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ABSTRACT

This paper constructs a simple model of pair-wise tournament competition to investigate categorical

redistribution in winner-take-all markets. We consider two forms of redistribution: category-sighted,

where employers are allowed to use categorical information in pursuit of their redistributive goals;

and category-blind, where they are not. It is shown that the equilibrium category-sighted

redistribution scheme involves a constant handicap given to agents in the disadvantaged category.

Equilibrium category-blind redistribution creates a unique semi-separating equilibrium in which a

large pool of contestants exerts zero effort, and this pool is increasing in the aggressiveness of the

redistribution goal.
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1 Introduction

Winner-take-all markets are pervasive in our society. Whom to hire, promote, admit, elect, or

contract with are all determined in a tournament-like (winner-take-all) structure. In general, these

markets tend to emerge when there is quality variation, but little price flexibility. As a result,

prizes tend to be awarded on the basis of relative, not absolute, performance. Indeed, Best Sellers,

World Cup champions, Harvard matriculants, Rhodes Scholars, first-round draft picks, clerks to a

supreme court justice, cover girls, prime ministers, and Wimbeldon champions all have this feature

in common.

Because of their structure, winner-take-all markets have the feature that small differences in

quality can be associated with large differences in rewards, which makes it quite surprising that

there has been no theoretical analysis of redistribution in these environments. Understanding the

theoretical trade-offs involved in redistribution within winner-take-all markets is of great importance

for public policy. For instance, affirmative action in college admissions is a form of categorical

redistribution in a winner-take-all market.

In this paper, we analyze categorical redistribution in winner-take-all markets. A short synopsis

of our approach is as follows. There are many employers and many more individuals seeking

employment. Nature moves first and assigns a marginal cost of investment to each individual.

Individuals observe their cost and choose a level of effort to exert in the contest. Nature, then,

randomly assigns individuals to firms, where they are randomly matched to compete in pair-wise

contests. Absent any redistributional goal, the individual in each match with the higher level of

effort wins an exogenously determined prize.

We establish three main results. First, we solve explicitly for the equilibrium of a heterogeneous

tournament model. In the unique equilibrium, an individual’s behavioral strategy involves emitting

effort as a function of the distribution of individuals with cost above his. This leads naturally to

highly unequal outcomes between social groups endowed with different cost distributions and, hence,

a demand for categorical (i.e., inter-group) redistribution. We go on to analyze category-sighted and

category-blind redistribution policies. The distinction between these two forms of redistribution

turns on how categorical information is used in the implementation of redistributive policies. We

show that the unique equilibrium under category-sighted redistribution involves a constant handicap

for agents in the disadvantaged category. This is similar, in particular, to employing a lower
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minimum standardized test threshold for admission into colleges and universities for applicants

belonging to disadvantaged categories. When we impose the category-blind constraint, the nature

of equilibrium handicapping changes drastically. Under this formulation, a non-trivial measure of

individuals pool on a common low effort level and the prize is randomly distributed to members of

the pool whenever they are matched against one another. We conclude by discussing the problem

of optimal, centrally planned categorical redistribution, which draws on the impressive theory of

optimal auction design.

This paper lies at the intersection of several literatures: tournament theory (Lazear and Rosen

1981, Green and Stokey 1983, Rosen 1986), optimal auction design (Myerson 1981), and income

redistribution (Mirrlees 1971, Akerlof 1978). Our approach has little in common with the existing

models in the tournament literature. These models were developed to investigate the economic

efficiency of tournament play and to analyze tournaments as optimum labor contracts. In contrast,

we focus on the implications of redistribution in tournament-like environments.

There is a strong relationship between tournaments and auctions, as many tournament models

can be interpreted as all pay effort auctions. This insight is useful because the optimal auction

design problem is well studied. The crucial difference lies in the distinction between centralized

and decentralized planning. The optimal auction design literature studies the centralized problem:

A planner designs auction procedures realizing that the structure of the auction will influence the

behavior of the bidders. In a labor market, however, where many employers draw on a common pool

of workers, it is more reasonable to think of de-centralized planning (i.e. each employer implements

her policy while assuming that her decision will not affect applicants’ incentives). Decentralized

planning in the auction framework is an extremely unrealistic assumption, as it is rather like

designing an auction mechanism while taking the distribution of bids as exogenous! So, while

optimal categorical redistribution in a tournament model is closely related to the much studied

optimal auction design problem, the problem of decentralized equilibrium redistribution (which is

most pertinent in labor markets) has yet to be studied. This is the primary focus of our paper.

The paper is also related to the well studied problem of income redistribution. In the tra-

ditional optimal tax literature, individuals essentially pool their incomes and a central authority

redistributes the pool back to individuals in an incentive compatible manner. This approach is

quite different from our proposed framework. Categorical redistribution in winner-take-all contests
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imposes an additional restriction on redistribution by constraining the employer to redistribute

utility (i.e. the probability of winning) using functionally irrelevant categorical identifiers in each

match, but allowing employers to reach their redistribution goals by aggregating outcomes across

all of their matches. In other words, when making a particular hiring decision, an employer must

choose between a given slate of candidates, but she evaluates those candidates with an eye toward

achieving sufficient categorical diversity across all of her hiring decisions.

The exposition proceeds as follows: section 2 presents and solves our pair-wise tournament

model; section 3 introduces the notion of categorical redistribution and analyzes category-sighted

and category-blind redistribution in a decentralized environment; section 4 draws parallels between

optimal auctions and categorical redistribution in a centralized environment; section 5 concludes.

Nature distributes
marginal costs

Workers observe (private)
cost and choose effort

Workers are randomly matched 
to firms and randomly paired in 

contests within a firm

Employers observe efforts and 
choose a winner in each contest

Payoffs
received

Nature distributes
marginal costs

Workers observe (private)
cost and choose effort

Workers are randomly matched 
to firms and randomly paired in 

contests within a firm

Employers observe efforts and 
choose a winner in each contest

Payoffs
received

Figure 1: Sequence of Actions

2 Model: Pair-wise Tournament Competition

Consider a simple model of tournament competition. There is a continuum of workers with unit

measure, and a large but finite number, N, of identical employers. Nature moves first and distributes

a constant marginal cost of effort to each worker. This cost is distributed according to an atomless

cumulative distribution function F (c), where c ∈ [cmin, cmax] , cmin ≡ inf {c | F (c) > 0} ≥ 0, and
cmax ≡ sup {c | F (c) < 1} ≤∞. Let f : [cmin, cmax]→ <+ denote the associated probability density
function.

After observing their cost, each worker chooses an effort level e. Each employer is then randomly
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matched with a continuum of workers of measure 1
N , who in turn are randomly matched with one

another to compete in a continuum of pair-wise contests for a measure 1
2N of positions. Thus,

each employer faces a pool of workers that is a statistical replica of the overall worker population.

Moreover, employers and workers anticipate that each worker will be paired for competition against

an opponent drawn randomly from the overall population. We assume that each employer takes the

workers’ effort distribution as given, independent of her hiring policy, and chooses winners across

these pair-wise contests so as to maximize the expected effort of those hired.1 The worker hired

from each pair receives an exogenously given wage ω, while the one not hired receives zero.

A strategy for workers is a function, e : [cmin, cmax] → <+, that maps their costs into an
effort decision. A strategy for an employer is an assignment function in each pair-wise match,

A : <2+ → [0, 1] , that maps the effort levels she observes in each contest to a probability of winning

for each worker in that contest. A worker presenting effort e wins against a worker presenting effortbe with a probability A (e, be) . Thus, the payoff to a worker if he wins the contest is ω − ce, while

the payoff is −ce if he loses.

A. Equilibrium

An equilibrium consists of functions e∗(c) and A∗(e, be) such that each is a best response to the
other.

Proposition 1 The unique equilibrium consists of an assignment function satisfying

A∗(e, be) =
 1 if e > be
0 if e < be

and an effort supply function

e∗ (c) = ω

Z cmax

c

dF (y)

y
, for all c ∈ [cmin, cmax] (1)

Proposition 1 provides a unique equilibrium behavioral strategy for workers that holds for

general cost distributions, and (trivially) a unique equilibrium assignment function for employers.

1This, of course, means that employers simply hire the contestant with the greater effort, unless otherwise
constrained. Section 4 discusses employer behavior under a categorical redistribution constraint.
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In essence, the equilibrium effort supply for any worker depends (in the manner illustrated in

equation 1) on the distribution of workers who have cost higher than his. Naturally, employers hire

the worker in each match with the higher effort.

Let G(e) denote the population cumulative distribution of effort in equilibrium, and let v (c)

denote the equilibrium net benefit to an agent with cost c. It follows directly that this equilibrium

net benefit is given by

v (c) = ω

Z cmax

c

·
1− c

y

¸
dF (y) ; (2)

and the equilibrium effort distribution satisfies

G (e) = 1− F
³
e∗
−1
(e)
´
. (3)

Notice that, taken together, equations (1) and (3) define a mapping from the exogenous cumulative

distribution of costs, F (c) , to the cumulative distribution of effort in equilibrium, G (e) , in the

natural way, which provides an explicit solution to the model.

To establish the proposition notice that, because workers choose effort to maximize their net

benefit, we have the first-order condition: ω d
de [1 − G(e)]e=e∗(c) = c. A simple revealed preference

argument establishes that e∗ (c) is non-increasing in c. Hence, equilibrium behavior implies that

[1−G(e∗ (c))] ≡ F (c). Putting these equations together, we have:

c = ω
d

de
[G(e)]e=e∗(c) = ω

d

dc
[1− F (c)] · dc

de
|{(e,c)|e=e∗(c)} .

Therefore, e∗ (c) satisfies the differential equation de∗
dc = −

¡
ω
c

¢ ³dF (c)
dc

´
. Integrating this yields:

e∗ (c)− e∗ (cmax) = ω

Z cmax

c

dF (y)

y
.

Finally, e∗ (cmax) = 0 since a worker with cost c = cmax loses with probability one. This establishes

the result.

B. Introducing Categories

Suppose now that employers can divide the population of workers into two identifiable categories.

Let i ∈ {1, 2} index a worker’s category, and let πi > 0 denote the fraction of the worker population
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belonging to category i, where π1+π2 = 1. Hereafter, we use the subscript, i, to indicate categorical

identity. Thus, ei(c) denotes the effort exerted by a member of category i with cost c, Fi denotes

the cumulative distribution function of cost for category i workers, and Gi denotes the cumulative

distribution of effort (in equilibrium) among category i workers. We will assume throughout that

the cost distributions for the two categories have a common support.

Given our random matching assumptions, πi is also the probability that any worker, regardless

of his category, is paired to compete with a worker from category i. Since workers choose their

effort prior to being paired against an opponent, and because they are assigned randomly to firms

and then paired with each other at random for competition within firms, every worker faces the

same distribution of opponents (i.e., a statistical replica of the overall worker population.) Thus,

despite any asymmetry between categories that arises when F1(c) 6= F2(c), the workers paired to

compete with one another are playing a symmetric game. So, absent any category-based policy

intervention, the equilibrium behavior of firms and of workers (whatever their category) will be as

described in Proposition 1, with F (c) ≡ π1F1(c) + π2F2(c).

Now, with two distinct categories, three types of matches are possible: a category 2 worker can

be matched with a category 2 worker, which occurs with probability π22; a category 1 worker can be

matched with a category 1 worker, which occurs with probability π21; and a mixed match (between

category 1 and category 2 workers) occurs with probability 2π1π2. We will assume that category

1 is “advantaged” relative to category 2, in that the category 1 cost distribution monotonically

first-order stochastically dominates that of category 2.

Definition 1 Category 1 is said to be advantaged relative to category 2, if

f1 (c)

f2 (c)
is a strictly decreasing function on (cmin, cmax) . (4)

This definition implies F1(c) > F2(c) for all c ∈ (cmin, cmax). Let γ0 denote the probability that
a category 1 worker wins when matched with a category 2 worker, in the laissez-faire equilibrium

described in Proposition 1. We refer to γ0 as the “natural win rate” of category 1 agents over

category 2 agents. Given Definition 1, it is intuitively obvious and straightforward to show that
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γ0 ≡
R cmax
cmin

dF1 (c) [1− F2 (c)] >
1
2 .
2

Because of the asymmetries in the cost distributions there will be a short-fall in the share of cat-

egory 2 agents hired by the employer, relative to their share of the worker population. Specifically,

the proportion of contests won by category 2 workers is

π22 + 2π2(1− π2)(1− γ0) < π2,

in view of the fact that γ0 >
1
2 . Thus, a demand for redistribution could naturally arise here. This

is the subject of the next section.

3 Decentralized Categorical Redistribution

Decentralized redistribution involves equilibrium handicapping of workers in the disadvantaged

category by employers who take the distribution of worker effort as exogenous when setting the

handicap.3 For instance, a set of universities designing their admissions policies to ensure sufficient

categorical diversity, each of which thinks its policies are unlikely to affect the effort distribution

in the pool of college bound seniors from which its applicants are drawn, is a case of decentralized

categorical redistribution.

We will also employ the distinction between blind and sighted redistribution. Blind versus

sighted redistribution refers to what markers employers are allowed to use in the pursuit of her

redistribution policies. Category-sighted handicapping allows employers to use category identifica-

tion directly in achieving their redistributive target. Category-blind handicapping forbids the use

of categorical information in achieving categorical redistributive goals.

2To make this transparent, notice that:Z cmax

cmin

dF1 (c) [1− F2 (c)] =

Z cmax

cmin

dF1 (c) [1− F1 (c)] +

Z cmax

cmin

dF1 (c) [F1 (c)− F2 (c)] (5)

and Z cmax

cmin

dF1 (c) [1− F1 (c)] = −1
2

Z cmax

cmin

d

dc
{[1− F1 (c)]

2} = 1

2
. (6)

Further, under the assumption that category 2 is disadvantaged,
R cmax
cmin

dF1 (c) [F1 (c)− F2 (c)] is necessarily a positive

number. Thus, we have the desired inequality.
3For concreteness, one can think about redistribution in this context as coming about because all employers are

required by some external authority to increase their hiring rate for workers in the disadvantaged category, though
each employer acts independently of the others to achieve this goal.
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A. Category Sighted Decentralized Redistribution

Suppose a regulator wants to decrease the win rate of the advantaged category, and let γ ∈ [12 , γ0)
denote the target level of categorical diversity.4 Notice that, as γ → γ0, the laissez-faire equilibrium

described in Proposition 1 obtains, while as γ → 1
2 , the employer is forced to achieve categorical

parity.

It is straightforward to show that if an employer desires to maximize the expected effort of

the contestants, subject to the constraint that agents from the advantaged category only win at

the rate γ ∈ £12 , γ0¢ when matched with an agent from the disadvantaged category, then the best

way to do so is to give category 2 workers a constant effort handicap, λ∗ (γ) . In particular, the

employers’ optimization problem implies the maximization of a Lagrangian form as follows:

max
A

½Z ∞

0

Z ∞

0
[A (e1, e2) e1 + (1−A (e1, e2)) e2 + λ (γ −A (e1, e2))] dG1(e1)dG2(e2)

¾

Obviously, the solution must takes the form:

A (e1, e2) =

 1 if e∗1 (c) > e∗2 (c) + λ∗ (γ)

0 if e∗1 (c) < e∗2 (c) + λ∗ (γ)
,

where λ∗(γ) is the Lagrangian multiplier on the redistribution constraint. (In effect, λ∗(γ) is the

“shadow price of diversity” when the redistribution target is γ.) Thus, the equilibrium handicap is

independent of the effort levels of the contestants, and varies positively with the aggressiveness of

the redistribution goal.

It follows that, if e∗i (c) denotes the equilibrium effort supply of workers in category i ∈ {1, 2},
then when an agent from category 1 is matched with an agent from category 2, the agent in category

1 wins the contests if

e∗1 (c) > e∗2 (c) + λ∗ (γ) .

Notice that a category 1 worker who exerts low effort, e1 ∈ (0, λ∗), must lose if matched with any
category 2 worker.

4That is, γ denotes the target win rate of Category 1 workers when matched against opponents from Category
2. Notice that, under sighted redistribution, these are the only matches that a regulator would seek to influence.
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We will now derive the equilibrium in this model under category-sighted redistribution with

target γ ∈ [12 , γ0). Suppose there is an effort cost threshold, c∗ (γ) , such that category 1 agents
with cost c1 ≥ c∗ (γ) lose when matched with any category 2 agents, and category 1 agents with

cost c1 < c∗ (γ) , win when matched with any agent with higher cost.5 Then, by the redistribution

constraint:

c∗ (γ) solves
Z c∗

cmin

dF1 (c) [1− F2 (c)] = γ. (7)

Notice, c∗ (γ) is increasing in γ, and c∗ (γ) tends toward cmax, as γ tends toward γ0; the natural

win rate of category1 agents over category 2’s.

To solve the model for any desired level of redistribution, γ ∈ £12 , γ0¢ , we must solve for the
equilibrium de-centralized handicap, λ, and the associated equilibrium effort levels. This is the

subject of our next result.

Proposition 2 Given γ ∈ £12 , γ0¢ and c∗ (γ) defined in equation (7), the equilibrium de-centralized

category-sighted handicap is given by

λ∗ (γ) = ω

"
π2

Z cmax

c∗(γ)

·
1

c∗ (γ)
− 1

y

¸
dF2 (y) + π1

Z cmax

c∗(γ)

dF1 (y)

y

#
, (8)

the associated effort levels are given by

e∗1 (c) = e∗2 (c) + λ∗ (γ) = ω

"
π1

Z cmax

c

dF1 (y)

y
+ π2

"Z c∗(γ)

c

dF2 (y)

y
+

Z cmax

c∗(γ)

dF2 (y)

c∗ (γ)

##
,

for all c ∈ [cmin, c∗ (γ)) , and

e∗1 (c) = ωπ1

Z cmax

c

dF1 (y)

y
; e∗2 (c) = ωπ2

Z cmax

c

dF2 (y)

y

for all c ∈ [c∗ (γ) , cmax] .

Proposition 2 provides a solution to the decentralized category-sighted handicapping problem.

The result depends critically on three factors: (1) constant marginal cost of effort; (2) de-centralized

setting of handicaps by many independent employers facing regulation; and (3) random matching.

5We shall show momentarily that in the presence of constant effort handicapping for category 2 agents the
equilibrium effort supply functions imply this property.
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The solution implies a partition of agents into four classes: {category 1 or 2}×{high cost (c ≥ c∗ (γ))

or low cost (c < c∗ (γ))}. For convenience of exposition, letHi (resp. Li) denote the set of high (resp.

low) cost types of category i ∈ {1, 2} . The equilibrium behavior of the agents under decentralized

category-sighted handicapping can be summarized in the following concise manner. H 0
is only com-

pete at the margin against other H 0
is in their same category, and lose to L0is in either category.

Further, L0is compete at the margin against anyone with whom they are matched, prevailing if and

only if they encounter a contestant with higher cost. However, L02s receive the effort subsidy λ
∗ (γ) ,

such that e∗1 (c) = e∗2 (c) + λ∗ (γ) for all c ∈ [cmin, c∗ (γ)) . Figure 2 provides a graphical illustration
of Proposition 2.

0

A

B

λ

c*

MB

e c1
*( ) e c2

*( ) + λ e e c e c= = +1 2
* *( ) ( ) λ

( )MB F c1 1 1 1= ωπ ' ( )MB F c2 2 2 2= +ωπ λ'

0

A

B

λ

c*

MB

e c1
*( ) e c2

*( ) + λ e e c e c= = +1 2
* *( ) ( ) λ

( )MB F c1 1 1 1= ωπ ' ( )MB F c2 2 2 2= +ωπ λ'

Figure 2: Decentralized Category-Sighted Equilibrium

To establish the proposition, let e = e1 = e2 + λ denote effective effort supply of agents,

when category 2 workers receive the effort handicap λ. Given that, in equilibrium, ei ≥ 0 and

ei (c
max) = 0, i = 1, 2, there exist a set of high costs agents in both categories (i.e., those with c

“close to” cmax) who supply relatively low effort. For category 1 agents this implies e = e1 ≈ 0,
and for category 2 agents this implies that e = e2 + λ ≈ λ > 0. Thus, category 1 agents will face a

non-convex decision problem, in equilibrium, since at very low effort levels (e1 < λ) they compete

only against other high cost category 1 agents. At levels e1 > λ, they discontinuously encounter
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additional benefits from marginal increases in effort, due to the presence of some high cost category

2 agents who are choosing e2 ≈ 0, so e2+λ ≈ λ. Figure 2 captures this intuition. Because category

1’s marginal benefit curve jumps upward at λ, it must be the case that the optimal effort function

e∗1 (c) is discontinuous. At cost c = c∗ the area (in Figure 2) A ≡ [λ− e1 (c
∗)]·c∗ is exactly equal (by

construction) to the area B ≡ R e2(c∗)+λλ [MB2 (e)− c∗] de. Therefore, H 0
1s prefer e

∗
1(c) < λ, along

the MB1 curve, whereas L01s prefer to “jump” past λ to some e∗1(c) > e2 (c
∗) + λ. In other words,

all H 0
1s choose to lose to all category 2 agents, should they end-up paired with one, and compete at

the margin only against other H 0
1s; and all L

0
is lose only if they are matched with a worker who has

lower cost. When λ has been set such that the constraint that workers in category 1 win against

workers in category 2 with probability γ ∈ £12 , γ0¢ holds, then it is straightforward to verify that
we must have c∗ = c∗ (γ) defined in equation (7).

Using equation (1) and noting that H 0
is only compete at the margin against other H

0
is in the

same category, we deduce that the marginal benefit for category 1 and category 2 agents can be

expressed as:

MB1 (e) = c if and only if e = ωπ1

Z cmax

c

dF1 (y)

y
≡ e∗1 (c)

MB2 (e) = c if and only if e = ωπ2

Z cmax

c

dF2 (y)

y
≡ e∗2 (c)

Recall, however, H 0
1s always have the option of boosting their effort to compete with category 2

workers. This is a break-even proposition when c = c∗ and strictly pays if c < c∗. Hence, for all

c < c∗, the effort supply function looks much like that in Proposition 1. Both categories supply the

same effective effort, given their cost, and e∗ (c) solves the differential equation:

de∗

dc
= −ω

c

dF

dc
= −ω

c

£
π1F

0
1 (c) + π2F

0
2 (c)

¤
, (9)

as in Proposition 1, but with the boundary condition: e∗ (c∗) = e∗2 (c∗) + λ. Finally, λ must satisfy

c∗ [λ− e∗1 (c
∗)] = v2 (c

∗)

where, using equation (2), v2 (c) = ωπ2
R cmax
c

h
1− c

y

i
dF2 (y) . By integrating equation (9), using

the relevant boundary conditions and definitions derived thus far, the conditions of the Proposition
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can be easily verified by algebraic manipulation.

B. Category-Blind Decentralized Redistribution

The employer’s problem is more complicated when she is not allowed to use categorical in-

formation in the pursuit of her redistributive goals. Employers observe two effort levels in each

match, e and be, but under the blindness assumption they do not know the categorical identity of
the workers. Accordingly, to achieve their redistributive objectives, employers need to estimate the

likelihood that each effort level was emitted from a worker in the disadvantaged category. Thus, we

have a signalling model. This is a point worth further emphasis. Under category-sighted redistri-

bution an employer is allowed to narrowly tailor her policies for agents in disadvantaged categories

in order to achieve her categorical diversity goal — focusing exclusively on handicapping in mixed

contests. When constrained to be category-blind, however, she has to implement her policy across

all contests.

Let ξ (e) denote an employer’s belief about the probability that a worker with observed effort

level e is from category 2. Then the employer’s problem can be written as:

max
A


∞Z
0

∞Z
0

{A (e, be) e+ (1−A (e, be)) be+ λ [γ −A (e, be) ξ (e)− (1−A (e, be))ξ (be)]}dG(e)dG(be)


The solution takes on the form:

A (e, be) =
 1 if e+ λξ (e) > be+ λξ (be)
0 if e+ λξ (e) < be+ λξ (be) ,

where λ is a Lagrangian multiplier associated with the redistribution constraint — the shadow price

on category 2 membership. Let V (e) = e+λξ (e) denote the value to an employer of a worker with

observed effort e. In any pair-wise contest, the employer hires the worker with the higher value. If

two matched workers have equal value, the employer chooses either with probability 1/2. This value

is comprised of two parts: the direct benefit to the employer of effort, and the expected benefit of

diversity, which equals the product of the likelihood of an individual with effort e belonging to the

disadvantaged category, times the shadow price of diversity.

To characterize equilibrium with category-blind redistribution, it is helpful to think about the
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qualitative properties of V (e) . As in the model under Laissez-faire with no categorical redistribution

goal, a revealed preference argument establishes that the equilibrium effort supply of workers,

e∗(c), must be non-increasing. If this function is strictly decreasing on [cmin, cmax] then we have

a separating equilibrium: employers, observing a worker’s effort, can invert the equilibrium effort

supply function to learn the worker’s cost, and to infer the likelihood that the worker belongs to

category 2. If e∗(c) is constant on some range of costs, then we have pooling in equilibrium. Now,

let E denote the set of efforts reached by some worker in equilibrium: E = {e = e∗(c), for some

c ∈ [cmin, cmax]}. It is obvious that if e∗(c) is an equilibrium effort schedule for workers, then V (e)

must be strictly increasing on E. For if there were two levels of effort, e, ẽ ∈ E with e < ẽ and

V (e) ≥ V (ẽ), then any worker choosing ẽ could gain by reducing his level of effort to e, which lowers

his cost incurred without lowering his chances of winning the contest. But, from this it follows that

a separating equilibrium cannot obtain here. For, if e∗(c) were strictly monotonic on (cmin, cmax),

and if V (e) were strictly increasing on E, then a worker would not be hired whenever matched

against another worker with lower cost6, in which case the redistribution constraint could not be

satisfied. We conclude that there must be some pooling in equilibrium. That is, the equilibrium

effort supply function, e∗(c), must be constant over some non-empty interval(s) of costs. Moreover,

a worker in the pool would be hired (not hired) with probability one when paired with a worker

whose effort level is lower (higher) than that of the pool, and would be hired with probability

1/2 when paired with another worker in the pool. The size of the pool will increase with the

aggressiveness of the redistribution goal.

This situation is captured in Figures 3, which show a pooling equilibrium where all worker types

c in the closed interval [bc,bbc] select the common effort level, epool. Figure 3A depicts a worker’s

value to the employer as a function of his effort. Figure 3B shows the worker’s best response to the

employer strategy “hire that worker with the greater value,” as a function of the worker’s cost.

6Ties will occur with probability zero when e∗(c) is strictly monotonic, since we have assumed the cost distribution
to be non-atomic.
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Figure 3: Decentralized Category-Blind Equilibrium

In any equilibrium under category-blind redistribution several conditions need to be satisfied, all

of which can be illustrated in Figures 3.7 First, the worker with marginal cost bc must be indifferent
between leaving the pool by putting in effort be, which would imply that he wins for sure against all
workers in the pool, and exerting the effort epool, which has him winning with probability 1

2 when

matched with anyone in the pool. Similarly, the worker with cost bbc must be indifferent between
staying with the pool, and reducing his effort to bbe. Also, firms must be indifferent between hiring
from the pool, and hiring a worker with effort level be (resp., bbe) when such a worker is known to have a
cost [and associated probability of belonging to category 2] of bc (resp., bbc).8 Finally, we must specify
an employer’s beliefs in the event that she were to observe an effort e ∈ [bbe, epool) ∪ (epool, be], which
is off the equilibrium path. To support the candidate pooling equilibrium, employers’ beliefs must

be such that they would strictly prefer a worker in the pool when matched against a hypothetical

worker with effort in (the interior of) this region. Here we will appeal to a large literature on

7These figures depict a single pooled effort level, whereas in principle there could be many pools in equilibrium.
However, we will soon introduce a natural restriction on employers’ out-of-equilibrium beliefs that implies the existence
of a unique equilibrium in this model, with a single pool consisting of the highest cost worker types exerting the
minimal effort level. Accordingly, the exposition proceeds from this point onward under the supposition that there
is but one pool in equilibrium.

8This indifference condition for firms is required because, were it to fail, then for any plausible off-equilibrium-
path beliefs that firms might hold, they would want to respond to some deviation from the pool in such a way as to
make that deviation pay for some workers in the pool.
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equilibrium refinements and select a natural one, the D1 refinement (Cho and Kreps, 1987).

Loosely speaking, the D1 refinement requires out-of-equilibrium actions by informed agents

(workers) to be interpreted by uninformed agents (firms) as having been taken by the worker

type who would gain most [lose least] from the deviation, relative to his payoff in the candidate

equilibrium, when this gain [loss] is calculated under the supposition that firms, while adopting

this interpretation, will respond to the deviant action in a manner that is best for themselves.

(Even more loosely speaking, the D1 refinement requires firms to believe that the deviator is the

type who gains most from taking the deviant action when he knows that firms will discover his

type when he deviates, and then, based on knowing his type, will respond optimally to his deviant

action.) Equilibria supported by such out-of-equilibrium beliefs are called D1 equilibria.9 It is a

straight-forward exercise to compute the (unique) D1 equilibrium in our model.

Under D1, if an employer observes an effort e ∈ (epool, be], she believes that the deviator is the
lowest cost type in the pool, bc. (This type, compared to others either inside or outside of the pool,
gains most [loses least] from such a deviation.) Hence (using Bayes’s Rule), employer beliefs must

satisfy:

ξ (e) =
π2f2(bc)
f(bc) ≡ bξ, for all e ∈ (epool, be].

In light of the indifference conditions mentioned above, no workers inside or outside of the pool

have an incentive to deviate by choosing e in this interval. On the other hand, if epool > 0, and

if an employer observes an effort e ∈ [bbe, epool), then under D1 she must believe that the deviator
is the highest cost type in the pool, bbc. (This type, compared to all of the others, gains most [loses
least] from such a deviation.) Accordingly, under D1 employer beliefs must satisfy:

ξ (e) =
π2f2(bbc)
f(bbc) ≡ bbξ, for all e ∈ [bbe, epool).

But now, some workers will have an incentive to deviate. To see this, let ξpool be the probability

that a worker belongs to category 2, conditional on the worker being in the pool. Then, in light

9 It has been shown that the only D1 equilibrium to the canonical Spence job signaling model is the Riley
(separating) equilibrium (Riley, 1979). This is the unique efficient, separating equilibrium defined by the initial
condition wherein the infimal separating ability type adopts its complete information best educational investment
level, while all higher types choose the lowest educational levels consistent with separation (which strictly exceed
their respective complete information decisions.)
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of the assumption that category 1 is advantaged, the monotone first-order stochastic dominance

property implies: bξ < ξpool ≡
π2[F2(bc)− F2(bbc)]
[F (bc)− F (bbc)] <

bbξ.
Now, it was an implication of the firm’s constrained maximization problem that the value of a worker

to the firm is V (e) = e + λξ (e), with the Lagrangian multiplier (the shadow price of diversity)

λ > 0. Hence, a worker in the pool can anticipate that his value will increase if he deviates by

lowering his effort slightly below epool (since this marginal reduction induces firms to believe he is

strictly more likely than someone drawn from the pool to belong to category 2.) It follows that

in all D1 pooling equilibria, epool must equal zero. But then, since e∗(c) is non-increasing in any

equilibrium, we must have that bbc = cmax. Figures 4 replicate Figures 3 after the application of the

D1 refinement, showing the unique D1 equilibrium in this model.
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Figure 4: Decentralized Category-Blind Equilibrium After Application of D1

We can summarize the discussion to this point as follows:
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Proposition 3 Given γ ∈ £12 , γ0¢ , the equilibrium de-centralized category-blind handicap, after

application of the D1 refinement, is given by

λ =
be

ξpool − bξ , where be = ω
2 [1− F (bc)]bc ; ξpool =

π2[1− F2(bc)]
[1− F (bc)] ; bξ = π2f2(bc)

f(bc) ;

and where bc is the unique solution for
Z bc
cmin

dF1 (c) [1− F2 (c)] +
1

2
[1− F1 (bc)] · [1− F2 (bc)] = γ.

The equilibrium effort supply function for both categories is given by

e∗ (c) = be+ ω

Z bc
c

dF (y)

y
, c ∈ [cmin,bc) ,

and

e∗ (c) = 0, for all c ∈ [bc, cmax] .
Proposition 3 highlights an important feature of category-blind redistribution; there is a non-

trivial measure of workers that supply zero effort. And, this pool increases with the aggressiveness

of the redistributive goal. In the extreme case where the employer strives for categorical parity, the

only D1-equilibrium involves all workers supplying zero effort and the employer picking at random

between them!10

To establish the proposition, consider figures 4. In order to derive the equilibrium, we must pin

10This result has a curious implication that warrants mention. If the cost distributions are identical for the two
categories, then each category prevails in half the mixed contests, without any constraint on firm actions. So, the
equilibrium effort schedule given in Proposition 1 (which is a positive, strictly decreasing function of effort cost) obtains
in this case, automatically generating γ = 1

2 . Yet, with only the slightest (strict monotone likelihood ratio) difference
in cost distributions favoring category 1, our characterization given above of the unique D1 equilibrium under category-
blind redistribution with representation target γ = 1

2
implies zero effort for all agents. This discontinuity of the

equilibrium effort supply schedule, as a function of the cost distributions, when population proportionality is the
affirmative action target is curious, and it is not an artifact of our having imposed the D1 refinement. For (per the
argument just given) in any equilibrium, when firms see an effort level e they (in effect) place some value V (e) on a
worker with that effort level, hiring from any pair of workers the one whose value is greater. Moreover, V (e) must be
strictly increasing on the set of efforts observed by firms in equilibrium, and e∗(c) must be non-decreasing, otherwise
workers could not be best-responding. All of which implies V (e∗(c)) must be non-increasing in any equilibrium, which,
in light of Definition 1 implies that the target γ = 1

2
can only be met in equilibrium if the set E is a singleton. So,

population proportionality as a target together with strict cost distribution differences between the groups, however
small, requires a pooling equilibrium with all workers taking the same effort level. Imposing D1 merely forces that
pooled effort level to be zero. Hence, the aforementioned discontinuity does not depend on imposing D1.
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down four parameters: (i) bc; (ii) be; (iii) λ; and (iv) e∗ (c) for all c ∈ [cmin,bc] . Under category-blind
redistribution, the effort incentives at the margin (for both categories) of those not in the pool are

identical to the marginal incentives facing workers in the laissez-faire equilibrium. Using Proposition

1, it follows directly that e∗ (c) − be = ω
R bc
c

dF (y)
y for all c ∈ [cmin,bc) . Thus, we are left with three

equations (the workers’ and firms’ indifference conditions and the representation constraint,) and

three unknowns (bc, be, λ). Consider, first, the representation constraint (which requires that the
probability a category 1 worker wins when matched against a category 2 worker just equals γ.) In

the D1-equilibrium being asserted here, this amounts to:

Z bc
cmin

dF1 (c) [1− F2 (c)] +
1

2
[1− F1 (bc)] · [1− F2 (bc)] = γ (10)

Hence, the cost cut-off bc solves equation 10, which pins down (i).
Now, consider the workers’ indifference condition. The worker with cost bc must be indifferent

between exerting effort be and effort 0. If he exerts be he beats all workers in the pool and incurs
the cost bcbe; if he invests 0, he ties all workers in the pool — winning with a probability of 12 when
matched against any one of them, but paying zero effort costs. The indifference condition implies

that be = ω
2 [1− F (bc)]bc ,

which pins down (ii).

Finally, to establish the equilibrium shadow price of diversity, λ, consider the firm’s indifference

condition: be+ λbξ = λξpool,

where ξpool is the probability of a randomly drawn worker in the pool being disadvantaged. Obvi-

ously, this implies,

λ =
be

ξpool − bξ ,
which establishes the desired result.
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4 Centralized Categorical Redistribution: A Discussion

There is an impressive literature in economics involving optimal auction design. Insights from this

literature can be directly applied to the analysis of tournaments in labor economics. In this section,

we provide a brief discussion of the setup and solution of the optimal auction design problem and

how it can be used to inform centralized categorical redistribution.11

Centralized redistribution is a mechanism design problem in which an employer selects the

optimal (incentive compatible and individually rational) handicapping scheme — realizing that his

employment policies will affect the workers’ investment behavior. For instance, if a substantial

fraction of college bound high school seniors attend in-state universities, then affirmative action

programs designed by the state university system’s Board of Regents could provide an example of

centralized categorical redistribution. In our model, with the assumptions of constant marginal cost

of effort and random pair-wise matching of competitors, the solution to the optimal tournament

design problem is isomorphic to the optimal auction design problem with two (asymmetric) bidders.

Indeed, optimal handicapping in tournaments can be interpreted as the optimal auction design

problem with the additional constraint that a certain category of bidders win the auction at no less

than some minimal rate.

A. Setting Up the Optimal Tournament Design Problem

Let there be one employer and two workers competing for employment. Assume that this

competition will be replicated many times over, as pairs of competing workers are drawn from

a large population. The employer is interested in designing a tournament that maximizes the

expected effort of the winner, perhaps subject to some categorical representation constraint. The

employer’s problem derives from the fact that he does not know the effort costs of the workers.

In a direct revelation mechanism, the contestants simultaneously and confidentially announce

their cost of effort. The employer then determines who wins the employment tournament and how

much effort each contestant must exert, as some functions of the reported costs c = (c1, c2) .12 A

direct revelation mechanism is described by a pair of functions (A, e) (of the form A : [cmin, c
max]2 →

11For the details of the optimal auction design problem, we refer the reader to Myerson (1981).
12Here, by taking c to be the cost vector for a pair of contestants rather than the cost type of an arbitrary

contestant, we slightly shift our notational convention from that of the previous section.
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[0, 1] and e : [cmin, c
max]2 → <2+) such that if c is the vector of announced costs, Ai (c) is the

probability that i wins the tournament and ei (c) denotes the effort i must exert.13

The employer and the contestants are assumed to be risk neutral, and contestants have utility

functions that are additively separable in wages and effort cost. If contestant i knows that his effort

cost is ci, then his expected utility from the tournament mechanism described by (A, e) is

Ui (A, e, ci) =

Z cmax

cmin

[Ai (c)ω − ei (c) ci] f−i (c−i) dc−i (11)

Similarly, the expected utility for employers from this tournament mechanism is

UE (A, e) =

Z cmax

cmin

Z cmax

cmin

Ã
2X

i=1

Ai (c) ei (c)

!
dF1 (c1) dF2(c2) (12)

There are three types of constraints that must be imposed on the pair of functions (A, e) to

ensure their feasibility. First, since each employer only has one position to fill, the function A must

satisfy the following probability conditions:

2X
i=1

Ai (c) ≤ 1 and Ai (c) ≥ 0, for all i ∈ {1, 2} and c ∈ [cmin, cmax]2 . (13)

Second, we assume that the employer cannot force a worker to participate in a tournament.

Thus, the following individual rationality conditions must be satisfied:

Ui (A, e, ci) ≥ 0, for all ci, i ∈ {1, 2} . (14)

Third, we assume that the employer can not prevent any worker from lying about his effort

costs if he can gain from lying. If worker i were to claim that bci were his effort cost when it really
was ci, then his expected utility would beZ cmax

cmin

[Ai (bci, c−i)ω − ei (bci, c−i) ci] f−i (c−i) dc−i
Therefore, to guarantee that no worker has an incentive to lie about his effort cost, the following

13Here the subscript i denotes contestants, not categories. Later, when we restrict attention to categorically
heterogeneous matches, this distinction will be irrelevant.
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incentive compatibility conditions must be satisfied:

Ui (A, e, ci) ≥
Z cmax

cmin

[Ai (bci, c−i)ω − ei (bci, c−i) ci] f−i (c−i) dc−i for all i ∈ {1, 2} and bci ∈ [cmin, cmax]
(15)

We say that a tournament mechanism (A, e) is feasible if and only if (13) , (14) , and (15) are all

satisfied. So, (A, e) represents an optimal tournament if and only if it maximizes UE (A, e) subject

to (13)− (15) .14

B. A Solution to the Optimal Tournament Design Problem

There is little difference, analytically, between our “tournaments” and the “auctions” in Myerson

(1981). To move from our current framework to that analyzed in Myerson (1981), one needs to

multiply each agent’s utility by a scaling factor that depends only on his own type. This amounts

to a simple change of variables. It is straightforward to show that by defining bidder i’s “value”

in the optimal auction, ti, design problem such that ti = ω
ci
, one arrives at a formulation that is

isomorphic to the tournament problem when the wage is ω and the ith contestant’s cost is ci. So, to

study the optimal centralized tournament, we can simply carry over Myerson’s results, translated

into our notation, where his bidder valuation ti is related to our worker effort cost, ci, via that

equation: ti = ω
ci
.

Thus, let Hi(ti) be the CDF of bidder i0s valuation in Myerson’s context, and let hi(ti) be the

associated density function. Then, implementing the change of variables, we have:

Hi (ti) = 1− Fi(
ω

ti
) and hi (ti) = (

ω

t2i
)fi(

ω

ti
) (16)

Now, let ψ (ti) = ti − 1−Hi(ti)
hi(ti)

denote what Myerson (1981) called the virtual valuation of bidder

i. Myerson proved that the solution to the optimal auction design problem assigns the object to

the bidder with the highest virtual valuation, and requires that bidder to pay an amount equal

to the minimum actual valuation he could have had that would still have allowed him to prevail

in the auction. To translate this idea into our tournament model, first note that our analogue to

14 It may appear, superficially, that we have changed the structure of the game by assuming that workers exert
effort before being matched with employers in our analysis of decentralized redistribution and after being matched
with employers in the centralized case. But, these two formulatoins are equivalent so long as workers exert effort
before they know the effort of the worker with whom they are matched.
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Myerson’s virtual valuation (expressed in terms of our worker’s effort cost) is given by:

bψ (ci) = ω[
1

ci
− Fi (ci)

c2i fi (ci)
]. (17)

For any costs cj , j 6= i, let

µi (cj) = sup
n
ci | bψ (ci) ≥ bψ (cj)o .

So, µi (cj) is the highest cost report for worker i such that his virtual valuation is greater than that

of worker j. Employing a similar derivation to that found in Myerson (1981, Lemmas 2 and 3), one

can verify that the solution to the optimal tournament consists of functions:

Ai (c) =

 1 if bψ (ci) > µi (cj)

0 otherwise

ei (c) =


ω

cmaxR
µi(cj)

dFi(y)
y , if Ai (c) = 1

0 otherwise

.

We conclude that the optimal tournament gives the position to the contestant with the higher

virtual valuation, as expressed in equation 17 above, and only requires effort from those that are

hired. The amount of effort that they exert is the minimum consistent with incentive compatibility

that is needed to distinguish themselves from a marginally higher effort cost type.

Let us now adopt the interpretation that the two contestants in the tournament are members

of two distinct categories of the worker populations. (In effect, we restrict attention to the design

problem for categorically heterogeneous contests.) The interesting aspect of the optimal tournament

from our perspective is that, even in the absence of any categorical representation constraint,

the expected effort-maximizing tournament will generally involve some (possibly mild) degree of

handicapping. To see this, notice that the virtual valuation is simply a scalar times the reciprocal

of each contestant’s effort cost, minus what is, in effect, an inverse hazard ratio. Thus, suppose

the reciprocal of a worker’s effort costs were distributed exponentially in each category. In this

special case, the virtual valuation in equation 17 is simply the reciprocal of a contestant’s effort

cost, minus the mean of the reciprocal of the effort cost for their respective category. So, i beats

j if the difference in their efforts is larger than the difference in the means of the reciprocal of
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effort cost for their respective categories! It follows that a desire for small amounts of categorical

redistribution in a centralized planning framework need not conflict with efficiency.15

If we want more aggressive redistribution, however, this constraint may indeed be binding.

Suppose a tournament designer wants to have a level of categorical diversity beyond that which

naturally occurs in the tournament design problem. Setting up the employers maximization problem

is virtually identical to our analysis of the first best mechanism, with an added representation

constraint. That is, if a function A : [cmin, c
max]→ <2 maximizes

Z cmax

cmin

Z cmax

cmin

Ã
2X

i=1

Ai (c) bψ (ci) + λ [γ −A2 (c1, c2)]

!
dF1 (c1) dF2 (c2)

subject to (13) , (14) , and (15) . Then, (A, e) represents an optimal tournament, conditional on

achieving representation, γ.

The solution to this constrained optimal tournament is straightforward. If contestant i belongs

to the advantaged category and contestant j belongs to the disadvantaged category; i beats j, if

and only if bψ (ci) > bψ (cj) + λ.

The category-blind centralized problem is solved in a similar fashion. The optimal tournament

design problem for an employer who desires redistribution and is forced to be category-blind shows

that in all close matches, the contestant with the lower virtual valuation wins. The intuition is

that the employer realizes that the disadvantaged category will, on average, finish second when

matched with the advantage category. Therefore, in close matches, she allows the lower valuation

contestant to win—assuming that enough of the winners will be disadvantaged to achieve the desired

representation goal. She does this in all matches, because she is constrained to be category blind.

15Our point here is similar to the classical observation that a price-setting monopsonist buying from sellers drawn
from two identifiably distinct population groups with different cost distributions will genereally price-discriminate in
such a way as to favor the group with the more price-elastic supply curve. Here the firm is “buying” effort from
workers in the two categories, while paying them with a probability of winning the contest. Moreover, the “elasticity
of supply” of workers able to profitably exert a given level of effort is greater for the disadvantaged category. This
interpretation centralized handicapping in the optimal tournament is an exact analogue of that offered in Bulow and
Roberts (1989) for the optimal auction.
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5 Conclusion

Tournament competition is an economic phenomenon that arises in many venues. The existing

literature has been centered around the economic efficiency of tournament play and analyzing tour-

naments as optimum labor contracts. This paper opens new directions in the study of tournament

theory by deriving the equilibrium handicapping strategy of employers in a decentralized environ-

ment. This, together with the contributions in the optimal auction design literature, take us a

considerable way in understanding categorical redistribution in winner-take-all environments.
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