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The Optimal Exploitation of an
Unknown Reserve

GLENN C. LOURY
Northwestern University

1. INTRODUCTION

The general problem of the optimal utilization of scarce natural resources has received
considerable recent attention in the literature. Most study has been of the case where the
level of the resource available to the economy is known with certainty. In those instances
where uncertainty has been explicitly introduced, the focus has been on analysing the effect
of the existence of a technologically advanced substitute for the scarce resource which will
become available at some unknown future date (Dasgupta and Heal (1974)). The more
difficult problem of optimal planning when premature exhaustion is a real possibility due
to a lack of precise knowledge about the total supply of the resource has received little
attention. (Gilbert (1976) is a notable exception.) This paper begins an investigation of
that problem.

Any treatment of resource utilization with unknown reserves must confront two rather
different issues. The first of these is the possibility of exhaustion. In models where the
level of the resource is known with certainty, the exhaustion of an ‘ essential > natural
resource occurs only asymptotically. When the resource base is of unknown size, however,
the date on which it will have been completely exploited is also a random variable. The
choice of the rate at which to consume the resource must necessarily be influenced by the
effect which the consumption rate has on the probability of exhaustion at subsequent points
in time.

The second issue is that of learning about the distribution of reserves over time. Even
though the level of total reserves may be unknown, it must certainly be the case that the
activities of exploration and extraction provide information about the distribution of
remaining reserves. Moreover, the nature of this information will be influenced by the
exploration and extraction decisions which are made along the way. Thus, an optimal
programme of extraction should properly balance both consumption and information
benefits against extraction and opportunity costs at each point in time.

This paper, while treating the first issue with some generality, will take a rather limited
view of the way in which information about the distribution of total reserves is assimilated.
We shall assume that the planner begins with a given probability distribution of possible
endowments of the natural resource, and that he updates this distribution over time by
conditioning on the knowledge of his cumulative consumption at each instant. Thus we
will abstract from the activity of exploration. This is a regrettable omission which we hope
to correct in a later paper. The treatment of this initial problem seems essential to further
progress in any event.

The plan of the paper is as follows. We begin with a review of the problem of optimal
depletion without production in a certain environment. Variational techniques are then
employed to deduce necessary conditions for a solution to the problem of optimal exploita-
tion under uncertainty. It is seen that the possibility of premature exhaustion considerably
alters the requirements of an optimal path. We then determine a more complete characteri-
zation of an optimum and prove a number of qualitative and comparative static results,
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using dynamic programming arguments. An explicit solution for the problem is exhibited
in a class of cases, and its properties studied. Finally, we consider the ability of the market
mechanism to support the optimal allocation.

2. OPTIMAL DEPLETION WITH A KNOWN RESERVE

Suppose that the level of a non-renewable non-recyclable resource is fixed at R. The flow
utility of consumption per instant is given by u(c,),! where c, is the consumption flow at
time z. Let the social rate of discount be p. Then, assuming costless extraction, socially
optimal intertemporal allocation of the resource satisfies

ma.x,tJ~ e "u(c)dt subject to f ¢dt <R, ¢=0 ...(1)
0 0

Assume u(0) = 0, ' >0, v’ <0, and lim__,¢%'(c) = 0. Then an optimum exists and the
resource constraint must hold with equality. Obviously it is a necessary condition for
optimality that for some A>0,

e~ "u'(cH) = 4, J cFdt = R. ...(2)

0

That is, discounted marginal utility of consumption is constant. Furthermore, the optimal
policy will have strictly positive consumption everywhere, with exhaustion occurring only
asymptotically.

As is well known (Weinstein and Zeckhauser (1975)), this socially optimal allocation
of resource use will be attained, under certain conditions, by a competitive resource market.
Suppose that demand for the resource is given by D~ (c,) = p, = /(c,), and that the
social discount rate is equal to the rate of return to privately held capital (i.e. the interest
rate). Then, as Hotelling observed (1931), for owners of the resource in a competitive
economy to be willing to supply positive quantities at all times, prices must be rising at
the rate of interest. Thus, p,/p, = p, or p, = pye”’. Further, if consumers are on their
demand curves, then u'(c,) = poe”. Now the requirement that markets clear, that is that
demand be met at each instant, implies that this market solution must be identical to that
given in (2). We emphasize the necessity of perfect futures markets for this story to be
a correct one. In the absence of complete markets the global demand equal supply con-
dition which fixed p, optimally could not be assured to hold. This problem is discussed
at length in Stiglitz (1974).

In the above model exhaustion did not occur in finite time. To get an idea of the
kind of conditions which must hold when the length of the consumption period is a variable
of choice let us now consider the ‘“ doomsday > model studied by Koopmans (1974).
Suppose that there exists some minimal level of resource consumption necessary to life.
Then we require ¢, = cp,. Assume further that u(c,,;,,) = 0, ' >0, 4’ <0, and (reasonably)
lim.,. , #'(c) = co. This model differs from that given earlier in that it is clear that
consumption cannot be sustained beyond the date T = R/c,;,. Thus the terminal date
(the doomsday) is a choice variable as well. Koopmans proves under the assumptions
given here the plausible result that the optimal terminal date is closer, the higher is the
discount rate. The problem is

T T
max f e "u(c,)dt subject tof cdt £ R, ¢ = Coin: ...(3)
0 0

Koopmans shows that a solution to (3) exists, and that the optimal consumption path (c¥)
satisfies, along with the optimal terminal date, T*,

e Pu(cH) =4 0=t T* andu(ck)—chu'(ct)=0. ()
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That is, marginal utility grows exponentially at the rate of discount, and marginal utility
equals average utility at the terminal date.

This last requirement allows an instructive interpretation. Along an intertemporally
efficient path (¢,) with terminal date (T) slightly earlier than optimal (T*), the first part of
(4) and equality of the resource constraint would imply ¢;> cf.. Since the LHS of the
second part of (4) increases with ¢ we have u(¢;)/ér>u'(¢;). Now efficiency implies that
the transfer of a marginal unit of consumption between any two moments of positive
consumption yields no gain. Suppose, however, that a unit of consumption is transferred
to the end of the programme and used to extend the duration of consumption. If con-
sumption is maintained at the same rate then the additional time bought by this change is
1/¢;, while the additional discounted utility per instant is e~*Tu(¢;). Thus the total gain
is e PTu(cy)/cr. The cost of such a transfer is e~#Tu'(¢y). Clearly it will pay to make such
a move. The argument is reversed for 7>T*. Thus, overall optimality when the terminal
date is an object of choice requires both that discounted marginal utility is constant along
the programme, and that marginal utility equal average utility at the terminal date. We
shall meet this latter condition, in a slightly different form, again.

3. OPTIMAL DEPLETION UNDER UNCERTAINTY: A VARIATIONAL
APPROACH

Suppose now that total reserve K is a random variable with CDF F(-) given at the initial
date. Imagine further that the only information concerning the level of total reserves is
that to be had by considering the distribution of remaining reserves at any moment ¢on-
ditional on the quantity consumed up to that moment. Then the problem of optimal
depletion is equivalent to the * cake eating” problem with a cake of unknown size.?
It is necessary additionally to assume that consumption and extraction are identical; that
is, there is no storage.

Let us take as the objective the maximization of the expected value of the integral of
discounted utility. A consumption plan must be chosen without knowing when that plan
will lead to the exhaustion of the resource. Thus, as in Koopmans® problem, the (proba-
bility distribution of the) terminal date of consumption is also a variable of choice.

Formally the problem is to choose a consumption plan (¢,) so as to

max,, E(J‘1 e"f"u(c,)dt) «..(5)

)
subject to the initial CDF of reserves F, the non-negativity of c,, and

T
f cdt £ R, ...(6)
0

where R is the random variable representing the unknown size of the reserve at the
beginning of the programme. We assume #(0) = 0, #'>0, u” <0 and lim,_,q%'(c) = co.
Concerning the random endowment, we assume F(-) continuously differentiable, with f(-)
as the PDF, and that the expected reserve is finite:

f xdF(x)< o0. ..(7
0
Moreover, we assume the support of F, {x|f(x)>0}, is a connected set. The need for this
assumption will become clear in the analysis below.

The constraint in (6), by virtue of the assumptions on the utility function, will
necessarily hold with equality. The expectation in (5) is taken over the distribution of
terminal dates 7 induced by (6), the consumption plan (c,), and the CDF F(-). Define the
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CDF G(7) as the probability that the total reserve is exhausted on or before 7, given the
consumption plan (c;). Then

G.(x) = prob (R < f c,dt) - F( f ’ c,dt) = F(X,) .(8)
0 0

X, E[ c.dt

0

where

is the cumulative consumption of the resource at time 7. Our problem is then
f f e (e (X )e dtde ...(9)

where c, is non-negative, but otherwise unconstrained.

For now we employ a variational technique to deduce necessary conditions which an
optimal plan must satisfy. This method enables us to make useful comparisons with
previous results in the theory of optimal capital accumulation. The following proposition
illustrates the kinship of this problem of optimal depletion under uncertainty to Koopmans’
doomsday problem mentioned above.

Proposition 1. At any point along an optimal programme (c}¥) for (9) discounted marginal
utility of consumption must equal the expected value of discounted average utility at the end
of the programme, where the expectation is taken over the induced distribution of terminal
dates t, conditional on t = t. That is

e~ "u'(c) = E(e™"u(ch)/c¥lr = 1) ...(10)
where the conditional expectation is taken using the CDF G(*).

The proof of Proposition 1 follows directly from the following lemma which extends
the classical Euler necessary conditions for optimality to a broader class of problems of
which (9) is a special case. This lemma is of independent interest as it gives easily the
results of Dasgupta and Heal (1974) for the problem of uncertain availability of a ¢ back-

stop ” technology.

Lemma 1. Let W(x, x, t) and ®(x, x, t) be continuously differentiable functions of their
arguments, and suppose x*(t) is an interior solution to the problem

0 t
max f Y(x, x, 1) J D(x, X, t)dzdt, x(0) = x,. ...(11)
0 0
Then x*(t) satisfies the integro-differential equation®
* t * *
o | or@de+ 22 ) j P )dz—i[a—‘l'_ o*@yde+ 2| vz | = 0
X o 0x dt] 0x Jo ox J,

.(12)
and the boundary condition*

[ ® J O*(t )d‘c+ — (t)f CI)*(‘t)dr:I =0 ..(13)

Proof. Let 5(t) be a bounded, continuously differentiable but otherwise arbitrary real
valued function on [0, o0), with the property #(0) = 0. For # fixed and ¢ any positive
number define H(g) as the value of the maximand in (11) when x* is replaced by x* +&n.
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Since x* is optimal, H(-) must attain a local maximum at zero for all functions . Now it
is readily seen that

H'(0) =J ‘P*(t)j [acp O+ ——(t)n(t):'dtdﬂf [%I:; On(®)
0o

* t
+ 9 (t)ﬁ(t):l f D*(0)dedt
ox 0
= I 1 + I 2.
Integrating by parts the second integral (Iz) becomes
(* 0 *
I, = n(t){a—;y—— ® (I>*( )t — —[ ® —[ (I)*(‘t)dt]} dt + hm n(t)—— (t)f ®*(7)dr.
X

Jo

Jo

Moreover, by inverting the order of integration in 7; and then integrating by parts it follows
that

I, = ) ﬂ(t){ég ® ‘P*( )dt— —[—— ® f ‘I’*(r)dr]} dt

Jo

+1lim n(t) — (t) ‘I"*(T)d‘t.
t— 00
Hence we have '

H@O) =I1,+1, = J. n(t){—— (t)f O*(t)dr + —~(t)J\ W*(z)dr— ~—[6\P* (t)f ®*(r)dx

i (t)jw ‘P*(t)dr]} dt -+ lim {n(t) [—— ) J o*@dr+ 2 ) J B ‘I‘*(‘c)d‘c]}.
ox t t—> o ax 0 ax t

Since H(-) has a local maximum at zero, the RHS above must vanish for all admissible #.
Thus (13) follows immediately, and (12) is a consequence of the Fundamental Lemma of
the Calculus of Variations (Bliss (1968)). |

Proof of Proposition 1. Applying Lemma 1 with ®(x, X, t) = e~ "'u(x,) and ¥(x, %, )
= f(x,)x, one finds the following necessary conditions for an optimal allocation:

f(xH)%, f t e u(x¥)dr = dit[ f(x:")f e u(x¥)dr+e " u'(X] )f f(x*)x*dt] ...(19)
0 0
lim [ f(x;")ft e P u(XHdr+ e u'(X] )J fGHxk ] ...(15)
t—> 00 0

Since each term in (15) is non-negative, each must be going to zero. Now by integrating
each side of (14) from ¢ to oo, integrating the resulting LHS by parts and using the just
noted implications of (15) one finds

f ® e U (e = e'P'u'(xr)fwf(xf)xfdr- --(16)

Define M = sup {x|f(x)>0}. When M<oo we may replace (15) with the requirement
lim,_, ,x¥ = M. When M = oo, note that (15) implies lim,, ,f(x}) = 0. Since the support
of Fis connected it again follows that lim,, ,x;* = M. Finally, since F(M) = 1, a simple
change of variables reveals

f JO&Hx¥dr = 1-F(x}).
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Thus (16) implies (recalling that %¥ = c¥)

~pta 1 ¥\ __ e —ptu(c:‘) f(x;k)c;k
)= [ |t P L | -0

which is easily seen to imply (10). ||

We will comment on Proposition 1 in a moment. First observe that Lemma 1 in
principle enables us to weaken the assumptions of additively separable utility and of a
distribution of remaining reserves independent of the rate of resource extraction. However,
the resulting first order conditions do not lend themselves to easy interpretation. More
importantly, notice that if W(x, %, ) in Lemma 1 is taken to be independent of x and x,
and integrates to one, then we may use the Lemma to generate the Dasgupta-Heal (1974)
results concerning when the uncertain arrival of a superior technology may be treated as
merely increasing the (now time dependent) social rate of discount.’

An intuitive justification for Proposition 1 may be readily had. At any time ¢ along
an optimal programme a marginal increase in the rate of consumption has the payoff
e ?u'(c¥). The cost of marginally increasing consumption at # is to make earlier the time
at which the reserve will be exhausted, given that the optimal path is followed subsequently.
Suppose that exhaustion would have occurred at time s = ¢t. Then the reduction in the
duration of the programme due to the unit increase in earlier consumption is 1/c¥. Hence
the resulting utility loss is e™”*u(c¥)/c¥. Since at ¢, s is random, (10) simply expresses the
requirement that at any point along the optimal programme, the marginal gain to increased
consumption is just balanced by the expected marginal cost.

Differentiation of (17) yields the following Keynes—-Ramsey type of equation:

& _ Leh)et —w e IO (1~ FGst)] —p 1)

o —cfu (' (c)

This equation is quite similar to that which would be derived in a one-sector optimal
accumulation model with stationary population and discounted utility, except that the first
term in the numerator of (18) would be replaced by the marginal efficiency of investment.
In our problem this term is precisely the marginal rate of return to deferred consumption
(investment). Because there is no production in this model, returns to deferred consumption
are measured completely by the gains to extending the duration of the programme. If the
reserve were just being exhausted at time #, an event whose conditional probability is
f(xH)c¥ /(1 —F(x})), then the net return to a unit of deferred consumption is (by the
reasoning of the previous paragraph) u(cf)/c¥—u'(c¥). Thus, the first term in the
numerator of (18) gives the expected net rate of return per unit of  investment ** at time ¢.

Furthermore, (18) points out the counter-intuitive fact that consumption will be
increasing when the probability of exhaustion in the next instant is ‘ very high >, and
decreasing when the probability is ““ very low . Analogizing again with optimal capital
accumulation, we may give this a natural economic justification. It is well known (from
Samuelson and Solow (1956) for example) that the optimal accumulation of a productive
asset requires that the sum of the rental rate and the instantaneous rate of capital gains
on the asset be equal to the discount rate everywhere along an optimal path. Here, if the
probability of exhaustion in the next instant is ** very high >, then the rental rate, or return
to deferred consumption, will be greater than the discount rate, requiring negative * capital
gains ’, or a declining shadow price (i.e. marginal utility) of consumption. This means
that consumption must be rising. Similarly, if it is reasonably certain that exhaustion will
not occur in the next instant, then the rate of *‘ capital gains’’ must be positive and hence
consumption must be declining. Indeed, in the certainty problem where exhaustion is
known to be impossible, marginal utility must be growing at the discount rate.
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4. FURTHER QUALITATIVE PROPERTIES OF THE OPTIMAL PROGRAMME

In this section we employ dynamic programming techniques to deduce some comparative
static results. We shall also derive an explicit solution to the problem for a particular
utility function (iso-elastic) and arbitrary CDF of reserves. Consider first the following
problem:

max,tJ‘ e "u(c)(1—F(x,)dt subjectto x, =¢, x(0)=x, ¢ =0. ...(19)
V]
As the reader may have guessed, (19) is just a much simpler way of writing (9).

Lemma 2. A solution to (19) with x, = 0 is a solution for (9).

Proof. Reverse the order of integration in (9) and note (from the proof of Proposition 1)
that for an optimal policy we must have lim,_,  F(x,) = 1. |

While problem (19) seems a straightforward control problem, the existence question
is non-trivial since the integrand need not be concave in the state variable x. We have not
surmounted this difficulty to date, though this is not as troublesome as it might have been.
The reason is that one readily derives an upper bound on the maximand in (9). It seems
then that existence can only fail for pathological F(-).

Lemma 3. Under the assumptions already adopted on u(-) and F(+), (9) is uniformly
bounded over all consumption plans.

Proof. Let J(R) be the value of optimal behaviour in (1), and let R be the mean
reserve. Then J(-), like u(-) is concave. Let (c,) be an arbitrary consumption plan.
Clearly

f ‘ e Pu(c)dt £ J(x,), VY =0.
V]
Then

T
E(I e""u(c,)dt) < EJ(x) £ J(Ex)) = J(R)<w
0
by (7) and Jensen’s inequality. ||

We proceed in the conventional way to define J(x) as the value in (19) of an optimal

policy, given that x, = x. It is well known and readily seen that J(-) must satisfy the
following functional equation:

pJ(x) = max [u(c)(1 —F(x))+cJ'(x)]. ...(20)
cz0
Furthermore, since F(-) is a CDF and consumption is non-negative it is also clear that
lim J(x) = 0. ...(21)

Equation (21) is our analogue of the standard transversality condition. Note here that the
maximum in (20) will be interior, given our assumptions on #(+). Furthermore it will be
unique. Hence we have that

W(EU—=F(x) = =J'(x) or c=u"Y(=J'(x)/1—-F(x))) .. (22)
Using (20) and (22) it is easily seen that J(+) must solve the following differential equation:
pI(x) = (1—Feeu' ~ (=T ()1 =FEN+J' ' " (=T 0)/1-Fx)  ...(23)

with boundary condition (21). A solution to (23) may then be used to determine the optimal
initial consumption flow cy(x) whenever x, = x, through (22). Since (19) and (9) are only
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equivalent for x, = 0, one might conclude that only ¢4(0) is relevant. In fact, however, a
solution for (23) gives immediately a complete solution for (9).

Proposition 2. Let co(x) be the optimal initial consumption flow derived from (20)-(23).
Define .
T(x) = J' dv/co(v).

0
Then T(-) is invertible. Let x™'(*) be its inverse. Then c*(t) = co(x~(¢)) is the unique
solution to (9).
Proof. Let c*(-) be a solution to (9), and x*(-) defined in the usual way as the cumu-
lative consumption function along the solution path ¢*(-). Now, by Bellman’s Principle
of Optimality (1957), it follows that ¢ must satisfy

t
cf = co(J‘ c:‘ds) = co(xf), Vt=0.

0
Recalling the definition of 7°(-) we have

TP = j

0

x‘

t dv/cy(v).

Consider the change of variables v = x¥*. Then dv = c¥ds and ¢,(v) = co(x¥) = c¥. It
follows then that

t
T(x}) =J. ds=1tVt=0.
(1]

Hence xTHTGE) = xF = x70), Vi 20,
Therefore ¢f = co(x¥) = co(x~1(t)). Uniqueness follows immediately from the definition
of x~1(-) and the uniqueness of co(x). |

Proposition 2 says that the optimal control ¢y(x) for (15) with initial condition x, = x
is identical to the optimal consumption flow ¢} for (9) when cumulative consumption (and
hence extraction) by time ¢ is equal to x. However, J(x) does not represent the expected
discounted value of the utility flow arising from ¢* in (9), viewed from the point at which a
total of x has already been consumed. This is because the distribution function F(-) in
(19) has not been renormalized to take account of the fact that total initial reserves could
not have been less than x,. This could be done by multiplying (19) by (1—F(x,))~*. If
J*(x) denotes the current value of the expected discounted integral of utility along an
optimal programme, then J*(x) = (1—F(x)) ™ J(x).

Hence J*(x) may be unbounded even though J(x)—0. The “ information >* which the
planner gains by appropriately conditioning the distribution of remaining reserves after
observing the total quantity of resources consumed by any point serves only to make him
“ feel ** better off, but has no effect whatever on the policy actually adopted.® Our boundary
condition (21) may thus be interpreted as saying that asymptotically, without the benefit of
this * information »*, the value of the programme must be going to zero. This condition
appears to have no analogue in the theory of optimal growth.

The following characterization of J*(-) will prove extremely useful in deriving some
results on the effects of changes in the distribution of reserves on the optimal consumption
policy.

Lemma 4. Whenever cumulative consumption along an optimal programme has reached
the level x, then the current value of the remainder of the programme is given by

) = %(u(Co(x))—Co(x)u’(c‘o(x))) (24
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Proof. From (22), (23) and the immediately preceding discussion,
J*(x) = 1=F(x))"1J(x)

= (1—F(x»";f«l—F(x»u(co(x»—u'(co(x»a—F(x»co(x»
= })(u(co<x»—co(x)u'(co<x>». n

That is, the current expected value of an optimal programme is equivalent to the
constant utility flow u(co)—cou'(co) in perpetuity. This flow equals the net consumer’s
surplus when ¢, is being consumed in the competitive resource market under certainty
discussed in Section 2. Lemma 4 is mathematically trivial, but economically very im-
portant.” Because the RHS of (24) is strictly increasing in ¢y, a strictly monotonic
relationship between the value of optimal behaviour and the optimal level of the control
variable has been established. Any change in the distribution of reserves will increase
(decrease) current optimal consumption if and only if it also increases (decreases) the current
value of an optimal policy. We have then the following surprising result:

Corollary 1. An increase in the riskiness of the distribution of remaining reserves in the
sense of Diamond and Stiglitz (1974) (i.e. a mean utility preserving increase in risk) will not
affect current optimal consumption.

Without much difficulty, we also have the result:

Corollary 2. If an uncertain distribution of reserves is replaced by a certain level which
gives the same total well-being, then initial consumption will not change. If a non-degenerate
distribution of reserves is replaced by its mean then initial consumption will rise.

Proof. Recall the definitions of J(R) and R from the proof of Lemma 3. It follows
from the argument given there that J*(0)<J(R). Repeating the proof of Lemma 4 for the

certainty case one finds

J(R) = l—l)(u(é(R»——é(R)u'(e(R»)

where &(-) is the optimal certainty consumption function. Both statements in the corollary
then follow immediately. |

Thus, if a previously known holding of the resource becomes suddenly subjected to
noise, an optimal consumption policy will be immediately more conservative. Clearly it
cannot remain more conservative always, as that would imply some of the resource not
being used with positive probability. It is not true however that the addition of noise to
an arbitrary distribution will lead to an initially more conservative policy. Essentially this
is because if the initial distribution is such that its right tail is very * desirable > (that is,
J*(x) is increasing rapidly), then the addition of noise can make that tail even more desirable.
Tt could then be optimal to consume the resource even more quickly, as the cost in terms of
increased probability of premature exhaustion is outweighed by the gain of making the
desirable tail available at an earlier date. The following result gives a characterization of
when this perverse effect can happen.

Corollary 3. Let an initial distribution of resources F(-) be given, and let ¢} be the
corresponding optimal consumption programme. If e~"u(c}) is strictly increasing every-
where, but remains bounded, then a mean preserving increase in the riskiness of F(-) will
increase initial consumption.
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Proof. Let G(-) differ from F(:) by a mean preserving spread (MPS). Then (sce
Rothschild and Stiglitz (1970))

Vy 20, r (G(x)—F(x))dx = 0, jw(G(x)—F(x))dx = 0.
Thus ° °

]

f " e Ptu(et) (1~ GGt = f e u(c)(1—F(x! ))dt—fw ™ u(cf)G(x!) — F(x}))dt
0o

0 0

=f°° e*ﬂ'u(cf)(l—F(x:‘»dHf”i (e u(c) f (GG
o dt )

0
t
—F(x¥))dsdt—1lim ((e~"u(cf ))‘[ (G(x¥)—F(x¥))ds.
t-> 00 0
The last term vanishes by the definition of a MPS. Thus

J. i e Pu(c))(1—G(x ))dt>J‘°o e~ Pu(cf)(1—F(x3))ds.

0 0
Since ¢ was the optimal path for F(+), the result follows from Lemma 4. ||

An example of a situation where Corollary 3 applies is given when u(c) = (1/y)c?,
(0<y<1), and f(x) = (n—1)(1+x)7", (»>2). In this case (as may be checked by the
explicit solution given below) (2y—1)/(1 —y) >n implies that the hypotheses of the corollary
are met.

In spite of the difficulty in obtaining general results about the effects of increased
uncertainty in the mean preserving sense, it is possible to show under rather general cir-
cumstances that randomization, appropriately defined, causes a more conservative
exploitation of an unknown resource base. Toward this end let us define a mixing of
distributions as follows:

Definition. For any positive integer n, let {F,}7_ ; be a family of CDF’s on [0, o0).
Then the CDF G(-) is a mixing of the {F;} if there exist a;, (/ = 1, n) such that «;>0,
Yra; =1, and G(x) = Y7 ;Fy(x), for all xe[0, co]. A mixing of CDF’s is thus a
randomization of those distributions. Moreover, if F(-) is an arbitrary CDF which is
continuously differentiable with finite mean, define J**(F) as the value of an optimal policy
for (9) under F(-) at time zero. That is J**(F) = J¥(0). Similarly, define &(F) as cF(0),
the optimal initial consumption flow under F(-). We may now state

Proposition 3. Assume cu’’'+u''>0, Ve 2 0. Let {F;}, (i =1, n) be a family of
CDF’s not all identical, and let G( ) be a mixing of {F;} with weights o;. Then
(6] <Z'i°‘i6(Fi)-

Proof. The proof proceeds by induction. Define P(c) = u(c)—cu'(c). Then under
our assumptions, P’>0, —P"">0. Hence P has an inverse, P!, which is strictly increasing
and strictly convex. Let n = 2. Then

J*¥(@F,+(1—a)F,) = max f ” e "u(c)(1—aF(x,)— (1 —)F,(x,))dt

(3 0

— max j ® e Pu(e) (ol — Fy(x))+ (1 — )1 — F(x)))dt

Ct 0
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<« maxj‘ e Pu(c)(1—Fy(x))dt
Ct 0
+(1—o) max J e Pu(c)(1 —F,(x,)dt
ce 0
= oaJ**(Fy)+(1 —a)J**(F,)
with equality if and only if F; = F,, since (by (22) for example) this is the only way that
the optimal consumption function will be everywhere identical for F; and F,. Thus

&(G) = EaF;+(1—a)Fy) = P™H(pJ**(@F; +(1—a)F2)) <P~ *(ap**(F1)+ (1 - a)pJ**(F2))
<aP Y (pT**(F)+ (1 — )P~ (pJ**(Fy)) = al(Fy)+(1—0)e(Fy).

This establishes the proposition for n = 2. Assume the proposition true for » = m—1 and
consider n = m. Then

&G = 60T auiF) = e(amFm+(1—0) 27" (0:/(1—0m)F)
= P (pJ**(0nFp+(1 =)} 7" (o:/(1 —0tn))F))
<0WP ™ pI**(F )+ (1= 0) P~ (pI** T (4/(1 —2m))F)))
<0 (F o)+ (1 — ) Z(et/ (1 — ,))2(F)
= 2'1" “ié(F Dl

We note that the assumption #'' +cu'’’ >0 is reasonably strong, though it is consistent with
the standard assumptions of increasing relative and decreasing absolute risk aversion.

Proposition 3 tells us that if the planner faces an array of possible distributions of
reserves F;, each of which having probability «; of being the true distribution, then his
optimal extraction policy must be more conservative than the expected value of the
extraction policy, knowing the true distribution. Moreover, if any sequence of distributions
has the property that each distribution in the sequence leads to the same initial consumption,
then a mixing of the distributions will lower initial consumption. In this sense, less
uncertainty is always preferred to more uncertainty.

Observe now that the role of discounting in determining the qualitative character of
the intertemporal consumption programme is significantly mitigated by the fact that the
rate of consumption also affects the probability distribution of the duration of the pro-
gramme. Thus, as we discussed in the previous section, consumption may be rising or
falling over time, depending on the probability that the reserve is exhausted in the next
instant. Curiously, there is a case (noted by Gilbert (1976)) where consumption will be
constant over time no matter what the utility function or how high the rate of discount.
This circumstance is limited to a specific class of probability distributions, however.

Corollary 4. Optimal consumption will be constant over time if and only if
(1=F(x)) = e~**, for some 1>0.
Proof. Suppose 1—F(x) = e~**, It is clear from (19) that for all x, = 0,
J(xo = e_leJ(O).
Furthermore, J*(x,) = (l—F(xo))'fJ(xo) = J(0), Vxo = 0. Hence J* is constant. It
follows from Lemma 4 that cy(x) is constant, and then Proposition 2 implies ¢} is constant.
Suppose conversely that ¢ is constant. Then cy(x) must be constant, and by Lemma 4,

J*(x) is constant as well. Let c¢* and J* denote these constant values. Now
J(x) = (1—-F(x))J*, and by (18)

w(e(1—F() = —J*dixa—F(x)) = 1)

25—45/3
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or
— (I = ;}i (1= Fx)/(1—F(x).

The result follows immediately from integrating the above equation with 4 = u'(c*)/J*. |

We turn now to the task of solving (9) for a class of special cases. Accordingly, assume
that the utility function is iso-elastic or, equivalently, possesses constant relative risk
aversion. Thus we write

u(c) = 1 ¢, O0<y£1, ¢=0.
Y
In this case (23) becomes

J(x) = ;};(—J'(x)/(l—F(x»v”*’(l—F(x»+ %?(—J'(x)/(l—F(x»)“ﬂ- (25

Together with (21), (25) gives a non-linear first order differential equation for J(x) which
may be readily solved. The solution for (21) and (25), and the implied solution J*(x) are
given below:

RN S T A T 1/
J¥(x) = ——p—- —’; (1 —=F(s))[A—F(x)))*"ds J'. ...(26)
Now, since P(c) = ((1—7)/py)c?, it follows from (24) that
co(x) = ﬁ; on ((A=F(s)/(1—F(x))'ds. -.27)

Equation (27) and Proposition 2 can then be used to determine ¢, once F(-) has been
specified.

Equation (26) reveals a remarkable fact. If utility is iso-elastic and the initial distri-
bution of reserves is F( ), then the present value of that distribution is proportional to the
distance of F(-) from the constant function 1 in the I’-norm, where p = 1/y! That is,
J**(F) = k| 1—F||, though k and p of course are not independent. The *further away
from unity (which represents no reserves with certainty) in this specific sense is the distri-
bution function, the more valuable it is. Similarly, the optimal rate of consumption at
any instant is a continuous, increasing function of the distance from unit of the normalized
distribution of remaining reserves.

This observation is very useful as it enables us to bring the well-known properties of
the I7 norms to bear on our problem. For example, the heart of the proof of Proposition 3
becomes a simple consequence of the triangle inequality. We can also make economic use
of the properties of || ||, for p close to 1 and oo (i.e. y close to 1 and 0). As

ps1, | 1=F |- f 1—F(s) | ds = %,
: 0

the mean reserve. This is very natural; as consumers become risk neutral the optimal value
of a distribution function converges to a constant multiple of its mean. On the other hand,
asp—o || 1—F|,—sup|1—F(x)|. Thisrequires careful interpretation because the constant
k is unbounded as y—0. What it does imply is that for very risk-averse consumers with
v near zero, a small increase in the probability that the resource endowment is low must be
balanced by a very large increase in the probability of a high endowment if the value of the
resulting distribution function is to remain unchanged. Indeed, we can use the convergence
of the I? norms to the sup norm as p— oo to see that the following corollary must be true.
(The tedious proof is omitted.)
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Corollary 5. Let F and G be two CDF’s satisfying
inf {x| G(x)>F(x)} < inf {x| F(x)>G(x)}

where both sets above are assumed to be non-empty. [That is, G is bigger than F before F
is bigger than G.] Then there exists 5>0 such that 0 <y <% implies

THH(F)>T34(G)

5. COMPETITIVE ALLOCATIONS WITH UNKNOWN RESERVES

In this section we would like to consider the question: ‘Do competitive markets exploit
an unknown resource base optimally? > As mentioned in Section 2, it is widely recognized
that when the set of futures markets is complete and the resource base is known, com-
petitive allocations will be intertemporally efficient. Below we prove that if in addition
there are complete contingent claims markets (in a sense to be made precise), then this
classical result may be extended to stochastic environments.

Before beginning the analysis it should be stressed that the result stated above is of
limited practical significance due to the exclusion from the model of the activity of explora-
tion. For it is precisely in this area of generating information about the endowment that
one most readily expects that private and social returns do differ. It is nonetheless of
interest to note the (ideal) conditions under which competition leads to efficiency.

Imagine a world in which there are a large number of identical, infinitely lived con-
sumers and identical, competitive firms. Each consumer has the same initial endowment
of income which can be spent either on the natural resource or on * other goods . The
marginal utility of * other goods” is constant (unity). Each firm has the same initial
(unknown) holding of the natural resource.® Firms are profit maximizers and consumers
maximize their expected utility of consumption of the natural resource and ** other goods ™.
The instantaneous utility derived from consuming a flow of ¢ units of the natural resource
is u(c) where u(-) has the properties assumed in the planning model earlier. Utility of
“ other goods > is measured by the income remaining after the purchase of the natural
resource. No storage is possible, so firms learn their holdings only at the point that there
is no more left. All agents know the objective distribution of firm holdings represented by
the CDF F(-).

The usual starting point for analysis of this kind is the Arrow—Debreu model of general
equilibrium. One imagines a complete set of markets open for trading at the initial date
on which agents may purchase promises for delivery of a desired commodity at any future
date, conditional on the occurrence of a particular “ state of nature . Of course, such
contracts are meaningful only if the agents involved can ascertain just which state of nature
has occurred. In our model uncertainty derives solely from not knowing the level of
holdings of any one firm, R. Thus, the true state of nature may be identified with these
holdings. But the level of these holdings become known only at the moment of exhaustion,
and hence cannot be the basis for forward contracts which mature before that moment.

We seek then a set of events the occurrence of which can be verified by market par-
ticipants at each date for which forward contracting occurs. Suppose that for each future
date ¢, the maximal quantity extracted (and hence sold) by any firm, X, is known to all
agents. Then every agent can verify the occurrence of the event {R e (X,, ]}. Moreover,
given our assumptions, this exhausts what any agent can say about R. Hence, the relevant
states of nature upon which to base contingent claims are the events {R = X} for non-
negative X. For reasons explained in Note 8, we restrict ourselves to symmetric behaviour
by our identical firms. That is, we seek an equilibrium in which each firm extracts at the
same rate, finding it optimal to do so given the extraction rates of all other firms. Then X,
will equal each firm’s cumulative extraction at date ¢.

Imagine then that at the initial date consumers can purchase contracts of the form
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‘“ one unit of resource at date ¢ given that cumulative sales as of that date have been x, and
that exhaustion has not yet occurred . That is, a promise to deliver is distinguished both
by its date and its ** quality > (i.e. the number of units the firm will have committed prior
to its date). This enables consumers to buy contingent on their position in the firm’s
“ queue . Let the present price of such a contract be p(x, ¢). The probability that delivery
on such a contract will actually be made is 1 —F(x). Competitive behaviour in this world
means that all agents take p(x, ) as given. Consumers choose their demand for con-
sumption (i.e. quantity and quality) on each date to maximize expected discounted utility.
Firms choose their supply of the resource at each date (and hence the “ quality > of this
supply) to maximize profits. An equilibrium is a price function p*(x, #) which allows these
optimizing decisions to be consistent. Existence is not discussed, though it follows from
the argument below and the uniqueness result of Proposition 2 that an equilibrium exists
if and only if a planning optimum exists.

Consider first the behaviour of firms. They must choose a quantity of resource to
extract and supply to the market at each date ¢ so as to maximize their revenues. With
p(x, 1) given they must

0
maxf p(x, e dt subjecttoxo =0, %, =c¢, ¢ =0.
e Jo

If an interior solution exists (i.e. finite positive supply at all dates) then we must have
ap d
—= (x4, ), = — p(x,, ). ...(28
ax(t)t dtp(t) (28)

This is readily seen to imply dp/d¢t = 0, or that contingent on cumulative consumption the
price for future delivery of the resource must be constant across dates, generalizing Hotelling
(1931). Moreover, using this fact and changing variables in the integrand one gets

J‘m p(x,, Dedt = f ® pe)edt = r H(x)dx (29
0 o 0

where X = lim,, ,x,. Thus, when present prices are constant across market dates, firm
revenues depend only on the total contracts sold. Recall M = sup {x| F(x)<1}. If M is
finite then no price function could provide an equilibrium unless j(x) = 0, x> M. Simi-
larly, whether or not M is finite, we must in equilibrium have f(x)>0, x<M. Thus, firms
maximize profits if and only if X = M.
On the demand side we may formulate the consumers’ lifetime allocation problem as
[ co
max | [~ ue)(t ~ FGx) = ps D
Ct: %t J 0
Here c, is the quantity of resource demanded for future delivery at date ¢ and x, is the
 quality ” of resource demanded. That is, at the prevailing prices, x, is the cumulative
extraction which consumers would find most attractive in the firm from which they buy
their date ¢ contracts. Necessary conditions are

e (e)(1—F(x)) = plx, 1) ...(30)
e Pu(e)foe) = — 2 (x, B)cy e
ox

Combining (30) and (31) with (28) and the discussion below (29) we learn that in a market
equilibrium the following conditions must hold:

gt [e™"u'(c)A—F(x))] = —e™ u(c)f(x) --«(32)
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and
lim x, =M ...(33)

t—o0

which by the proof of Proposition 1 imply

Proposition 4. If a solution for the planning problem (9) exists then a competitive equili-
brium also exists. Moreover the equilibrium and optimal allocations coincide.

6. CONCLUSION

We have seen that the problem of uncertain reserves may be treated in a rather satisfactory
way, so long as the ¢ information ** available about the level of reserves is not changing in
any interesting way over time. It would seem to be straightforward and interesting to
extend the model given here to the case of production and capital accumulation. In such
a model, the effect of changing uncertainty on the rate of substitution of capital for the
natural resource in production could be studied. In a growth model of this sort, the
complex question of decentralized allocations and efficiency might be approached through
a combination of the techniques employed here and those used by Stiglitz (1974) in his
study of the market mechanism in deterministic models with natural resources. However,
it seems that the problem most in need of elucidation concerns the modelling of the process
of exploration.
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responsible for all errors.

NOTES

1. Throughout the paper a subscript denotes the time at which the given function is to be evaluated.

2. Murray Kemp has recently treated this problem (1976), deriving some results similar to those
presented below.

3. By ¥*(r) we mean W(x*(z), X*(¢), ¢), etc.

4. Strictly speaking, this condition only applies when there is no predetermined terminal condition on x.

5. The results of Yaari (1965) concerning when uncertain lifetime merely raises consumer’s discount
rate are also a special case of Lemma 1.

6. If “ reconditioning > is thought of as changing the discount rate, then this result follows from
Strotz’ well-known sufficient condition for dynamic consistency (1956). I am indebted to Mort Kamien
for pointing this out to me.

7. This result is the analogue in our problem of the theorem justifying NNP as a welfare measure
proved by Weitzman (1976).

8. There is a basic problem here of decentralizing ownershlp of the resource while maintaining infor-
mational symmetry with the planning problem. If R is society’s random endowment and R,i=1,2,

., n, are n random variables representing separate pools and satisfying =R, = R, then it is apparent that
the planner would rather face the n random variables than their sum. The reason is that he can learn about
his holdings as individual pools are exhausted. This is true even if the R; are i.i.d. Only in the limit as
n—oo with (R)) i = 1, n as i.i.d. random variables summing to R is complete symmetry attained. However,
this operation is possible only for a very small class of distribution functions of R, the so-called “ infinitely
divisible > distributions (see Feller (1971)). In general this method of solution would not be feasible (e.g.
if R has compact support then it is not infinitely divisible). In the text R, = 1/nR, the optimal behaviour
would be to exploit one firm’s holdings completely, thereby learning all the other endowments. If one
constrains the planner to extract equally frotn each pool, however, then equivalence with his original
problem is again obtained. In the market equilibrium described here, all firms will end up extracting at
the same (constrained optimal) rate. These problems should be borne in mind when interpreting the result.
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