0) w(1)
a more unequal ability distribution will raise and reduce ifw(0) w(1)
job assignment is most sensitive in the high-skilled jobs. That is why, in
our two-job model, the effect of a more unequal ability distribution
depended critically on whether v, the proportion of low-skill jobs, was
low or high.

19 For linear , wages fall at both extremes by the same amount, so . However,b(7) Dw p 0
the mean wage rises (by proposition 5), so the middle class gains from ability dispersion.
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D. The Output and Distributional Effects of Economic Integration

The final change we analyze in the distribution of abilities arises from
the economic integration of distinct populations. Let there be two pop-
ulations with distributions of estimated ability denoted by andF (m)a

, respectively. Think of them as representing workers in differentF(m)b

regions of a country, distinct racial or ethnic groups, or different nations.
The underlying ability distributions may differ, or the test of worker
abilities may be more informative about one group than the other.
Consider what would happen if the two populations were to merge, as
a result of the economic integration of their labor markets, assuming
that a common technology, represented by , prevails both beforeb(7)
and after integration. How would output and the distribution of income
be affected?

Let l be the fraction of a’s in the total population, . Then0 ! l ! 1
the merged population’s ability distribution is given by F (m) {l

. So, if group a’s ability distribution first-order sto-lF (m) � (1 � l)F(m)a b

chastically dominates that of group b, the merged group lies in between:
FOSD FOSD FOSD Thus proposition 4 implies the fol-F F ⇔ F F F .a b a l b

lowing corollary.
Corollary 1. When group a’s ability distribution FOSD that of group

b, economic integration results in andw (1) 1 w (1) 1 w (1) w (0) 1b l a a

.w (0) 1 w (0)l b

This result may help explain why it is the elites within relatively back-
ward populations, along with the lower classes of relatively advanced
groups, who sometimes resist labor market integration. Each is the rel-
atively scarce “factor” within its own group; as the Stolper-Samuelson
theorem suggests, these are precisely the workers harmed by economic
integration. Corollary 1 also shows how economic integration tends to
narrow wage dispersion, by raising the overall minimum and lowering
the overall maximum wages.

Similarly, if we merge groups with the same mean but unequal dis-
tributions, we have MUT MUT MUT , so proposition 6F F ⇔ F F Fa b a l b

implies the following corollary.
Corollary 2. When group a’s ability distribution MUT that of group

b, economic integration results in if is convexw (1) 1 w (1) 1 w (1) b(7)b l a

and if is concave.w (0) 1 w (0) 1 w (0) b(7)b l a

Thus, whether is convex or concave, integration always has theb(7)
effect of moving at least one extreme of the overall wage distribution
toward the mean. It is interesting to consider this result as applying to
two groups with the same underlying ability distribution but different
degrees of observability. Those at one or both extremes of the wage
distribution in the less accurately observed group, b, stand to lose from
integration with the more accurately observed group.
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Whatever its distributional consequences, integration of two such
groups—or any two groups—must raise each group’s average wage (see
the Appendix for the proof).

Proposition 7. Regardless of the technology or the ability distribu-
tions in the two populations, both groups benefit, on average, from
economic integration:

1 1

W (m)dF(m) ≥ W(m)dF(m) for each group i.� l i � i i
0 0

Discussion.—Economic integration of two groups affects the wage of
a worker in group i by embedding him in a population with different
abilities and by changing his job assignment. When the assignment is held
constant, the change in his coworkers’ abilities has no effect on the
worker’s direct contribution to output, but it affects his indirect marginal
productivity by changing the value of the promotions and demotions
associated with inserting this worker into the job hierarchy.20 For group
i as a whole, however, the indirect marginal productivities must still net
out to zero, since the effects of promotions enabled by adding a worker
at one position are washed out by the demotions required to accom-
modate the marginal worker at another, regardless of the ability
distribution.

Thus it is the change in job assignments that accounts for the effect
of economic integration on the income of group i as a whole. Consider
a worker at quantile p before the merger who is reassigned to quantile

afterward. So, if , integration causes that worker toF (m(p)) p ! F (m(p))l i l i

be promoted to a higher position in the job hierarchy, raising the direct
marginal productivity component of his wage. At the same time, to
accommodate that promotion, there is an equal and opposite movement
down the hierarchy of all those at positions , interme-z � [p, F (m(p))]l i

diate between that worker’s old and new assignments. The rise in the
worker’s direct marginal productivity outweighs the reduction in his
indirect marginal productivity from the accommodating demotions. The
reason is that the demotions occur for workers of lesser ability,

, so the productivity effect of moving them down throughm (z) ! m(p)l i

the gradient of is less than that of promoting the worker in questionb(z)
up through the same gradient. Conversely, for a worker who is demoted
upon integration, the direct loss in marginal productivity is outweighed
by the indirect gains in marginal productivity from the promotion of
those of higher ability, . For each group taken as a whole,m (z) 1 m(p)l i

therefore, income must rise, as proposition 7 states.

20 This is the sole effect on and in corollaries 1 and 2 above, since thosew (0) w (1)i i

workers are not in fact reassigned.
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Note that the reassignment maximizes output for the merged group,
but not necessarily for each group separately. However, if the direct
output of (say) group a declines because of a net shift to lower positions,
group a will be more than compensated by an increase in its indirect
marginal productivity. This increase in the indirect marginal productivity
is, in effect, a transfer from group b. That is, group b, whose direct
output has risen, compensates group a for the reassignments that made
this possible.

V. Production in Variable Proportion Hierarchies

A. Crowding, Nonuniform Assignment, Arbitrage, and No-Profit
Conditions

We now relax the assumption of strict complementarity in the number
(or density) of workers across tasks, that is, of fixed proportions. We
may think of fixed proportions as a technology characterized by ex-
tremely deleterious effects of crowding workers into tasks, relative to
the number of workers in other tasks. That is, any deviation from the
fixed proportions that reassigns workers from one small range of tasks
to another reduces output in the former but does not raise output at
all in the latter. The obvious relaxation, which we adopt, is to suppose
that the effect of crowding is not so extreme as to block any additional
output, but rather that raising the proportion of workers assigned to a
small range of tasks raises the output from those tasks less than
proportionately.

Formally, we relax the assumption of uniform assignment, , byp p t
letting a nonuniform CDF denote the proportion of the workforceF(t)
assigned to task t or lower: . Let be the assignment′p p F(t) J(t) { F (t)
density of workers to tasks. Let natural units of labor on tasksJdt (t,

generate “effective” units of labor, where is a smootht � dt) h(J)dt h(J)
neoclassical production function,21 , , and . Nor-′ ′′h(0) p 0 h (7) 1 0 h (7) ! 0
malize such that effective units of labor equal natural unitsh(1) p 1
when workers are assigned uniformly across tasks. Note that the elasticity
of h, , so effective labor rises less than propor-′h(J) { Jh (J)/h(J) ! 1
tionately to the density of natural units, the relaxation of fixed pro-
portions that we were seeking. Output is thus given by

1

Q p b(t)m[F(t)]h[J(t)]dt. (17)�
0

21 We may think of as being derived from a more conventional production function,h(J)
based on absolute employment density (with constant returns), rather than being directly
based on the relative employment density J. Details are available on request.
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Fig. 4

Note that fixed proportions is a limiting case in which h(J) r
, the Leontief technology (see fig. 4). In this case, firms willmin (J, 1)

choose the uniform assignment, , , for all t, since anyF(t) p t J(t) p 1
departure from this means over some tasks, which wastes labor.J(t) 1 1
We can then trivially change variables from t to p, giving us (4).

More generally, for non-Leontief , it will be useful to express theh(J)
output from tasks as the output from corresponding workers(t, t � dt)

. To implement the change of variables from t to p, define(p, p � dp)
the assignment of tasks to workers as the inverse of the assignment of
workers to tasks. That is, the proportion of tasks assigned to workers of
ability quantile p or lower is . Workers at quantile p�1t p T(p) { F (p)
are assigned tasks with density . We thus have′t(p) { T (p) p 1/J[T(p)]

1
1

Q p b[T(p)]m(p)h t(p)dp. (18)� [ ]t(p)0

This expression is readily interpreted. Since is the effectiveh[1/t(p)]t(p)
units of labor per natural unit of labor, the integrand is simply output
per natural unit of labor.

We can now immediately generalize proposition 1. Define

1
b(p) { b[T(p)]h t(p), (19)[ ]t(p)

the output per unit of ability for a worker of ability , for any givenm(p)
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assignment function. Then the same arbitrage and zero-profit conditions
used in (6) give us

1 y

w(p) p b(p)m(p) � m(z)db(z)dy. (20)� �
0 zpp

That is, when we substitute for , the wage profile (6) generalizesb(7) b(7)
from the fixed uniform assignment to any given assignment function,
whether or not it is optimal.

B. Optimal Assignment

For any given wage schedule, profit-maximizing firms will distribute
workers across jobs to maximize output. Formally, the choice of canF(7)
be posed in the standard calculus of variations format, to maximize

1

ˆQ p q(t, F, J)dt, (21)�
0

where

q̂(t, F, J) { b(t)m(F)h(J),

with boundary conditions and . The Euler equation,F(0) p 0 F(1) p 1
, isˆ ˆ�q/�F p d(�q/�J)/dt

d′ ′b(t)m [F(t)]h[J(t)] p {b(t)m[F(t)]h [J(t)]} Gt (22)
dt

or, equivalently,

t1

′ ′ ′b(t)m [F(t)]h[J(t)]dt p b(t )m[F(t )]h [J(t )] � b(t )m[F(t )]h [J(t )].� 1 1 1 0 0 0
t0

(23)

The right-hand side is the marginal benefit of reducing the density of
workers at task and raising the density at task , a task with highert t0 1

marginal productivity; the left-hand side is the marginal cost of this
reallocation of workers from lower to higher tasks, which is to replace
the workers in intervening tasks with workers of lower ability, drawn
from lower tasks.
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Further intuition can be gleaned by carrying out the differentiation
and rearranging:

′ ′ ′h b m (1 � h)J′J p � , (24)( )′′ { [ ]}�h b m h

where . The left-hand side, the slope of the optimal as-′h { Jh/h ! 1
signment density, is the rate at which crowding should rise at higher
tasks. The right-hand side points to three factors. First, the curvature
of the effective labor production function, , measures the cost of′′�h
uneven crowding due to diminishing returns, so it is inversely related
to .22 Second, the benefit of pushing more workers up the hierarchy′FJ F
is the higher return to any given ability, . Third, the cost of pushing′b/b

more workers up the hierarchy is that it crowds workers of higher ability:
the steeper the ability gradient is, the greater the cost of crowding′m/m
more workers onto higher tasks. The slope of the optimal assignment
density reflects these costs and benefits.

C. Wage Profile at Optimal Assignment

The no-arbitrage and zero-profit conditions imply wage profile (20) for
any given assignment, optimal or not. At the optimal assignment, we
offer the following nice result.

Proposition 8. The variable proportions model yields the competitive
wage profile:

1
1 1

w(p) p m(p)b(p)h � m(y)b(y) 1 � h dy. (25)�[ ] { [ ]}t(p) t(y)0

Proof. The Euler condition (23) can be rewritten with a change of
variables:

y
1 1′ ′b[T(y)]m(y)h � b[T(p)]m(p)h p b(z)dm(z). (26)�[ ] [ ]t(y) t(p) zpp

22 The extreme case is Leontief , where around ; so′′(h(J) r min (J, 1)) h r �� J p 1
the optimal assignment is uniform , as stated earlier. The opposite limiting case′(J { 0)
is perfect substitutability, , for all J. Here, and , so′ ′′h(J) r J h (J) { h(J) { 1 h (J) { 0

′ ′ ′b m (1 � h)J b′′ ′ ′�h J p 0 ! h � p ,{ [ ]}b m h b

and (24) fails for any nondegenerate assignment. The reason is that under perfect sub-
stitutability, crowding has no effect, so all workers are piled onto task , where pro-t p 1
ductivity is highest.
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Integrating by parts and rearranging, we gety b(z)dm(z)∫zpp

y
1 1

m(z)db(z) p b(y)m(y) 1 � h � b(p)m(p) 1 � h . (27)� { [ ]} { [ ]}t(y) t(p)zpp

Substituting into (20) gives the desired result. Q.E.D.
The interpretation of (25) is straightforward. The output per worker

of ability , on the task to which he is assigned, is . Of that,m(p) b(p)m(p)
the share attributable to that worker is simply the elasticity of effective
labor . That is, his marginal contribution to output on that taskh[1/t(p)]
is

1 1′b[T(p)]m(p)h p b(p)m(p)h ,[ ] [ ]t(p) t(p)

the first term in (25). The remaining portion of ,b(p)m(p) 1 �
, is attributable to workers on other tasks, since they reduceh[1/t(p)]

the relative crowding on the task in question. Conversely, the second
term of (25) is the contribution of worker p to the output on tasks
assigned to all other workers because of complementarity throughout
the job structure.

Of course, the marginal productivity interpretation of (6), as gen-
eralized in (20), still holds as well. This interpretation, it will be recalled,
is the addition to output from adding a worker of to the appropriatem(p)
task while reassigning other workers to maintain the given assignment propor-
tions. The marginal productivity interpretation of (25), just discussed,
considers the addition to output without reassigning other workers. These
two assignments yield equal results at the optimum, by the envelope
theorem.

D. Comparative Statics in the Cobb-Douglas Case

Consider the case , where h, the elasticity of effective laborhh(J) p J

with respect to natural units, is constant. This can be considered a Cobb-
Douglas production function, with unitary elasticity of substitution be-
tween labor on tasks and a task-specific factor.

Explicit solutions can be found in this case (see the Appendix). From
these solutions immediately follow the comparative statics with respect
to technology.

Proposition 9. In the Cobb-Douglas case, any change in the pro-
ductivity function that raises (reduces) output (i) raises (reduces)b(7)
the wage paid at any quantile and (ii) widens (narrows) the wage gap
between any two quantiles.

Let us compare these results with the fixed proportions case. As dis-
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cussed in Section IVA, if technical progress is concentrated in the low-
skilled jobs, flattening , is reduced under fixed proportions.b(7) w(0)
But under constant elasticity, part i of proposition 9 states that technical
progress must raise all wages, including . Here there is no suchw(0)
thing as technical progress that is so biased against any skill group that
it can reduce its wages. This is similar to the classic result for the Cobb-
Douglas production function in nonassignment models.

To understand the difference between the Cobb-Douglas and fixed-
proportions cases, note from (20) that under variable proportions,

depends on the gradient of , not just . In the Cobb-Douglasw(0) b(7) b(7)
case, there is enough substitutability that any technical improvement
that flattens is offset by optimizing reassignment that steepensb(7)

over at least some quantiles, thereby raising1�hb(p) p b[T(p)]t(p)
.w(0)

Part ii of proposition 9 states that the interquantile wage differential,
, , must widen with any output-raising change in′ ′w(p) � w(p ) p 1 p

. This is a bit stronger than the corresponding proposition 3. Underb(7)
fixed proportions, the wage gap is widened between any two quantiles
on either side of any improved tasks, but here the wage gap is widened
between all quantiles, even if the improved tasks are located elsewhere
in the hierarchy. Again, note that the incremental price of ability is

, not . Part ii of proposition 9 implies that in the Cobb-Douglasb(p) b(p)
case, if rises over any interval, rises over all intervals, by virtueb(p) b(p)
of the optimizing reassignment. This widens .′w(p) � w(p )

Comparative statics for the ability distribution (see the Appendix) are
given by the following proposition.

Proposition 10. In the Cobb-Douglas case, any change in the dis-
tribution of (expected) ability on [0, 1] that raises (reduces) output (i)
raises (reduces) , (ii) reduces (raises) , and (iii) narrows (wid-w(0) w(1)
ens) the wage span between any two workers of given abilities,

. A mean-preserving spread of the ability distribution raises′W(m) � W(m )
output, so it raises , reduces , and narrows all .′w(0) w(1) W(m) � W(m )

Proposition 10 shows that the fixed-proportions results on first-order
stochastic improvements in the ability distribution (proposition 4) hold
for the Cobb-Douglas case as well. Also, the output-enhancing effect of
a mean-preserving spread in the ability distribution is not surprising,
since proposition 5 obtained this result for fixed assignment; so a reop-
timizing assignment only reinforces this.

What is different is that proposition 10 finds that a mean-preserving
spread raises and reduces , narrowing (and allw(0) w(1) w(1) � w(0)
other fixed-ability wage spans), independent of the shape of , quite unlikeb(7)
the fixed-proportions case (proposition 6), where the shape of isb(7)
critical. Specifically, under concave , with fixed assignment, a mean-b(7)
preserving spread of abilities reduces and widens , sow(0) w(1) � w(0)
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the reoptimizing assignment reverses these results. The effect of infor-
mation—and ability inequality more generally—is thus more assuredly
egalitarian under Cobb-Douglas crowding technology than under fixed
proportions.

E. CES Crowding Technology

We have found opposite effects on the wage span from a mean-pre-
serving spread in abilities under Cobb-Douglas and Leontief crowding
technologies ( and ) for concave . This raiseshh p J h r min [J, 1] b(7)
the question of what happens for other degrees of curvature of .h(J)
The question can be sharply posed by noting, from (25), that

′w(1) � w(0) p b(1)h [J(1)]. (28)

The behavior of the wage span turns entirely on what happens to
. In the Cobb-Douglas case, a more unequal ability distributionJ(1)

always raises and reduces . What happens, and why,J(1) w(1) � w(0)
for less flexible crowding technologies?

A mean-preserving spread raises the ability of those who are near—
but not at—the top of the distribution. This raises the cost of crowding
these individuals on the tasks to which they are assigned, relative to the
costs of crowding individuals in other tasks, both above and below them.
How should this crowding be alleviated? Some shift in density down the
hierarchy is obviously worth doing, since ability has declined in some
of the lower quantiles, thereby diminishing the costs of crowding there.
The question at hand is when there should also be some reallocation
up the hierarchy, raising .J(1)

Consider the constant elasticity of substitution (CES) crowding func-
tion, , .23 As and , we have the�r �1/rh(J) p [(1 � a) � aJ ] r ≥ 1 r r 0 r r �
Cobb-Douglas and Leontief cases already analyzed. In general, an ex-
plicit solution for and the wage span is not available, but someJ(1)
insights can be obtained, beginning with the special case of constant b

(see the Appendix).
Proposition 11. Constant b and CES h. (i) For any given distribution

of m, there exists such that, for , the wage spanr* � (0, 1) r � (�1, r*)
falls with any mean-preserving spread of m; (ii) as ,w(1) � w(0) r r �

the effect of any mean-preserving spread of m on ap-w(1) � w(0)
proaches zero from above.

Part ii of proposition 11 indicates that if the crowding effects are
strong (substitution is limited), then the crowding of those near the

23 The constants a and preserve the normalization . Also, . The1 � a h(1) p 1 h(1) p a
elasticity of substitution between labor on a task and a task-specific fixed factor is

.1/(1 � r)
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top of the hierarchy, whose ability has risen from a mean-preserving
spread, is alleviated entirely by a shift down the hierarchy. This reduces

and widens . But if the crowding effects are weak (moreJ(1) w(1) � w(0)
substitution), then part i of proposition 11 indicates that the optimal
response will also include reallocating workers from near the top to the
very highest tasks, marginally raising the crowding of those top workers
whose ability has not risen by much. This raises and reducesJ(1)

.w(1) � w(0)
This basic result, for constant b, is modified when slopes up. Thatb(7)

is, in addition to the previous analysis of how to minimize the costs of
crowding workers of varying abilities, we must now also consider the
benefits of putting the higher-ability workers in the more ability-sensitive
jobs. Intuitively, this would seem to tilt the optimal reallocation upward
after a mean-preserving spread, compared to the constant-b case, in
order to exploit the rise in ability in the higher fractiles. Thus the net
result on and the wage span depends not only on the severity ofJ(1)
crowding but now also on the shape of —its concavity or convexity—b(7)
as we saw under fixed proportions.

To summarize this line of thinking, we should expect the follow-
ing:24 (i) If the cost of crowding is low, then a mean-preserving spread
of ability leads to a rise in density at the very top jobs, narrowing the
wage span, regardless of the shape of , as we saw in the Cobb-Douglasb(7)
case. The reason the shape of does not matter here is that sinceb(7)
density shifts upward with the ability spread under constant b, it does
so a fortiori when slopes up (regardless of its curvature) as justb(7)
discussed. (ii) If the cost of crowding is high, then the shape of b(7)
matters. For constant b, a mean-preserving spread of ability leads to a
drop in density in the top jobs, widening the wage span; but this need
not hold when slopes up. The condition under which more unequalb(7)
ability will narrow the wage span depends on how steep is in higher-b(7)
skilled tasks relative to the lower-skilled tasks, that is, how convex b(7)
is. If is very steep over the high-skilled tasks, then it is very costlyb(7)
to reallocate workers down the hierarchy in order to alleviate the crowd-
ing on those fractiles in which ability has risen; it is better to reallocate
at least some of the workers upward, raising density on the top jobs and
reducing the wage span.

VI. Conclusion

It is commonplace among labor economists to think of job ladders,
where workers move up and down the hierarchy to fill needed slots.25

24 While we offer no formal theorems in support of this intuition, it does accord with
numerical explorations using a stepwise b function. Details are available on request.

25 For example, Bishop (1998, p. 6) writes that “most high and intermediate level jobs
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Our model draws out the wage implications of this job structure, in-
cluding the productivity gains/losses from such reassignments that are
indirectly attributable to workers elsewhere in the hierarchy.

Our paper has analyzed the implications of such a job assignment
model for the comparative static effects of changes in technology and
the ability distribution on the distribution of wages. The results have
been summarized in the Introduction and need not be repeated here.
We would, however, invoke these results with some caution, given the
limits of our assumptions, chief of which is that of exogenous ability.
Under perfect observability, the model generalizes nicely, and we are
able to show that investment in ability is efficient. However, if there is
imperfect observability, investment is suboptimal and, more interesting,
may in some cases become even more suboptimal when information
becomes less imperfect. If so, we would have a situation in which more
information has adverse effects on both efficiency and distribution,
whereas under exogenous ability, information unambiguously enhances
efficiency (proposition 5).

We conclude with some reflections on what insights our analysis might
conceivably contribute to the discussion of recent decades’ trends in
the distribution of income. Some portion of the deteriorating real wage
at the bottom of the distribution is ascribed to changes in the ability
distribution, including the effects of immigration. Our model is certainly
consistent with such findings (Sec. IIIB) and may offer an additional
interpretation of the phenomenon: a bulge of unskilled workers de-
presses wages in that part of the spectrum by depressing the gains from
promoting those immediately above oneself. By the same token, the
model certainly suggests that improvements in the bottom of the edu-
cational distribution would ameliorate the income distribution, again
through the logic of the assignment model. On the other hand, the
model indicates that if such improvements were to be made at the
expense of maintaining achievement at the highest levels of the ability
distribution, then the benefits to the income distribution are by no
means assured (propositions 6 and 10).

Technical change, of course, is widely understood to have driven much
of the last two decades’ distributional trends. Our model offers some
potential insights into the mechanism by which this might have oc-
curred. If productivity gains are concentrated in the least skilled jobs,
flattening , this would have an adverse effect on the bottom of theb(7)
wage distribution. Has computerization, for example, had its greatest
impact on clerical output and administrative support functions? Obvi-

are filled by people moving up from below …. This starts a chain of vacancies that may
eventually generate an entry level opening for poorly educated workers who lack a history
of steady employment.”
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ously, our model cannot answer these empirical questions, but it can
help pose them and interpret the results.

Appendix

Proof That Equals the Marginal Productivity of a Worker with Abilityw(r) mr

From (12),
r 1 1

�Q ′ ′p b(z)m(z)dz � b(z)m(z)(1 � z)dz � b(z)m(z)dz� � �
�D r 0 0 0

r 1
d′p b(z)m(z)dz � b(z) [m(z)(1 � z)]dz.� � dz0 0

Integrating by parts, we have

r 1
�Q

p b(r)m � m(z)db(z) � m(z)(1 � z)db(z).r � �
�D r 0 0

But

1 1 1 1 y

m(z)(1 � z)db(z) p m(z)dy db(z) p m(z)db(z) dy.� � � � �[ ] [ ]
0 0 z 0 0

Thus, substituting, we get

1 y r
�Q

p b(r)m � m(z)db(z) � m(z)db(z) dyr � � �[ ]�D r 0 0 0

1 y

p b(r)m � m(z)db(z)dy p W(m ) p w(r),r � � r
0 r

as was to be shown. Q.E.D.

Proof of Proposition 2

Let explicitly denote ’s dependence on :W(m ; D ) W(m ) Dr p r p

1 y

W(m ; D ) p b(z(m ; D ))m � m(z; D )db(z)dy.r p r p r � � p
0 z(m ;D )r p

We can immediately establish that

1 y
� �Q �W(m ; D ) �m(z; D )r p pp p db(z)dy.� �( )�D �D �D �Dp r p 0 r p
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Reversing the order of integration, we get
r z 1 1

� �Q �m(z; D ) �m(z; D )p pp � dydb(z) � dydb(z)� � � �( )�D �D �D �Dp r 0 0 p r z p

r 1
�m(z; D ) �m(z; D )p pp � z db(z) � (1 � z) db(z)� �

�D �D0 p r p

p r
1 2 ′ ′p 7 � z m(z)db(z) � z(1 � z)m(z)db(z)� �( ) [L 0 p

1

2 ′� (1 � z) m(z)db(z) ,� ]
r

using (11), as was to be shown. Q.E.D.

Proof of Theorem 1

Consider the following version of the standard Bayesian model of statistical
inference. Firms have common prior beliefs about ability in the pop-a � [0, 1]
ulation from which they hire, given by probability density . Firms observep(a)
a common signal for each worker. The information this signal providess � [0, 1]
about unobserved ability depends on the likelihood , which gives theL(sFa)
density of the signal, conditional on ability, for every ability level. Firms use
Bayes’ rule to formulate posterior beliefs about each worker’s productivity.

In terms of statistical decision theory, the likelihood defines an experiment.L(7F7)
(Below we use L to denote a likelihood function and the “experiment” or “test”
that it characterizes.) A classic paper by Blackwell (1953) defines and usefully
characterizes what it means for one experiment to be more informative than
another. Intuitively, “is more informative than” (hereafter, if1 2 1 2L L L MIT L )
the signals reported from are a “garbled” version of the signals reported from2L

—that is, if there exists a family of probability densities such that, for1L b(s Fs )2 1

all a, . The term shows how the signal12 1L (s Fa) p b(s Fs )L (s Fa)ds b(s Fs ) s∫02 2 1 1 1 2 1 1

from is randomly garbled into a reported signal from . Blackwell proved1 2L s L2

that in this sense if and only if every expected utility maximizer would1 2L MIT L
prefer to observe the signal from experiment rather than the signal from1s L s1 2

experiment , before making a decision, the payoff from which depends on2L
the unknown state of the world. Theorem 1, based on Blackwell’s utilitarian
definition of MIT, can be proved using his result on garbling.

Let be an arbitrary outcome from test , ; let a be unknown workeris L i p 1, 2i

ability; let , the a priori mean ability; let , the conditionalm p E[a] m(s ) p E[aFs ]¯ i i i

mean ability given score on test ; and, finally, let denote the randomi ˜s L mi i

variable (as envisioned before is given), the population distribution of1m(s ) Li i

estimated ability.
Obviously . It thus suffices to show that˜ ˜ ˜ ˜E[m ] p E[m ] p m E[v(m )] ≥ E[v(m )]¯1 2 1 2

for all convex functions, . By Blackwell’s theorem, there exists a garbling ofv(7)
the signal from that generates the signal from . That is, the distribution of1 2L L
the experimental outcome in can be regarded as having been generated2s L2

by first running to get some outcome and then randomly reporting a1L s1

possible outcome , according to some probability density , which cans b(s Fs )2 2 1

be given independently of the true state of nature, a.
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Now, “invert the garble” as follows: for each under , consider ,2 �1s L b (s Fs )2 1 2

the density of , the unknown outcome under from which was produced1s̃ L s1 2

via the garbling.26 Then, using this conditional probability distribution, we have
that

˜ ˜m (s ) { E[aFs ] p E[E[aFs ]Fs ] p E[m (s )Fs ].2 2 2 1 2 1 1 2

But now, Jensen’s inequality and the law of iterated expectations imply

˜ ˜ ˜˜ ˜E[v(m )] p E[v(E[m (s )Fs ])] ≤ E[E[v(m (s ))Fs ]] p E[v(m (s ))] p E[v(m )],2 1 1 2 1 1 2 1 1 1

as was to be shown. Q.E.D.

Proof of Proposition 5

The hypothesis implies that, for all ,m ≥ 0

m

[G(z) � F(z)dz] ≥ 0�
0

and

1

[G(z) � F(z)]dz p 0.�
0

From this we conclude that for all . Integrate by parts1 [G(z) � F(z)]dz ≤ 0 m ≥ 0∫m
to see that, for all , where (i.e., at all points at which the′ ′ ′m G(m ) p F(m ) { r
distributions cross), it is the case that

1 1

�1 �1G(r) { [G (x) � F (x)]dx p � [G(z) � F(z)]dz ≥ 0.� �
′r m

Then, for so defined, we have whenever . SinceG(7) G(r) ≥ 0 dG/dr p 0 G(0) p
, it must be that for all . Integrate by parts, and recallG(1) p 0 G(r) ≥ 0 r � [0, 1]

that is nondecreasing, to getb(7)

1 1 1

�1 �1Q(G) � Q(F ) p [G (x) � F (x)]dxdb(p) p G(p)db(p) ≥ 0.� � �
0 p 0

Q.E.D.

26 Specifically,
1 1b(s Fs )L (s Fa)p(a)da∫0 2 1 1�1b (s Fs ) p .1 2 1 1 1b(s Fj)L (jFa)p(a)dadj∫ ∫0 0 2
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Proof of Proposition 7

Consider the wages earned by a given worker at some fixed quantile p of the
ability distribution for group , with and without integration. Using prop-i � {a, b}
osition 1, we know that, without integration, this worker earns

1 y

w(p) p b(p)m(p) � m(z)db(z)dy.i i � � i
0 z pp

Under integration this same worker earns

1 y

w (F (m(p))) p b(F (m(p)))m(p) � m (z)db(z)dy.l l i l i i � � l

0 z pF (m (p))l i

Hence, the impact of integration on the mean wage earned by workers in group
i is given by

1 1

[w (F (m(p))) � w(p)]dp p m(p) 7 [b(F (m(p))) � b(p)]dp� l l i i � i l i
0 0

1 1 y

� m (z)db(z)� � � l[
0 0 z pF (m (p))l i

y

� m(z)db(z) dydp� i ]
z pp

1 F (m (p))l i

p [m(p) � m (z)]db(z)dp� � i l

0 z pp

1 1 y

� [m (z) � m(z)]db(z) dydp� � � l i{ }
0 0 z pp

1 F (m (p))l i

p [m(p) � m (z)]db(z)dp ≥ 0.� � i l

0 z pp

To establish the inequality above, we have used the following facts: (i)

y y F (m (p))l i

m (z)db(z) p m (z)db(z) � m (z)db(z);� l � l � l

z pF (m (p)) z pp z ppl i

(ii)

F (m (p))l i

m(p) 7 [b(F (m(p))) � b(p)] p m(p)db(z);i l i � i
z pp

(iii) for any function and satisfying for all2G : [0, 1] r R G(p, y) p �G(y, p)
, it must be that (in this case1 12(p, y) � [0, 1] G(p, y)dydp p 0 G(p, y) {∫ ∫0 0

); and (iv) if and only if .y [m (z) � m(z)]db(z) m (z) ≤ m(p) z ≤ F (m(p))∫zpp l i l i l i

We have thus demonstrated that the mean wage earned by the workers in
group does not fall after integration, as was to be shown. (Obviously,i � {a, b}
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this result extends to the integration of any number of population groups.)
Q.E.D.

Solution 1 (to the Cobb-Douglas Case )hh(J) p J

Write the control problem for : , where1T(p) Q p q(p, T, t)dp q(p, T, t) {∫0
. The Euler equation, , can be used to showb(T)m(p)h(1/t)t �q/�T p d(�q/�t)/dp

d h d d
ln [m(p)] p ln [b(T(p))] � h ln [t(p)]( )dp 1 � h dp dp

h d 1
� ln h .( ) ( )[ ]1 � h dp t(p)

In the constant-h case (i.e., Cobb-Douglas), the last term drops out, and we
integrate to find

1 1
ln [m(p)] p ln [b(T(p))] � ln [t(p)] � k ,0( )h 1 � h

where and below are constants of integration. Exponentiating givesk k0 1

T(p)
d1/h 1/(1�h) 1/(1�h)m(p) p k t(p)b[T(p)] p k b(y) dy .1 1 �[ ]dp 0

Integrating above and using the facts that and , we concludeT(0) p 0 T(1) p 1
that

T(p) p1/(1�h) 1/hb(y) dy m(y) dy∫ ∫0 0
p Gp.1 11/(1�h) 1/hb(y) dy m(y) dy∫ ∫0 0

Differentiating both sides with respect to p and noting that b(p) p
, we get1�hb[T(p)]t(p)

1�h1 1/(1�h)b(y) dy∫0
1/hm(p)b(p) p m(p) 7 .1 1/h[ ]m(y) dy∫0

Substituting into and into (25) gives (a)1Q p m(p)b(p)dp∫0
1�h h1 1

1/(1�h) 1/hQ p b(y) dy 7 m(y) dy� �[ ] [ ]
0 0

and (b)

1/hm(p)
w(p) p Q 7 (1 � h) � h 7 .1 1/h{ [ ]}m(y) dy∫0

Proposition 9 follows immediately from inspection of points a and b.



distribution of ability and earnings 1361

Proof of Proposition 10

Part i of proposition 10 follows immediately from point b above, since w(0) p
. To show parts ii and iii of proposition 10, use points a and b above to(1 � h)Q

write

1�h h h�11 1 1

1/(1�h) 1/h 1/hw(1) p b(y) dy 7 (1 � h) 7 m(y) dy � h 7 m(y) dy� � �[ ] { [ ] [ ] }
0 0 0

and

1�h1 1/(1�h)b(y) dy∫0′ 1/h ′1/hW(m) � W(m ) p h 7 7 (m � m ).1 1/h[ ]m(y) dy∫0

The effect of the ability distribution on Q is conveyed directly by the term
. Since this term is less than one, varies inversely with it, as does1 1/hm(y) dy w(1)∫0

. Thus parts ii and iii of proposition 10 immediately follow. Finally,′W(m) � W(m )
since is the expected value of a convex function of m, a1 11/h 1/hm(y) dy p m dF(m)∫ ∫0 0

mean-preserving spread in the distribution of m raises output, with the corre-
sponding effects given in parts i–iii of proposition 10. Q.E.D.

Solution 2 (to the CES Case, , Constant b)�r �1/rh p [(1 � a) � aJ ]

The Euler equation is

′ ′ ′m h(1) b h(1) t1�r(p) p [T(p)]t(p) � (1 � r) (p).
�r[ ] { }m 1 � h(1) b [1 � h(1)]t(p) � h(1) t

For , integrate from p to 1 to find′b { 0

1
dt(z)1ln [m(z)]F p (1 � r)h(1)p � 1�r[1 � h(1)]t(z) � h(1)t(z)z pp

1 � r r 1p 7 ln {h(1)t(z) � [1 � h(1)]}F .pr

Exponentiating and rearranging gives (c)

1/r
r/(1�r)k 7 m(p) � [1 � h(1)]

t(p) p ,{ }h(1)

where is chosen to satisfy . For1rk { h(1)t(1) � [1 � h(1)] t(p)dp p 1 r � (�1,∫0
, point c holds for all (the term in braces is nonnegative, since0] p � [0, 1]

and ). For , point c holds for all andk ≥ 1 � h(1) m(p) ≤ 1 r � (0, �) p � [p , 1]min

for , where . Note thatr/(1�r)t(p) p 0 p � [0, p ] k 7 m(p ) p 1 � h(1) t pmin min

for , so . That is, the cost of crowding is suf-T(p) p 0 p � [0, p ] F(0) p pmin min

ficiently pronounced here that a mass of workers is dumped on task 0, rather
than crowd higher-ability workers on their tasks.
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Proof of Proposition 11

From point c, consider t as a function of m and . Note that t is increasingt(1)
in , for all r, and so is . Thus, if a mean-preserving spread of m raises1

t(1) tdp∫0
(lowers) , must fall (rise) to restore , and must1 1

tdp t(1) tdp p 1 w(1) � w(0)∫ ∫0 0

fall (rise). For , it can be readily verified that t is convex in m. There-r � (�1, 0]
fore, is the expected value of a convex function of m, so it rises with a1

tdp∫0
mean-preserving spread in m, and must fall. For , t is convexw(1) � w(0) r 1 0
in m on [0, 1] iff it is convex as . This is true as , but not as .m r 1 r r 0 r r 1
Hence for any given distribution of m (and therefore any given k), there exists

such that t is convex in m for , and part i of proposition 11r* � (0, 1) r ≤ r*
follows. For , t has a convex kink at but is concave for .r ≥ 1 m(p ) m 1 m(p )min min

As , . That is, converges on unity from a concave functionr r � p r 0 t(m(p))min

that emanates from a point approaching the origin, so any mean-preserving
spread of m reduces (infinitesimally) and widens . Q.E.D.1

tdp w(1) � w(0)∫0
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