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Abstract

We study the evolutionary robustness of strategies in infinitely repeated pris-
oners’ dilemma games in which players make mistakes with a small probability
and are patient. The evolutionary process we consider is given by the replicator
dynamics. We show that there is a large class of strategies with a uniformly large
basin of attraction independent of the finite set of strategies involved. Moreover,
we show that those strategies can not be unforgiving and, assuming that they are
symmetric, they cooperate. We provide partial efficiency results for asymmetric

strategies.

1 Introduction

The theory of infinitely repeated games has been very influential in the social sciences
showing how repeated interaction can provide agents with incentives to overcome op-

portunistic behavior. However, a usual criticism of this theory is that there may be
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a multiplicity of equilibria. While cooperation can be supported in equilibrium when
agents are sufficiently patient, there are also equilibria with no cooperation. Moreover,
a variety of different punishments can be used to support cooperation.

To solve this multiplicity problem, we study what types of strategies will have a large
basin of attraction regardless of what other strategies are considered in the evolutionary
dynamic. More precisely, we study the replicator dynamic over arbitrary finite set of
strategies when strategies make mistakes with a small probability in every round of the
game. We study which strategies have a non-vanishing basin of attraction with a uniform
size regardless of the set of strategies being considered. We say that a strategy has a
uniformly large basin of attraction if it repels invasions of a given size for arbitrarily
patient players and small probability of errors and for any possible finite combination of
alternative strategies.

We find that two well known strategies, “Always Defect” and “Grim,” do not have
uniformly large basins of attraction.! Moreover, any strategy that is unforgiving cannot
have a uniformly large basin either (we say that a strategy is unforgiving if there is a finite
history after which the strategy always defects). The reason is that, as players become
arbitrarily patient and the probability of errors becomes small, unforgiving strategies
lose in payoffs relative to strategies that forgive and the size of the basins of attraction
between these two strategies will favor the forgiving one. This is the case even when the
inefficiencies happen in histories that are not reached without trembles (as it is the case
for Grim).

We also show that symmetric strategies (their actions depends in what happened
and not on who did it) leading to inefficient payoffs cannot have uniformly large basins
of attraction. We also provide some efficiency results for asymmetric strategies.

It could be the case that inefficient and unforgiving strategies do not have uniformly

!The strategy Grim starts by cooperating and continues to do so unless there is a defection, in that
case it defects for ever.



large basins since there may be no strategies with that property! We prove that that
is not the case by showing that the there is a large class of strategies, that we call
star-type strategies, which have a uniformly large basin of attraction. The star-type
class includes the well known strategy “Win-stay-lose-shift” (WSLS), and the family of
“Trigger” strategies.? As strategies in this class are efficient, we show that the concept
of uniformly large basins of attraction provides a (partial) solution to the long studied
problem of equilibrium selection in infinitely repeated games: only efficient equilibria
survive for patient players if we focus on symmetric strategies.

Moreover, in our study of the replicator dynamics, we develop tools that can be
used outside of the particular case of infinitely repeated games. In fact, the existence
results are based on theorem about replicator dynamics which can be used to study the
robustness of steady states for games in general.®> For example, we show that to check
that an attractor has a uniformly large basin of attraction against invasion by any finite
set of invaders, it is enough to check a condition on payoffs that only considers invasion
by pairs (the largest dimension of the simplex that needs to be considered is 3). This
greatly simplifies the analysis.

An extensive previous literature has addressed the multiplicity problem in infinitely
repeated games. Part of this literature focuses on strategies of finite complexity with
costs of complexity to select a subset of equilibria (see Rubinstein 1986, Abreu and
Rubinstein 1988, Binmore and Samuelson 1992, Cooper 1996, and Volij 2002). This
literature finds that the selection varies with the equilibrium concept being used and
the type of cost of complexity. Another literature appealed to ideas of evolutionary

stability as a way to select equilibria and found that no strategy is evolutionary stable

2The strategy Win-stay-lose-shift starts by cooperating and then cooperates if the actions of the two
players coincided in the previous period and defects otherwise. A trigger strategy starts by cooperating
and then cooperates if there was no deviations in a given number of previous periods.

3While we focus on the replicator dynamics, all the results are also valid for any evolutionary dynamic
in which strategies earning more than the average grow, and those earning less shrink.



in the infinitely repeated prisoners’ dilemma (Boyd and Lorberbaum 1987). The reason
is that for any strategy there exists another strategy that differs only after events that
are not reached by this pair of strategies. As such, the payoff from both strategies is
equal when playing with each other, and the original strategy cannot be an attractor
of an evolutionary dynamic. Bendor and Swistak (1997) circumvent the problem of ties
by weakening the stability concept, and show that cooperative and retaliatory strategies
are the most robust to invasions. Garcfa and van Veelen (2016) use an alternative
weakening of the stability concept and find that no equilibrium is robust if the players
are sufficiently patient.

In a different approach to ties, Boyd (1989) introduced the idea of errors in decision
making. If there is a small probability of errors in every round, then all events in a
game occur with positive probability destroying the certainty of ties allowing for some
strategies to be evolutionary stable. However, as shown by Boyd (1989) and Kim (1994),
many strategies that are subgame perfect for a given level of patience and errors can
also be evolutionary stable.

Fudenberg and Maskin (1993) (see also Fudenberg and Maskin 1990) show that
evolutionary stability can have equilibrium selection implications if we ask that the size of
invasions that the strategy can repel to be uniformly large with respect to any alternative
strategy and for large discount factors and small probabilities of mistakes. They show
that the only strategies with this characteristic must be cooperative. There are three
main differences with our results. First, Fudenberg and Maskin (1993) focus on strategies
of finite complexity while we do not have that restriction. Second, our robustness concept
does not only consider the robustness to invasion by a single alternative strategy but
also robustness to invasion by any arbitrary finite combination of alternative strategies.
In other words, we also look at the size of the basin of attraction inside the simplex.

Third, our full efficiency result only applies to the case of symmetric strategies and we



only provide partial efficiency results for the general case.

Our results also relate to Johnson, Levine and Pesendorfer (2001), Volij (2002) and
Levine and Pesendorfer (2007) who use stochastic stability (Kandori, Mailath and Rob
1993 and Young 1993) to select equilibria in infinitely repeated games. As having large
basin of attraction is a necessary condition (but not sufficient) for stochastic stability,
the present results could help characterize strategies that are stochastically stable for

any finite set of strategies.

2 Model and definitions

We consider a homogeneous population of mass one playing, in each instant # in the
continuum time of evolution, the infinitely repeated prisoners’ dilemma game we define
below. Each agent plays one strategy in the infinitely repeated game among a predeter-
mined finite set of possible strategies. The prevalence of each strategy in the population
will evolve as function of the payoffs reached by each strategy. In particular we will
assume that the dynamics of evolution are given by the replicator dynamic also defined

below.

2.1 Infinitely repeated prisoners’ dilemma with trembles

In each instant 6 of the evolutionary time, agents are matched in pairs with each of
the other agents to play the following infinitely repeated game. In each period of the
infinitely repeated game t = 0,1, 2, ... the two agents play a symmetric stage game with
action space A = {C, D}. At each period t, a player chooses action (') € A and the other
player chooses action (l;t) € A. However, the chosen action is only implemented with
probability p < 1, and with probability 1—p the other action is implemented: the players

tremble. Trembles are independent across periods and players. We denote the vector of



own implemented actions until time ¢ as a; = (a°,a’, ..., a") and b, = (b°,b%,...,0") for
the other player. The payoff from the stage game at time ¢ is given by utility function
u(a’,b') : A x A — R such that w(D,C) =T, u(C,C) =R, u(D,D) = P, u(C,D) = S,
with T >R>P > Sand 2R >T+S.

Agents only observe previously implemented actions. This knowledge is summarized
by public histories. When the game begins we have the null history h°, afterwards
he = (a;—1,bi—1) = ((a°,8°),. .. (a'1,b""1)) and H; is the space of all possible ¢ histories.
Let H., be the set of all possible infinite histories and H = U;>oH; be the set of all
possible finite histories. A pure public strategy is a function s : H — A.

In this paper we will have to pay attention to the mirror image of any finite history
hi = (a1, bi—1), which we define as hy = (bi—1, at—1). We will also pay attention to the
history that strategies would generate if players never tremble: given a pair of strategies
(s,s") we denote the history that they generate without trembles as hy ¢ and with hg v,
the finite history up to period ¢ — 1. Given a finite history h;, with h, g /5, we denote the
history that s and s’ generate from h; if players never tremble from then on. We call
these histories O-tremble histories. Note that O-trembles denote zero future trembles; of
courses, trembles may have been necessary to reach the particular history from which
the O-tremble history in consideration originates. Denote by A Jhe the O-tremble actions
at time 7 > t if players follow strategies s and s’ and history h; has been reached.

The expected discounted payoff of a player following strategy s while matched with
a player following strategy s is Usy(s,s') = (1 — 8) 32,50 0'Ds,s (ar, br)u(a’, b") where
Ps.s(at, by) denotes the probability that the history (as, b:) is reached when s and s
are the strategies used by the agent and the agent she is matched with respectively.
Observe that ps g (a, b)) = ps.y(ar_1,b—1)p* ™t (1 — p)1 =413t where i, = 1 if a® = s(hy),
iy = 0 otherwise, and j, = 1 if b* = S/(iLt), jt = 0 otherwise. Therefore, p; ¢ (as, by) =

pmt (1 — p)#2mmene where my = #{0 < 7 <t:s1(h;) =a"}and n, = #{0 < 7 < ¢



s2(hy) = b7}. Observe that py v (hy) = p* if Ry is a O-tremble history. By Us,(s,s'/h)
we denote the expected discounted payoff conditional on history h; having been reached
when s and s’ are the strategies used by the agent and the agent she is matched with
respectively: Us (s, s'/hi) = (1=0) 32 5, 07 'ps.o/n(ar, b Ju(a™, b7) where ps v /n, (ar, br)
is the probability of history (a,,b;) conditional on history h; having been reached (with

T >1).

2.2 Replicator dynamics

Since we are interested in studying the evolutionary stability of repeated game strategies,
in this section we define the replicator dynamics for the case in which the matrix of
payoffs is given by an infinitely repeated prisoners’ dilemma game with discount factor o
and error probability 1 — p for a finite set of strategies S = {s1,...,s,}. See Fudenberg
and Levine (1998) and Weibull (1995) for further discussions on replicator dynamics and
attractors in general.

Given a finite set of strategies S = {s1, ..., s,}, discount factor ¢ and error probabil-
ity 1 — p, we can calculate the expected payoffs from any pair of strategies as discussed
in the previous section. Let U = (u;j)1<i<ni<j<n be the square matrix with the ex-
pected payoffs for each pair of strategies - we drop 6 and 1 — p from the notation of
U for simplicity. Let A be the n—dimensional simplex A = {z = (2;...2,) € R" :
1+ +x, =1, x; > 0,Vi} denoting all the possible distributions of the strategies
in the population of agents. We consider the replicator dynamics associated to the pay-
off matrix U on the n dimensional simplex given by the equations &; = z;[u;(z) — u(z)]
where u;(x) = Z;Ll xju;; is the expected payoff of strategy ¢, and @(z) = Z;Ll xju;(z)
is the average expected payoff. We denote with ¢ the associated flow that provides the
solution of the replicator equation: ¢ : R x A — A. Observe that any vertex is a singu-

larity of the replicator equation, therefore, any vertex is a fixed point of the flow. Given



a vertex e; (a n—dimensional vector with value 1 in the i—th coordinate and zero in the
others) and € > 0, the set Ac(e;) = {z : D7, ., ; < €} denotes the ball of radius ¢

and center e;.

Definition 1. Attracting fixed point and local basin of attraction. A given
vertex e; is an attractor if there exists an open neighborhood V' of e; such that for any
x € V it follows that pg(x) — €; as 8 — +oo. The global basin of attraction of e;,
B?(e;), is the set of points with forward trajectories converging to e;. The local basin of
attraction of e;, By .(e;), is the set of points in B*(e;) such that W < 0 (the flow

gets closer to e;).

With Bi.(s,d,p,S) we denote the local basin of attraction of s in the finite set of

strategies S.

2.3 Uniformly large basin of attraction in infinitely repeated

games

Since players tremble and the intended action is not public information, we focus on

perfect public equilibria (see Fudenberg and Levine 1994):

Definition 2. We say that (s, s) is a strict perfect public equilibrium if there exists po

and &y such that Us,(s,s/hi) — Usp(s',s/hy) > 0 for any hy, s', p > po and § > do.

It is clear that if (s, s) is not a strict perfect public equilibrium then, s will not repel
invasions by every other strategy. It is also well known that a strict equilibrium strategy
is an attractor in any population containing it. However, the size of the basin of attrac-
tion of such a strategy could, in principle, be made arbitrarily small by appropriately
choosing the set of alternative strategies, 6 and p. If a strategy can be invaded by one
alternative strategy at a time, we could ask that the strategy resists invasions of a given

size for any single invading strategy, as done in Fudenberg and Maskin (1990).
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Definition 3. We say that a strateqy s has a uniformly large basin of attraction against
single invaders if there exist numbers K, and 0 < dy < 1, and an increasing function
p: [0, 1] — [0, 1] (with p(1) = 1) verifying that for any set of two strategies S containing
s, identifying s with the vertez ey, and any 6 > dy and p > p(9), it holds that {(x1, x2) :
o < K} C Bioe(s,p,9,S).

The role of the function p(d) is to bound the importance of mistakes relative to the
patience parameter d. To avoid notation, we say, in short, that we restrict ourselves to
0 and p large.

With only one invading strategy, the size of the basin of attraction of the original
strategy depends on the payoff matrix of the 2x 2 game formed by these two strategies. If

(s, ) is a strict public perfect equilibrium, the size of the basin of attraction of strategy s

: /! _ 1 /AN / _
against strategy s’ is fsy = T Uy when Us (5, 8") > Usp(s,s'), and foo =1

Us,p(5,8)=Us (s,5)

when Us,(s',s") < Usp(s,s’). Note that the size of the invasion by strategy s’ that

strategy s can resist is decreasing in the cost of miscoordinating when the other plays
strategy s', and increasing in the cost of miscoordinating when the other plays strategy
S.

Therefore, a strategy s has a uniformly large basin against single invaders if there

exists a constant number L such that for any s’ # s it follows that

VAN /
Usp(s',s") — Usp(s, s) -1 (1)
Usp(s,s) — Usp(s,s)

for 6 and p large.*
However, strategies may not invade one at a time, and to study the robustness of
a strategy we need to consider invasions by any combination of alternative strategies.

In other words, we need to consider the size of the basin of attraction also inside the

4If we focus on the case without trembles, p = 1, then the concept of uniformly large basin of
attraction against single invaders coincides with the concept of uniform invasion barriers — see Weibull
(1995).



simplex, not only on its boundaries. Moreover, note that there is an infinite and un-
countable number of alternative strategies in infinitely repeated games. This results in a
large number of possible sets of invading strategies. To capture the idea of evolutionary
robustness, in this paper we ask that a strategy has a large basin of attraction indepen-
dently of the finite set of other participating strategies. That is, we ask that the strategy

repels invasions of a given size for any possible set of invading strategies.

Definition 4. We say that a strateqy s has a uniformly large basin if there exist numbers
K, and 0 < §p < 1, and an increasing function p : [0, 1] — [0,1] (with p(1) = 1)
verifying that for any finite set of strategies S containing s, identifying s with the vertex
e1, and any § > &y and p > p(d), it holds that {(x1,...,x,) : o+ -+ 2, < K} C
Bioe(s,p,6,S) where n = #(S).

It is important to realize that the robustness to invasion by combination of strategies
may be quite different to robustness to invasion by single strategies. While it is clear
that if s has a uniformly large basin then it also has a uniformly large basin against
single invaders, the converse may not be true. It could well be that the border of the
basin of attraction bends inward in the interior of the simplex, depending on the payoffs
that the invading strategies earn while interacting with each other. As such, calculating
the size of the basin of attraction of a strategy would involve considering all the possible
combinations of invading strategies, what could be quite consuming if the number of
possible strategies is large. We show in Section 5 that a simpler approach is possible
under replicator dynamics. But first, in the next two sections, we provide a series of

results that do not require that we travel to the interior of the simplex.

10



3 The cost of unforgiveness

One of the goals of this paper is to characterize the strategies that are evolutionary
robust as captured by having uniformly large basins of attraction. We start by showing

that unforgiving strategies are not evolutionary robust.

Definition 5. We say that a strategy s is unforgiving if there exists a history hy such

that s(hih:) = D for any history hih. that comes after history hy.

A commonly discussed unforgiving strategy is Always Defect (a). In games without
trembles, Myerson (1991) proved that the basin of attraction of Always Defect collapses
as the discount factor converges to one. The reason is that when Always Defect meets a
cooperative strategy like Grim, the relative cost of miscoordination favors the coopera-
tive strategy as the agents become more patient. Grim risks a low payoff in one period
to secure high payoffs in all future periods if matched with another player playing Grim,
and the relative value of that one period cost decreases as agents become more patient.

Without trembles the size of the basin of attraction of Always Defect (a) against Grim

(8) i fag = —; _1(9’91)_[,5 — = 577 Which converges to zero as § goes to
g @ Uy 5a) P==s)s—sP

one. The next lemma shows that this is also the case with small trembles.

Lemma 1. Always Defect (a) does not have a uniformly large basin of attraction.

Proof. To prove that Always Defect does not have a uniformly large basin of attraction,
we need to show that its basin of attraction can be made arbitrarily small for some large

0 and p. Consider the invading strategy Grim, then the size of the basin of attraction of

Always Defects is . U&p(g,gl)_U&p(a,g) . That is, Always Defect does not have a uniformly
U(g’p(a,a)—U(g’p(g,a)

Ué,p(gvg)_Ué,p(avg)

’ Ué,p(ava)_Ué,p(gva)

large basin of attraction if the miscoordination cost ratio , can be made

arbitrarily large for large o and p. Note that the miscoordination cost ratio converges

Usp=1(9,9)=Usp=1(a,9) __ R—(1-8)T—6P
to Ué,p:l(aﬂa)_Ué,pzl(gva) - P—(1—5)5—5P as p goes

to one. As in Myerson (1991), this ratio

11



can be made arbitrarily large by choosing ¢ close to one. Hence, the basin of attraction

of Always Defect can be made arbitrarily small. O

While it may not be surprising that Always Defect is not evolutionary robust, given
that it obtains low payoffs as it defects from the beginning, we show next that the same
applies to any unforgiving strategy - even when the history that triggers defection for

ever may only be reached through trembles.
Theorem 1. Unforgiving strategies do not have a uniformly large basin of attraction.

As it will be clear from the proof, the reason that an unforgiving strategies does
not have a uniformly large basin of attraction is that there exist an alternative strategy
which would be willing to forgive and hence reach higher payoffs when playing with itself.
To be more precise, if the unforgiving strategy s defects for ever starting in history h;,
there is a strategy s’ that only differs from s in that, starting in histories h; and its
mirror history th, s’ will cooperate for ever unless there is a defection. The cooperation
by s’ at hy and hy works as a “secret handshake” (Robson 1990) and leads to persistent
cooperation with itself and higher payoffs that those reached by the unforgiving strategy.

This makes the basin of attraction of s arbitrarily small.?

Proof. To prove that an unforgiving strategy s does not have a uniformly large basin
of attraction, we find an alternative strategy such that the basin of attraction of s is
arbitrary small against this alternative strategy for large ¢ and p.

Since s is unforgiving, there exists a history h; such that s(hih,) = D for any h,. We
consider first the case in which &, is a symmetric history (h; = h;). Consider an invader
strategy, s’ which behaves like s in every history but history h; and those following it.

In those histories, s’ behaves as a Grim strategy that disregards what happened before

®Note that while the “secret handshake” in Robson (1990) is costless, in our case it results in a
one-period cost which becomes arbitrarily small as  goes to one.
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h: (that is, s(h;) = C and will cooperate in every history h;h, if, and only if, h, does
not include a defection).

To prove that s does not have a uniformly large basin of attraction, we must show

U5,;D (S/,S/) _Ué,p (878/)
U5,;D (878) _Ué,p (S/,S)

that the ratio of misscoordination costs can be made arbitrarily large
for 9 and p close to one. Note that, given the definition of s’, the two strategies only differ
on h; and following histories. Hence, Us,(s', ") — Usp(s, 8") = ps.s(he)d'( Usp(s', 8"/ he) —
Usp(s,s'/hy)) and Us (s, s) — Usp(s',5) = ps,s(he)0"( Usp(s, '/ he) — Usp(s', 5/hy)), where
Ps.s(ht) is the probability that history h; is reached when both players follow strategy s

(note that, given the construction of §', history h; is reached with the same probability

if one or both players follow strategy s'). Therefore, the ratio of misscoordination costs

Us,p(s',8' /h)=Usp(s,8' /ht)
Us,p(s,5/ht)=Us p(s',5/ht)

is Note that, from history h; onwards, strategy s is identical to

Always Defect and strategy s’ is identical to Grim. Therefore, the ratio of miscoordi-

nation costs is equal to the ratio of miscoordination cost of Always Defect versus Grim:

Usp(s's8' /1) —Usp (5,8 /[ht) _ Usip(9:9)=Usp(a,g)
Us,p(s,5/ht)=Us p(s',s/ht) Us,p(a,a)—Us p(g,0)

. From the proof of Lemma 1 we know that this
ratio can be made arbitrarily large as Always Defect does not have a large basin of
attraction against Grim when ¢ and p are close to one.

We consider now the case in which h; is not a symmetric history (b, # hy). If
S(iLthT) = (' for some h,, then the strategy s is not a perfect public equilibrium, as it
would cooperate against a strategy that is defecting for ever, and hence it has no basin
of attraction against an alternative strategy that defects for ever after he. We focus,
then, on the case in which S(iLthT) = D for every h,. Consider an invader strategy, s’
which behaves like s in every history but the histories h; and th, and those following
them. In those histories, s’ behaves as a Grim strategy that disregards what happened
before hy or hy (that is, s(h;) = s(h;) = C and will cooperate in every history hh, or
hih. if, and only if, i, does not include a defection).

Since strategies s and s’ only differ in histories h; and h; and following ones, the ratio

13



of misscoordination costs is:

Usp(s',s") — Usp(s, s) _

Usp(s,s) — Usp(s,s)
Pss()8" (Usp(s', 8" /1) = Us (s, 8' /1)) + ps.s () 6" (Usp(s', 8' /1) = Usp(s, 8' /1))
s ()0 (Usy(5,5/he) — Usp (s /1)) + Das (i)' (Us (5, 5/ he) — s/ /)

Given that, from histories h; and hy onwards, strategy s is identical to Always De-
fect and strategy s’ is identical to Grim, Us,(s',s'/hy) = Usp(s',s' /b)) = Usp(g,9),
Uso(,8/he) = Usy(s,8 /) = Usy(a,9), Uspls',5/he) = Usy(s',5/he) = Usplg. ), and
Usp(s,s/he) = Usp(s,s/h) = Uspla,a). Note that pss(h;) = pss(hi). Therefore, the

ratio of misscoordination costs is equal to the ratio from Always Defect against Grim:

Usp(s',8") = Usp(s,8") _ Usp(9,9) — Usp(a, 9) )
U57P(S> S) - U57P(S/> S) U57P(a> a) - U5,p(g> a) 7

which, from the proof of Lemma 1, we know it can be arbitrarily large for ¢ and p close

to one. 0

While Grim plays an important role as the alternative strategy in the proof of The-
orem 1, it is itself an unforgiving strategy. As such, it cannot have a uniformly large
basin of attraction.

Unforgiving strategies are a extreme case of inefficient strategies. In the next section
we study the connection between the efficiency of a strategy and the size of its basin of

attraction.

4 Efficiency and size of the basin of attraction
Given a history h;, and a pair of strategies s, s’ we define

U(s,s'[h) = (l$1_r)r11})1_r)r% Usp(s,s'/he).

14



Definition 6. We say that a strategy s is asymptotically efficient if U(s,s/h:) = R for

any history hy.

In the next section we prove that symmetric strategies with a uniformly large basin of
attraction are asymptotically efficient. In Section 4.2 we study non-symmetric strategies
and show that for strategies with a uniformly large basin of attraction there is a relation

between the “degree of symmetry” and payoffs.

4.1 Symmetric strategies and efficiency

Definition 7. We say that a strategy s is symmetric if s(hy) = S(iLt) for any history hy.

If the strategy s is symmetric, the pair (s, s) would be a strongly symmetric profile
as it is usually defined in the literature (see Fudenberg and Tirole 1991). Commonly
discussed strategies like Always Defect, Always Cooperate, Grim and Win-Stay-Lose-

Shift are symmetric. Tit-for-tat is not symmetric.

Theorem 2. If s has a uniformly large basin of attraction and is symmetric, then it is

asymptotically efficient.

The proof of this theorem uses the large number of alternative strategies present
in infinitely repeated games, which was a usual hurdle for the study of evolutionary
stability in infinitely repeated games. We construct a sequence of alternative strate-
gies against which an inefficient and symmetric strategy cannot have a uniformly large

basin of attraction. For a strategy s to have a uniformly large basin of attraction, it

Usp(s',8")—Usp(s,s')
U(;p(s,s)—ng(s/,s)

must be that the ratio of cost of miscoordination is uniformly bounded
for large d and p for any alternative strategy s’. We construct the alternative strat-

egy § by making it cooperate forever against itself starting from history h; and its

6We drop the use of the word “strongly” for simplicity and given that we use “symmetry” to refer
to the strategy and not the profile of strategies.
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mirror history h; in which s is inefficient, but ¢’ imitates s in other histories (coopera-
tion at h; by s works as a “secrete handshake” that secures future cooperation when

matched with itself). Then, the ratio of miscoordination costs that must be bounded

Uép(s/vs/|ht)+U5p(S/7S/|ilt)_Uép(svs/“lt)_Uép(sﬂs/ﬁlf)
ng(S,S|ht)+U5p(S,S|ht)—U(;p(s/,SVlt)—U(;p(s/,SV‘Lt) ’

is The difference in payoffs must include the
history h; as s’ must differ from s also in ;. The symmetry of s allows us to prove that
U(s, s'|he) + Ul(s, s'|hy) = U(s', s|hy) + U(s', s|hy). For the ratio of miscoordination costs
to be bounded, we must have that the subtracting terms must be even lower than the
inefficient payoffs of s at histories h; and iLt. Since s’ imitates s outside of A, this implies
that there exists another history h; in which s obtains even lower payoffs than in the
original history. Repeating the previous reasoning across a sequence of histories and al-
ternative strategies, we find that s should be increasingly inefficient up to an impossibly
low continuation payoff, reaching a contradiction.

Proof of Theorem 2: Assume that there exists a history h; and a scalar \y < 1 such
that U(s,s/hs) = AoR. We consider first the case when & is not symmetric: h; # hy.
Then we show how to deal with the symmetric case using the asymmetric one.

From the fact that s is symmetric, it follows that U(s, s/h;) = U(s, s/h) and, hence,
U(s,s/h) + U(s, s/hs) = 2\ R. Moreover, since U(s, s/h;) < R and s is symmetric, we
can assume without loss of generality that s(h,) = D.

We chose a strategy s' such that i. s'(hy) = §'(hy) = C' (the “secret handshake”);
it. s plays C for ever after h,(C,C') and ﬁt(C, (') (responding to the secret handshake);

and 725. s’ imitates s in all other histories.

For the strategy s to have a uniformly large basin of attraction, it must be that the

ng(s/,s/)—ng(S,S/

o o) T S)) is uniformly bounded for large ¢ and p by,
p\S, JAC

ratio of cost of miscoordination

say, a bound equal to Cy. Given the characteristics of s’, this ratio of miscoordination is

Uép(s/vs/|ht)+U5p(S/7S/|ilt)_Uép(svs/|ht)_Uép(sﬂs/ﬁlf)
ng(S,S|ht)+U5p(S,S|ht)—U(;p(s/,SVlt)—U(;p(s/,SV‘Lt)

equal to . The difference in payoffs includes the

history iLt as s’ differs from s also in th. Given that both the numerator and denominator
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are finite, and the denominator must be bounded away from zero (otherwise s would
not have a uniformly large basin of attraction and the proof ends), the limit of the ratio
must be equal to the ratio of the limits and we focus on the latter in what follows.

Given that s’ plays C for ever after h(C,C) and ﬁt(C, C), if follows that hy g /p, =
hg gm = (C,C)..(C,C).., and U(s',s' /1) = U(s',s'/hy) = R. From the definition of
s and the symmetry of s, it follows that hgy/n,(p.c) = hs/,s/i}t(c,D) and hy s/, (0,0) =
Ry ji(p.cy- Therefore, U(s, s'/hy) = U(s, s/h) and U(s',s/hy) = U(s, s /hy) (see Figure
1). These equalities imply that U(s',s/hs) + U(s',s/h) = U(s,s' [he) + U(s,s' /).
Since (s, s) is a strict perfect public equilibrium (otherwise it would not have a uniform
large basin of attraction), it follows that U(s', s/hs) + U(s, s/h;) < 2A¢R and therefore
Uls,s'/hy) + U(s, s'/hy) < 2X0R.

U(s's'|hy) = U(s's'|h)=R \

\
\\

B -
e
°& @&

U(s's|hy) = U(ss’|flt)

\ w/‘

oY C\\\
h, R
g A s%
\ O U(ss'lhy) = U(s's|h,) / ¢
o 25

28 Q
U(sslhy) =U (ss|flt) <R

Figure 1: “Secret handshake” and continuation payoffs

If we denote U(s,s/h) + U(s',s/hs) = 2X: R, then % < Cy for s to have a

uniformly large basin of attraction, and taking a positive constant C; < 1— )| it follows

that \| satisfies

/\OCE/\/ < Cy. Therefore, there exists v > 0 such that \] < A\g—~. Now, of
1
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the histories h;(C, D) and hy(C, D) we take the one with the lowest continuation payoff
and denote that history as hy,. We define the number A\ such that Uf(s, s'|ht,) = M R.
By the choice of hy,, we have that \; < A|. As before we construct a new strategy s, that
satisfies the same type of properties as the one satisfied by s’ respect to s but on the path
hi, instead of the path h;. Inductively, we construct a sequence of paths hy,, strategies s,
and constants \; and X, such that U(s, s/hy,) = M1 R, U(s), s/he,)+U(s,, s/hs,) = 2X.R,
Ai < A.. Arguing as before, it follows that /\1%\/7::1 < Cp, and, hence, A\ip1 < Ajyy < Ai—7.
This implies that A\;41 < Ay — iy and \; — —o0. Hence, U(s, s/h;) — —o0o, which is a
contradiction because utilities are bounded below by S.

To finish, we have to deal with the case that h; is symmetric and U(s, s/h:) < R.
Recall that we can assume that s(h;) = s(h;) = D. Now, let us consider the history
hi(C, D). We claim that if U(s, s/h:) < R then U(s,s/h(C, D)) < R. In fact, we can
consider the strategy s’ such that only differs on h; and after that plays the same as s
plays. Since (s, s) is a strict perfect public equilibrium (otherwise it would not have a
uniform large basin of attraction), it follows that Us, (s, s/hi) > Us,(s’, s/h). Therefore,
U(s,s/h) = lims_; lim,,_y Us (s, s/hy) > lims_q lim, .y Usp(s', s/he), and, given that
limg_y limy,_q Us (s, s/he) = lims_q lim,, o3 Us (s, s/h(C, D)) = U(s,s/h(C, D)), the
claim follows. Observe that the new path h:(C, D) is not symmetric and since the payoff
along that path satisfies U(s, s/h:(C, D)) < R, and we argue as above to conclude the

proof of Theorem 2. 0

4.2 Non-symmetric strategies and efficiency

The fact that Us,(s, '|hu) +Usy (s, 8’| ) = Usp(s', 5|he) +Us,(s', 5| ) when s is symmetric
played a crucial role in the proof of efficiency of symmetric strategies with uniformly large
basin of attraction. When s is not symmetric, Us,(s, s'|hy) + Usp(s, s'|h;) does not have

to equal Us,(s', s|hy) + Usy(s', s h;) and the proof from the previous section cannot be
P P
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used. Fortunately, we can bound the difference between these two sums of payoffs as a
function of the asymmetry of s. This, in turn, allows us to bound from below the payoffs
of strategies with a uniformly large basin of attraction as a function of their degree of
asymmetry.

Define u7 (s, s/h:) as the payoff that a player obtains at time 7 in the O-tremble history
that starts at h; when both player folow strategy s. The next definition is related to
the asymmetry of a strategy. In few words, it measures how frequently it happens that

s(ht) # s(h;) along histories.

Definition 8. A strategy s is c—asymmetric if

¢ = limsup(l —§) Z T+ Z 5

6—1
he T (s,8/he)=T TuT(s,8/hi)=S

Note that a symmetric strategy is 0-asymmetric.

Theorem 3. If s has a uniformly large basin of attraction and is c—asymmetric, then

U(s,s/hs) + U(s, s/h) = 2R — 2¢(T — S) for any hy.

The proof of this theorem is presented in Section 8.1 in the Appendix. In this section
and the following ones, we relegate proofs to the Appendix as they usually involve several

intermediate steps and are more involved than the proofs in the previous sections.

Corollary 1. If s has a uniformly large basin of attraction and is c—asymmetric, then

U(s,s/hs) = R— (T — S) for any hy = hy.

This corollary is of particular importance as it applies to hg, bounding the equilibrium
payoffs from the beginning of the repeated game for any strategy with a uniformly large
basin of attraction. When strategy s has a uniformly large basin of attraction, there is a
minimum bound on the payoffs from (s, s) which is increasing in the degree of symmetry

of that strategy.
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Note that this result does not imply that it is possible to have inefficient strategies
with a uniformly large basin of attraction. It may be the case that our lower bound to
payoffs is not tight. Future work should either provide and example of an inefficient and
asymmetric strategy with a uniformly large basin of attraction, or show that strategies

with a uniformly large basin of attraction must be efficient regardless of symmetry.

5 Sufficient conditions for a uniformly large basin

In this section we provide general sufficient conditions for a strategy to have a uniformly
large basin of attraction.

First, based on properties of replicator dynamics, we show that if a strategy satisfies
a condition involving all possible pairs of invading strategies, then it has a uniformly
large basin of attraction. As this condition involves working with three strategies at a
time, we call it the trifecta condition. Second, we provide a even simpler condition for a
strategy to have a uniformly large basin of attraction which requires only working with

two strategies at a time. We call this condition the cross ratio condition.

5.1 The trifecta condition

Let s be a strict perfect public equilibrium strategy for  and p large. Given s’ and s*

with Us,(s,s) — Usp(s™,s) = Usp(s,s) — Usp(s', s), we define the following number

Usp(s',s*) — Usp(s,s*) + Usp(s*,s") — Usp(s, s),

M * ! = : 3
s.p(8, 8%, 5) Usp(s,s) — Usp(s*, s) @

We consider the supremum of Mjs, (s, s*,s’) for all &', s*:

Msp(s) := sup {M;,(s,s",s"), 0}. (4)
U&,p(svs)_U&p(S*vs) >U5,p(svs)_U5,p(S/7s)
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Taking the limit on 6 and p, we also define
M(s) = limsup lim sup M ,(s). (5)

6—1 p—1

Note that if M(s) is finite, then there exist My, dp > 0 and an increasing function

function p : [0, 1] — [0, 1] such that M;,(s) < My for § > §p and p > p(9).
Definition 9. We say that a strategy s satisfies the “trifecta condition” if M(s) < 0.

Theorem 4. If s satisfies the trifecta condition and (s,s) is a strict perfect public

equilibrium strategy, then s has a uniformly large basin of attraction.

The proof of this theorem is presented in Section 8.2 in the Appendix.

The reason that we only need to study all possible combinations of two invading
strategies is related to the fact that the replicator dynamic is monotone with respect to
the difference between the average payoff of a fixed strategy s against any strategy in a
finite population and the average payoff in that population. Both quantities are given
by the average payoff of the fixed strategy against any other one and the average payoff
between any other pair of strategies. Using the linearity of the average, everything is
reduced to comparing payoffs involving s and any other pair in that population. In
particular, if it is possible to uniformly bound the relation between a fixed strategy and

any other pair, it is possible to bound the averages.

5.2 The cross ratio condition

In the previous section we showed that it is enough to check a condition involving
invasion by all possible combinations of two strategies to verify that a strategy has a
uniformly large basin of attraction. In this section we provide a further simplification
by showing that it is enough to check a condition involving invasions by single strategies

under certain conditions. This greatly reduces the complexity of verifying that a strategy
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has a uniformly large basin of attraction.

Definition 10. We say that (s, s) is a uniformly strict perfect public equilibrium if there
exist 0 < 69 < 1, an increasing continuous function p : [0, 1] — [0,1] (with p(1) = 1)
and a positive constant Cy that only depends on T, R, P,S such that Usy(s,s/hi) —
Usp(s',s/h) > Co(1 — p?9), for any hy such that s(hy) # s'(h:), any strategy s, any

d > 09 and p > p(f).

In short, we will not only request that (s,s) is a strict perfect public equilibrium,
but that the difference Us, (s, s/h;) — Usp(s', s/hi) can not be smaller than a decreasing

function of the discount factor.

Definition 11. We say that (s,s) is uniformly efficient if there exist 0 < §p < 1, an
increasing continuous function p : [do, 1] — [0, 1] (with p(1) = 1) and a positive constant
C\ that only depends on T, R, P, S such that R — Us (s, s/ht) < C1(1 — p?9), for any hy,

d > g and p > p(9).

In short, we say that (s,s) is an uniformly efficient strict perfect public equilibrium
if it satisfies the previous two definitions.

We introduce next a technical condition that only involves two strategies, and there-
fore is easier to check than the trifecta condition. As we will see, this technical condition,

9

which we call the “cross ratio condition,” implies the trifecta condition under some ad-

ditional assumptions.

Definition 12. We say that s satisfies the cross ratio condition if there exist 0 < dg < 1,
an increasing continuous function p : [0g, 1] — [0,1] (with p(1) = 1) and a positive

constant Cy that only depends on T, R, P, S, such that

Usp(s,s) — Usp(s,s)
Usp(s,s) — Usp(s,s)

< Cy, (6)

for any § > 6¢ and p > p(d) and any strategy s'.
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The cross ratio condition relates how s’ performs against s with how s performs
against s’. Put simply, this condition says that Us (s, s’) cannot be much below Uy (s, s)
if Usp(s', s) is close to Usp(s, s). In other words, this conditions puts a lower bound to
how well stsrategy s does against any other strategy s’ as a function of how well s’ does
against s.”

We show next that, if a strategy is a uniformly efficient strict perfect public equi-
librium and satisfies the cross ratio condition, then it has a uniformly large basin of

attraction.

Theorem 5. If s satisfies the cross ratio condition and (s, s) is a uniformly efficient

strict perfect public equilibrium, then s has a uniformly large basin.

While it is intuitive that an efficient strategy that earns high payoffs when playing
against any other strategy relative to the payoff that any other strategy earns against
it, the proof requires several intermediate results and it is provided in Section 8.2.4 in
the Appendix. The proof consists of showing that such a strategy satisfies the trifecta

condition and, hence, it has a uniformly large basin of attraction by Theorem 4.

6 Strategies with uniformly large basins of attrac-
tion

In this section we study the existence of strategies with a uniformly large basins of
attraction. We present a large class of strategies that satisfy the conditions introduced
in Section 5 and, hence, have a uniformly large basin of attraction. We then show that

some commonly described strategies belong to this class and have uniformly large basins

"Observe that the cross ratio condition resembles the condition required for s to have a uniformly
large basin of attraction agains an invasion by a single strategy s’ (see condition (1)). Note, however
that the numerators are different: it is Us,(s', s") — Us p(s, 8') in the latter, and Us (s, s) — Usp(s, )
in the former.
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of attractions.

6.1 Star-type strategies

The main property that star-type strategies satisfy is based on the frequency that some-
one following the strategy spends in each of the outcomes of the game when playing
against another strategy. Remember that we denote by h7 Jhe for 7 > t the O-tremble

actions at time 7 if players follow strategies s and s’ and history h; has been reached.

Definition 13. Given two strategies s, s and a finite history h; we define

1—p% )2 57— 1—p% )27
br = S Z pz( 42§ t7 bs = . Z pz( t)+25 t7
p T:u(hTs/,s/ht):R p T:u(hTs/,s/ht):S

1 —p26 1—p%
by = 229 Z p2(7—t)+2 5 bp = f Z pz(T—t)Jrz 5Tt
p T:u(hTs/,s/ht):T p 7—:'u‘(hTs/,s/l'Lt):P

Observe that the quantities bg,bg, by, and bp depend on s,s',6,p and hy.

In short, the quantities defined above are the discounted frequencies of earning R, S,

T, and P along the 0—tremble history of (&', s) starting at h;.
Definition 14. We say that s is a star-type strateqy if
(i) (s,s) is a uniformly efficient strict perfect public equilibrium;

(ii) there exist oo, po, C5 such that for any strategy s', any 6 > do,p > po and any finite
history hy such that s(he) # s(hy) it follows that if by > 0 then

by < Y2bs + ubp + Cs5(1 — p?6), (7)

where 7y, = %ﬁ:, Y4 = ?%g and bs,br,bp are the quantities given by Definition 13. We

call inequality (7), the sufficiently responsive condition.
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The sufficiently responsive condition is related to the frequency of playing cooperation
or defection towards s’ along the O—tremble history starting at any finite history. In
fact, if at some time s’ defects while s cooperates (in other words s’ scores T'), then br
is positive and so the sufficient responsive condition implies that either bg or bp are also
positive, that is, s has to defect. In short, we can say that s retaliates against defections

/

by s'.

The next theorem shows that star-type strategies have a large basin of attraction.
Theorem 6. Any star-type strategy has a uniformly large basin of attraction.

The proof is provided in Section 8.3 of the Appendix. The proof consists, mainly, on
showing that a star-type strategy satisfies the cross ratio condition. The intuition is that
an efficient strategy that satisfies the sufficiently responsive condition (see condition 7)
does not let other strategies take advantage of it, and as such, it will do well against
them relative to how any other strategy performs against it (satisfying the cross ratio

condition).

6.2 Existence

In this section we provide examples of strategies with uniformly large basin of attraction.
We start by showing that, under certain condition on the payoff matrix, the strategy
win-stay-lose-shift (WSLS or w) has a uniformly large basin of attraction.® We define

this strategy next.

Definition 15. win-stay-lose-shift (w) Cooperates int =0, and in t > 0 cooperates

if it earned either R or P int — 1, and defects otherwise.

This strategy is described as a two-state machine in Figure 2. The strategy starts in

the cooperation state, and stays in that state if both players cooperate or defect: C'C

8The strategy win-stay-lose-shift (WSLS or w) is also known as Perfect TFT and was introduced by
Fudenberg and Tirole (1991).
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and DD, where the first letter denotes the action of the player and the second letter the
action of the other player. The strategy moves to the defection state if one of the two
players defects: DC' or C'D. If the strategy is in the defection state, it returns to the
cooperation state if both players cooperate or defect, C'C' or DD, and remains in that
state if only one of them defects: C'D and DC'. In particular, observe that w punishes any
defection (which we will show that it implies that w satisfies the sufficiently responsive
condition) but it does not necessary return to cooperation, in fact it keeps defecting if
it reached the defecting state and the other strategy cooperates (it could be say that
w may take advantage of the other player). Note also that w punishes deviations with
only one period of defection. Hence, (w,w) can only be a subgame perfect equilibrium

for sufficiently large ¢ if 2R > T + P.

Figure 2: Examples of star-type strategies.

Theorem 7. Win-stay-lose-shift (w) has a uniformly large basin of attraction if 2R >
T+ P.
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The proof of this theorem consists of showing that w is a star-type strategy under
that payoff restriction. The proof is provided in Section 8.3.3 of the Appendix.

We show next, that even if this condition on payoffs does not hold, there are other
strategies with a uniformly large basin of attraction. For that, we define next the family
of n trigger strategies (7'n), which react to a deviation from the prescribed behavior of

the strategy by having n periods of defection.

Definition 16. n Trigger (T'n) Att =0, it cooperates. Att > 0, it cooperates if there
was no deviation from the action of the strategy by any of the two players in the last n

periods, otherwise it defects.

Figure 2 shows T'1 and T'3 as 2-state and 4-state machines. 7'1 starts in the cooper-
ation state and stays there if both players cooperate (C'C'), it moves to defection if there
is a defection (DC, C'D or DD). Once in the defection state, the strategy moves to the
cooperation state if both players defect (DD) and stays in the defection state otherwise
(CD, DC, CC). T3 is similar except that there are more periods of punishment after a
deviation.

Note that there is a very small difference between w and T'1: the latter stays in the
punishment stage if both players cooperate when they should be defecting. However,
for n > 1, T'n allows for stronger punishments than w (it punishes a deviation with
more periods of defection). This stronger punishment allows (7'n,7'n) to be a sub-game
perfect equilibrium for a greater set of payoff paremeters than (w,w). This also leads to
the existence of strategies with uniformly large basin of attraction without constraints

in the payoff parameters.

Theorem 8. For any Prisoner’s Dilemma game, there exists a large enough n such that

Tn has a uniformly large basin of attraction.

The proof of this theorem is provided in Section 8.3.4 in the Appendix and consists

of showing that T'n is a star-type strategy under that payoff restriction.
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7 Conclusions

There is an extensive literature on the evolutionary determinants of cooperation in re-
peated games starting with the work by Axelrod and Hamilton (1981) and Axelrod
(1984). We contribute to this literature by studying the evolutionary robustness of
strategies in infinitely repeated prisoners’ dilemma games with arbitrarily patient play-
ers and small probability of mistakes. We show that there are strategies which can
repel invasion of up to a uniform size by any finite combination of invading strategies.
These strategies cannot be unforgiving and they must cooperate if they are symmetric.
We show that there is a large class of strategies that have a uniformly large basing of
attraction. Examples of such a strategies are win-stay-lose-shift and trigger strategies.
A previous theoretical literature provides evolutionary support for the strategy win-
stay-lose-shift (see Nowak and Sigmund 1992, and Imhof, Fudenberg and Nowak 2007).
This strategy has received little support from experiments on infinitely repeated games
(see Dal B6 and Fréchette 2011, Fudenberg, Rand and Dreber 2012, and Dal Bé and
Fréchette 2019). We hope that new experiments can be designed to test whether this
strategy, and other strategies with a uniformly large basin of attraction, are robust to

invasions when they are already highly prevalent.
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8 Appendix A. Proofs

8.1 Proofs for Section 4.2: Non-symmetric strategies and effi-
ciency

Before proving Theorem 3 we provide two lemmas relating payoffs at h; and hy.

Lemma 2. For any profile of strategies (s,s’) and a history hy, U(;,p:l(s’,s/ﬁt) =
Usp=1(5,8'/he) + (1 = 6)(as — ar)(T — S), where as = 3 e (ow/my=sd ' and ar =
> (s )= O -

Proof. Given that Us,-1(s,s'/ht) = (1—9)(arR+asS+arT +apP) where the constants
ar and ap are defined as ar = > (o v/ny=p 0 ' and ap =3 opy-p 0, then
Uspi(s',s/he) = (1 — 8)(arR + asT + apS + apP) = Us (s, 5" /hs) + (1 — 6)(asT +
arS —agS — arT) = Usp=1(s, s /h) + (1 — 0)(as — ar)(T — S). O

Lemma 3. Given a strategy profile (s,s') and a path h, it follows that Usp—: (s, Sl/iLt) <
Usp=1(5',s/ht) + (1 = §)(as + ar)(T — 5).
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Proof. From Lemma 2 and the fact that ag,ar > 0 and T'— S > 0, U(;,p:l(s,s’/ﬁt) =

Usp=1(5'ys/ht)+(1—=06)(as —ar)(T—S) < Usp=1(5',s/ht)+(1—0)(as+ar)(T—95). O

Proof of Theorem 3. Assume, by contradiction, that U(s,s/h:) + U(s,s/ﬁt) < 2R —
2¢(T — S) for some h;. Consider a particular history h; such that for some Ry < R it
holds U(s, s/hs) 4+ U(s, s/hs) = 2Ry — 2¢(T — S) and this value of payoffs is arbitrarily
close to the infimum of all possible values. Define an alternative strategy s’ such that:
first, s differs from s in histories ; and hy: §'(hy) # s(hy) and §'(hy) # s(hy); second, s’
cooperates with itself after by and hy: s’ (hes'(he)s'(he)hy) = C and s’ (hes'(he)s (he)hr) =
C for all h,; and, third, s imitates s in all other histories.
We will show that the ratio of miscoordination costs

Usp(s',8'|he) 4 Usp(s', 8'|hy) — Usp(s, 8'|he) — Usp(s, 8| )
Usp(s, slhe) + Usp(s, s|hi) — Usp(s', s|he) — Usp(s', s|he)

can be made arbitrarily large and, hence, s does not not have a uniformly large basin of
attraction.
We focus first on the numerator of the ratio of miscoordination costs. Note that by

Lemma 3 we have that

Ué,p:l(& Sl/ht) + Ué,p:l(& Sl/ht) < Ué,p:1(5/> s/hi) + Ué,p:1(5/> S/iLt)

+ (1 — 5)(@5 +ar+ag + dT)(T — S),

where the ag and ar are defined as in Lemma 2 and ag and a7 are similarly defined but
starting from history h;. Given the construction of ' and the definition of ¢ we have
that (1—0)(as +ar —+ s+ ar) < 2¢+2(1—8). Then Usp—y(s, s’ /he) + Us p—i (s, 8' [ hy) <
Uspe1 (5, 8/ hy) + Usper (', 5/14)) + 2(c + 1 — 8)(T — S) which in turn is smaller than
Uspi(5,8/he) + Uspi(s, /) +2(c +1 = 0)(T — S) as (s,s) is a strict perfect public
equilibrium. Given that lims_y Usp—1(s, s/he) + Uspei(s, s/hy) = 2Ry — 2¢(T — S), we

have that lims_,; <U57p:1(s, s'/hi) + Us p=1(s, Sl/iLt)) < 2R;.
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Therefore, the limit of the numerator of the ratio of miscoordination costs is bounded

away from zero:
Lim(Us p1 (5", 8"/ he) + Uspa (5, §' /) — Uspei (5,8 /hy) — Uspei (5,5 /hy)] = 2(R — Ry).

We focus now on the denominator of the ratio of miscoordination costs. It holds
that Us,(s,s/hs) + Usy(s,s/h) > Usp(s',s/h) + Usp(s',s/hy) due to the fact that s
is a strict perfect public equilibrium (otherwise it would not have a uniformly large
basin of attraction). Moreover, note that the difference is arbitrarily small for large o
as Us (s, 5/h) + Usp(s,s/hy) is, by choice of hy, arbitrarily close to the infimum of the
possible equilibrium values of this sum.

Since the denominator of the ratio of miscoordination costs is arbitrarily small but
the numerator is bounded away from zero, the ratio of miscoordination costs can be

made arbitrarily large and s does not have a uniformly large basin of attraction. O

8.2 Proofs for Section 5: Sufficient conditions to have a uni-

formly large basin

In the next subsection we provide a result on replicator dynamics which is the base of
the proof of Theorem 4, which we present in Section 8.2.2. Subsection 8.2.3 provides
some preliminary results regarding the cross ratio condition, and Section 8.2.4 provides

the proof of Theorem 5.

8.2.1 Main theorem for replicator dynamics

Consider the replicator dynamics as defined in Section 2.2. Recall that we consider the
replicator dynamics associated to the matrix U on the n dimensional simplex A = {z =
(x1...2n) ER" t 2y + -+ 2, = 1, 1 > 0,Vi} denoting all the possible distributions

of the strategies in the population of agents. The replicator dynamics are given by
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i = xi[ui(v) — u(x)] where u;(v) = D7, ju;; is the expected payoff of strategy 4, and
u(r) =37, wju;(v) is the average expected payoff.

We start by simplifying the replicator equations by writing them as a function of the
vector T = (73, .., 7,). The reason we can do this is that, by definition, z1 = 1-3",, x;.
That is, we consider an affine change of coordinates to define the dynamics in the set
[0,1]""! instead of the simplex A. Observe that in these coordinates the point (0, .., 0) €
[0, 1]""! corresponds to e; = (1,0,..,0) € [0,1]", and {(z2,..,2,) : z; = 0,> 0 y2; < 1}
corresponds to the simplex A.

Given the payoff matrix U, we define a matrix M and the vector N given by
Ny = un —win, Mij = ug; — uyj + i — uar.

Moreover, we assume that the vertex {es...e,} are ordered in such a way that w3 —u;; >

uir — uj; for any 2 <7 < j.

Theorem 9. Let U € R™" such that uj; < uii for any 2 < j < n.

My + M;,
My = max{—5 25 o}, (8)

1,521 N;

Then, Aﬁ ={z:) o, ¥ < MLO} C Bioc(e1) (the local basin of attraction of eq).
O =

The intuition behind this result is that the replicator dynamic is a quadratic equation
and therefore only pairs of alternative strategies matter in calculating the differences in
payoffs. In the appendix we show that this result also holds for more general evolutionary
dynamics.

The proof of Theorem 9 is based on the next lemma about quadratic polynomials.

Lemma 4. Let Q : R — R given by Q(z) = —Nz + 2'Mz with x € R", N €

R"™ and M € R™". Let us assume that N; > 0, and N; > N; for any j > i. Let

My = maxi7j>i{M”]J\;iMﬁ, 0}. Then, the set Ak_}o ={zeR":2;>20,>" 7 < MLO} is
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contained in {x : Q(x) < 0}. In particular, if My = 0 then MLO is treated as oo and this

means that {x € R" : z; > 0} C {z : Q(x) < 0}.

Proof. For any v € R™ such that v; > 0 and ZZ v; = 1, we consider the following one
dimensional quadratic polynomial, Q" : R — R given by Q"(s) := Q(sv) = —sNv +
s?vtMv. To prove the thesis of the lemma it is enough to show the following claim: for

any positive vector v with norm equal to 1, if 0 < s < MLO then Q¥(s) < 0; in fact,

the claim implies the lemma, otherwise, arguing by contradiction, if there is a point

zo € A different than zero (i.e.: 0 < [xg| < MLO) such that Q(z9) = 0, then taking
0

v= =20 and s = |z| it follows that Q*(s) = —Nzo+ abMxzo =0, but Jv| =1, < M%y a

o]

contradiction.

Now we proceed to show the above claim. Given that Nv =Y Nyu; > 0, if o' Mv = 0,

then Q¥(s) < 0. If if v'!Mv # 0, the roots of Q"(s) are given by s = 0 and s = -~
If v'!Mv < 0 then it follows that Q¥ is a one dimensional quadratic polynomial with
negative quadratic term and two non-positive roots, so for any s > 0 it holds that

Q"(s) < 0 and therefore proving the claim in this case. So, it remains to consider the

case in which v'Mv > 0. In this case, QV is a one dimensional quadratic polynomial

with positive quadratic term (v*Mwv), therefore for any s between both roots (0, Uf\]f\zv) it

follows that ) < 0. To finish we have to prove that vf\]’\;v > MLO which follows from the

next inequalities:

viMy = Z viv; Myj = Z[Ume + Z vv;(M;j + Mj;)]
i i

Jj>i

< Z[USNZMO + ZUZ'U]'NZ'M()] = MO Z NzUz[Z Uj]

i §>i i

< MO Z NZ'UZ' = M()NU.
]

Proof of Theorem 9: Remember that @; = x;[u;(x) — u(z)] by the definition of replicator
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dynamics. Note that u;(z) —u(z) = [u;(z) —ui(x)] + [ui(x) — a(z)]. The second term in
brackets is ui(z) —u(x) = 32,5, xjlur —uy] = 35, @jlur —uyl. Therefore, the difference
in payoffs determining the growth of strategy i is: w;(z) — a(x) = (u; — u1)(x) + R(z)
where R(x) = 35, (u1 — uy)(7)z;.
We consider the change of coordinates T = (2, .., x,,) as introduced before. For any
k <1 wedenote Ay := {7 :} o, z; < k} and 0A, = {7 : )5, x; = k}. To conclude
that for any initial condition in Aﬁo follows that its forward trajectory converges to
zero, it is enough to show that the function X(t) := Y., #;(t) is a strictly decreasing
function of ¢. In fact, if this holds, given that the trajectory is always in A, then
X(t) — 0 and therefore z;(t) — 0 for any i > 2. To do that, we prove X = )t_( < 0if
Z(t) = (za(t), ..., za(t)) € AT}O' Therefore, we have to show that
=> i <0 (9)
i>2
Remember that &; = x;[u;(Z) — u(Z)] by the definition of replicator dynamics, and that
u;(Z) — u(Z) = (u; — u1)(Z) + R(Z) where R(Z) = .-, (u1 — u;)(Z)x;. Therefore,
Q) = Z( —up)( xz+z Z(Ui—ul Jxi + R(Z sz
i>2 i>2 i>2 i>2
Since Y .o, xi = k (with k < 1), it follows that Q(Z) = > 5, (ui — w1)(Z)z; + R(Z)k.
Recalling the definition of R, we get that Q(z) = (1 — k) > _;5y (u;i — u1)(Z)x;. So, to
prove inequality (9) is enough to show that
Q@) =1k wilui—u)(x) <0 (10)
i>2
for any x € Ay and k < MLO First we rewrite (). Observe that
(u; —up)(x) = Z (wij — u1j)xj = uin — urg + Z Uij — U + Uiy — Ut ) T,
j>1 j>2

If we note the vector N := (u31 —u;1); and the matrix M = (M;;) = w;j — uin +u11 —uq ;.
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Therefore,

sign(Q(z)) = sign(—Nz + ' M7). (11)

So we have to find the region given by {Z : —NZ + Mz < 0}. To deal with it, we

apply Lemma 4 and we use equation (8) and the theorem is concluded. 0

Remark 1. If we apply the proof of Lemma 4 to the particular case in which s is the
only invader, we have that sign(Q(x2)) = sign(xs|us — ui1 + (U2 — 12 +u11 — U21) T2]).

_ ; ; _ — U11—U21 — 1 —
Hence, Q(s) =0 if and only if xo =0 or xo = W i TR pi2 and so

Q(s) <0, for any 0 < s < pia. In particular, if we apply this to Theorem 4, it follows

that the whole segment [0, p12) is in the basin of attraction of e;.

8.2.2 Proof of Theorem 4: applying Theorem 9

Proof of theorem /4. The proof follows immediately from Theorem 9 and the definition
of M(s). In fact, ordering the strategies in such a way that s corresponds to the first

one and N(s,s;) > N(s,s;) if 7 > i and to be coherent with notation, then

M;j+ My = Usp(s,s) — Usp(siys) + Usp(s,s) — Usp(s, s)

+ Usp(8j,8i) — Usp(s, 8:) + Usp(si,85) — Usp(s, 55)-

Given that N(s,s;) > N(s,s;) for j > i,it follows that

Mi; + M N Usp(8j,81) = Usp(s,81) + Usp(si, 55) — Usp(s, s5)
N; h Usp(s,s) — Usp(siys)

and so the constant My = sup{Mi%N%i, 0} < M(s)+2. By Theorem 9, A__1+ = {x:

M (s)+2

2122 T; < m} C Bioc(€e1) and s has a uniformly large basin of attraction given that

s satisfies the trifecta condition (M(s) is bounded). O
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8.2.3 Preliminary results regarding the cross ratio condition

In this section we provide some preliminary results which will be used in some calcula-
tions in the next section and in Section 8.3.

This section deals with the calculation of the cross ratio condition. This conditions

Ué,p(svs)_Ué,p(Svs/)

Ty (om) =T o (55) The main idea is that to calculate

requires bounding the following ratio:
both the numerator and denominator, we can focus on the histories of first divergence
between the two strategies. That is, when calculating the denominator we can focus on
the finite histories such that the behavior of the pair of strategies (s, s) without trembles
deviates for the first time from that of (s',s); and when calculating the numerator we
can focus on the finite histories such that the behavior of the pair of strategies (s, s)
without trembles deviates for the first time from that of (s, s"). We also show that the
histories of first deviation in both cases are related: the behavior of (s, s) differs from
the behavior of (s',s) at hy, if and only if (s, s) differs from the behavior of (s, s') at hy.

Let us consider two strategies s and s’ and let
Rss :={h € H : s(ht) # s'(h) and s(h,) = §'(h)Vh, such that hy = h hi—.},

Ess :={h € H: s(h)) =5 (h) and s(h,) = s'(h,)Vh, such that hy = h h,_}.

The set Rs ¢ includes all the finite histories for which the behavior of s differs from
the behavior of s for the first time. Observe that if s # s then Ry # 0. The set
&s s includes all the finite histories for which the behavior of s does not differ from the
behavior of s and has not differed in the past. If s(hg) # §'(ho), then & o = 0.

Recall that with Us (s, s'/h:) we denote the utility with seed h,.

Lemma 5. For any two strategies s and s', it follows that:

Usp(s,8) = Uspl(s',8) = Y 8'Pus(he)(Usp(s, s/he) = Usy(s', s/h0)). (12)

hi€R o
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Proof. The lemma follows from the fact that p, s(h:) = py s(he) for any hy € E 9 U R

and the definition of Us,(s, s/hy). O

Now we consider the set
7%378/ ={h€H: S(iLt) + S/(iLt) and S(iLT) = S/(iLT)VhT such that hy = h,hy_.}.
Lemma 6. Given two strategies s and s, it follows that:
Usp(s,s) — Usp(s,s) = Z 6" Ds.s(he)(Us (s, 8/ht) — Us (5,8 /).

htéﬁs’s/

We omit the proof of Lemma 6 as it is similar to that of Lemma 5.

Lemma 7. Given two strategies s and s', the map hy — hy is a bijection between Ry ¢

and 73373/, such that, hy € Rs ¢ if and only if iLt € 7%378/.

Proof. The only if direction of the lemma follows from the definition of R, and 7/@578/.

The if direction then follows immediately from the fact that h=h. O

Lemma 7 the histories of first deviation in both cases are related: if the behavior
of (s,s) differs from the behavior of (s',s) at hy, if and only if (s,s) differs from the
behavior of (s,s') at hy. This allows us to calculate Us,(s,s) — Us,(s, s') focusing on
histories in Ry, which will allow for simple calculations in some proofs as we would
use the same set of histories in both the numerator and denominator of the cross ratio

condition.

Lemma 8. Given two strategies s and s’ it follows that

Usp(5,9) = Uspl5:5) = 3= sl (Uspls,/h) — Us(s, 8 /).
hG'RS’S/

Proof. The lemma follows from Lemmas 6 and 7. O
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8.2.4 Proof of Theorem 5: the cross ratio condition implies the trifecta

condition

We have to show that s satisfies the trifecta condition to prove that s has a uniformly
large basin of attraction; in other words, we need to show that there exists L’ such
that for any s*, s’ such that Us (s, s) — Usp(s*,s) = Usp(s, s) — Usp(s', s) it follows that
Ms,(s,s*,s") < L'

Observe that

M@p(é’, s*, 8/) _ U57P(S/> S*) + Utip(S*? S/) - U57P(S> S) - U57P(S> 5)7 _
Usp(s,s) — Usp(s*,s)
Usp(s',s*) + Usp(s*, ") — 2Us (s, s) N Usp(s,s) — Usp(s, s*)
Usp(s,s) — Usp(s*,s) Usp(s,s) — Usp(s*,s)
Usp(s,8) — Usp(s,s)
Usp(s,s) — Usp(s*,s)

Us,p(5,8)—Us p(s,8"
Us,p(s,5)—Usp(s*,s

U5,;D (878) _Ué,p (878/)
’ U5,;D(Sﬂs) _Ué,p (S* 78)

;, is bounded by the the cross ratio condition. The third

U5,;D(Svs) _Ué,p (S,S/)
U5,;D(Svs) _Ué,p (S/ 78)

The second term,

term , is smaller than given that Us,(s, s) — Usp(s*, s) >

Usp(s,s)—Usy(s',s). Hence, the third term is also bounded by the cross ratio condition.

So, to finish, we have to bound the first term:

Usp(s',s*) + Usp(s*,s") — 2Us (s, s)
Usp(s,s) — Usp(s*,s)
Usp(s',s*) — Usp(s,s) + Usp(s*,s") — Usp(s, s)
Usp(s,s) — Usp(s*,s) '

The bound is going to follow from the fact that s is an uniformly efficient perfect public
equilibrium.

We start by calculating Us,(s', s*) — Usp(s, s) and Us,(s*, ") — Usp(s, s). As in the
previous section we do this by focusing on the histories of first difference between strate-
gies, with the difference that now we have to keep track of the behavior of three different

strategies.
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Let us consider three strategies s, s*,and s’ and let

~

Eow ={h € H: s(hy) = s'(h) and s(h,) = §'(h.)Vh, such that h; = h hy_.},

~ ~

Os,s*,s/ = Rs,s* N (gs,s/ U Rs,s/)>

~ A~

Os,s*,s/ = Rs,s/ N 53,3*7

where R ¢, ﬁs7s/,and &s s are as defined in the previous section. Note that C 4« o is the
set of histories in which s* differs for the first time from s and s’ has not differed from
s before that history. 5578*78/ is the set of histories such that s* has not differed from s
before or in that history and s’ differs for the first time from s in the “mirror” of that

history (h).

Arguing as in Lemmas 5 and 8, it follows that:

Usp(s*,8") — Usp(s, s) = > 6pas(he)(Usp(s™, 8 [he) — Usp(s, s/he))
hi€Cy g« o
+ Z 5'pss(he)(Usp(s*, s'[he) — Usp(s, s/hy)).
htGéS’S*’S/
Similarly,
Usp(s',8") = Usp(s,s) = > 6 pas(h)(Usp(s', 8% ) — Usp(s, s/he))
hi€Cy g5 o
+ Z 8'Ds.s(he) (Usp(s', 5% [he) — Us (s, 5/hy)).
hteé ’

s,8%.s

Therefore, we get that

Usp(s*,8") + Usp(s',s%) — Usp(s,s) — Usp(s, s) = (13)

D I Pes(h)(Uspls®,s' i) + Usp(s' 5% he) = Usp(s, s/he) = Usy(s, s/hs; )
hteC ’

s,8% s

+ Z 8'Dss(he) (Usp(s*, 8 [he) 4+ Usp(s', s/ hy) — Us p(s, s/ he) — Usp(s, /he)).

htéa&s*’S/
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Since T 4 S < 2R, Us,(s*, s'/hy) + Usp(s', s*/hy) < 2R, and it follows that

Usp(s*, 8"/ hy) + Usp(s', 5" Jhy) — Us (s, 8/he) — Usp(s, s/hy) <

< 2R — Usp(s, s/ht) — Usp(s, 5/hy).
Since (s, s) is uniformly efficient, it follows that R — Us (s, s/h;) < C1(1 — 6p*). Hence,
Usp(s™, ' [he) + Usp(s', 8" /i) — Usp(s,5/he) — Usp(s, s/he) < 2C1(1 = 6p%).  (14)

Now, recalling that Us (s, s) — Usp(s*, s) is the sum of all payoft’s difference starting at
all first deviation histories and since s is a perfect public equilibrium then Us (s, s/h) —

Usp(s*,s/h) = 0 for any hy, it follows that

Usp(s,s) = Usp(s™,8) = Y 8'pus(he)(Usp(s, 5/he) = Usp(s™, 5/he)). (15)
hieC /

s,8%.s

Similarly,

Usp(s.8) = Uspls,8) = 3 0'puslhe) (Us,ls. 5/hn) = Usy(s', 5/ho)).

htéa 5%,

/

Hence, from the fact that Us,(s,s) — Usp(s*,s) = Usp(s,s) — Us,(', s), it follows

that

Usp(s,8) = Usp(s",8) = Y 0'pus(he)(Usp(s,s/he) = Usp(s', s/Ie)). (16)

hteé’ ’

s,8%. s

By inequality (13) and the fact that Us,(s,s) — Usp(s*,s) = Usp(s, s) — Usp(s', s), it
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follows that:

Usp(s',s*) + Usp(s*,s") — Usp(s,s) — Usy(s,s) o
Usp(s,s) — Usp(s*,s) A
Yohiec, o 0Pss(he)Usp(s™, ' he) + Usp(s', 5% /he) = Us (s, s/ha) = Usy(s, s/ )
Usp(s,s) — Usp(s*,s)
e, . 0Pss(he) (Usy(s™, ' [he) + Usp(', 5" [he) = Usyls, s/he) = Us (s, s/he))
* Usp(s,s) — Usp(s,s)

Then, by inequalities (15) and (16) it follows that:
Usp(s',s*) + Usp(s*,s") — Usp(s,s) — Usy(s,s) o
Usp(s,s) — Usp(s*,s) h A
Yohiec, o 0Pss(he)Usp(s™, ' he) + Usp(s', 5% /1) = Us (s, s/ha) = Usy(s, s/ )
Yonec, oy OPss(he) Usp(s, 8/hi) = Usp(s*, s/hy))
thec s (h) (Usp(s™, 8 /) + Usp(', 8" he) = Uspls, 5/he) = Usp(s. /i)
St 0D ) Usp(3: 5/ he) — Usgls' /)

From inequality (14), and the fact that s is an uniformly strict perfect equilibrium,
it follows that the last two terms in previous set of inequalities are bounded by
thec o ps s(h)2C (1 — 517 ) thec o 5tps,S(ht)201(1 - 5172)
Zmee o 0'Ps,s(he) Co(1 = 0p?) Zw , 04 s(he)Co(1 — 6p?)

< 201 thECS Js* ! 5tpsvs(h’t) + 201 thECS’S*7S/ 5 psvs(h’t) . 401
(h) ~ Co Xopee, .., O'Psslhe) — Co’

N CVO thEC 5tpss

where the last equality follows observing that in each term of the sum the probability

factor in the numerator and denominator are the same. O
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8.3 Proofs for Section 6: strategies with uniformly large basins

of attraction
8.3.1 Approximating payoffs for small probability of mistakes

In this section, we show how to bound the cross ratio condition by focusing on 0-tremble
histories (i.e. the histories that would be reached if p = 1). This greatly simplifies
verifying that the cross ratio conditions holds.

From now on with U(;,p(h&s//ht) we denote the discounted sum of utilities in hg g /p, .
With Us (RS o /p,,) we denote Us (s, s'/he) — Usp(hs,s/n,), that is the discounted sum of
utilities in histories outside of h, g /5,. Also, with NE(h) we denote the set of histories

which are not in A, ¢ /p,; those histories are called second order histories given h;.

1—p2§
2

To simplify calculations we change the usual renormalization factor 1—9 by and

we calculate the payoff as follows: Us,(s,s’) = 1%225 D 506, 0'Ds,s (s, br)u(a’, b'). Both

ways calculating the payoff (either with renormalization 1 — § or 1_;;25) are equivalent
as they rank histories in the same way.
In what follows, we restrict the probabilities of mistakes in relation to the discount

factor such that p > p(d) where

p(6) :max{\/l—%%(1—5)2,\/g, 1+é(5—1)} (17)

for some positive constant GG that depends on the payoff matrix of the stage game and
the positive constant Cy from Definition 10. This restriction says that the probability
of mistakes is much smaller than the impatience and it allows us to focus on utilities of

0-tremble histories. Moreover, we assume that § > %

Theorem 10. If (s,s) is an uniformly strict perfect public equilibrium and there exists
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Cy and 6y such that

U‘;vp(h’s,s/izt) o Uévp(hs,s//izt)
Ué,p(hs,s/ht) - Ué,p(hs/,s/ht)

< Oy, (18)
for any hy, s', 6 > do and p > p(0), then s satisfies the cross ratio condition.

This theorem says that it is enough to focus on payoffs of O-tremble histories to
calculate that the cross ratio condition is satisfied. For the proof of this theorem, we

first develop a series of lemmas.

Lemma 9. For any pair of strategies s,s' it follows that [Usy(hg )| < pzl(_l—]i)G where

G = max{|T],|S]}.

Proof. Observe that, for a fixed 7 >t, Y, .y Dso/n,(hy) = 1. Since in the 0—tremble

path at time ¢ the probability is p?**2

, it follows that >,y ey Psstm(hr) =1 —
p*T2. Therefore, and recalling that u(a’,b') < G for any (a',b") and that (as,b;) is a

history including the outcome in period t:

1—p2(5 T—t T 1T
Uspltsap )l = 1= 20 0 puym(an bju(@, b))
p 7>t,(ar,br ) ENE(ht)
1 —p?* _ T
< f Z(ST t Z ps,s//ht(aﬂ'7b7')|u(a ;b )|
p T>t (ar,br)ENE(Rt)
1— p*o et 2(T )42
< GZ(S )
>t
1 —p (5 Z 1 —p% 1 p’
_ 6Tt — 3 Tt G| - )
2 ;M2
>t >t p L=0 L b 0
1—p?
= 76'
P1-0)
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From now on, we denote

N57P(S> S/) = U57P(S> S) - U57P(S/> 5)7

N&p(s>5/) = U&p(5>5) - U&p(5>5/)>

and recalling equality (12) we define

N5 (s, s) Z 0'Ps,s (he) [ Usp(hs,s/n) — Usp(hst s /n,)],
ht€Rg o1

Nép(s s') Z 0'Ps.s (he) [ Usp(hs,s/n) — Usp(hs,s/n,)]-
htE'RS’S/

Lemma 10. For any two strategies s and s', it holds that:
(i) Nsp(s,s’) = N5, (s,5) =2 21(17’5 G;

(i) N5,(s,8") = Nsp(s,s') —2 21(_1 5)G'

(iii) Nsp(s,s') < N, (s,s)+2 21(_1 a)G'

Proof. Directly by Lemma 9, the definitions of Ns,(s,s’), N5, (s,s'), Ns,(s, '), and

Usp(hs.s), and the fact that 35, cp  0'pss(he) <land 35, 5 0'pss(he) < 1. O

Lemma 11. Ifp > p(d) and 6 > , then 72 < 2.

o)p

Proof. Given that v/§ < p, by condition (17), and & > —, it follows that - < 2. Given

that p > 1, it holds that ﬁ < 1. The lemma follows from combmmg these two

results. 0

Lemma 12. Ifp > p(d) and 6 > %, then QG(I;Z’Q)Q <

1
Co(1-6)(1-p2d)p 4

Proof. By condition (17), p > /1 — 00(116(;5 Rearranging, we have that %@@25) <

16G(1—p") 5 < 2. The results follows from dividing both sides

1, and using Lemma 11, Coli=0)(1—p20)p7

by 8. O
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Lemma 13. If (s, s) is a uniformly strict perfect public equilibrium with constant Cy,
it holds that Ni (s,s') > %00(1 — p%d), for every other strateqy s' and every history hy

such that s(he) # s'(ht) when p > p(d) and § is sufficiently large.

Proof. By Lemma 10(i), Nj,(s,5") = Nsp(s,s") — 2 21(_1 5G. Taking Ny, as a com-

mon factor we have that Ny (s,s') = Nj,(s,s')[1 — 2%]. By (s, s) being a

uniformly strict perfect public equilibrium, we have that Nj,(s,s’) > Co(1 — p*d), and
.2

hence Nj,(s,5") > Co(1 — p*d)[1 — 2%]. Hence, by Lemma 12, N§ (s,s’) >

%00(1 —p25).

Based on the previous lemma, the cross ration condition can be bounded by a similar

condition which focuses on payoffs in the O-tremble histories.

N&,p(svs/)

Lemma 14. If (s,s) is a uniformly strict perfect public equilibrium, then Nolos) S
sP A

%xngzz/i + £ for p > p(8) and sufficiently high 6.
P

Proof. From Lemma 10 (3) and (%1), and taking Ng (s,s’) as common factor, it follows

2
Ns,(s,8) N§ (s, )+2mG . . .
NonGo) S Ny o) 1222 ——. Then, by (s, s) being a uniformly strict perfect

2(1 8) " N§,(s:5)

that

2
N5, (s, NS, (s )+2—G
public equilibrium and Lemma 13, it follows that ﬁig% oo e |
(s, N (s,8)(1— 2Gm)
Hence, by Lemma 12 and Lemma 13 again, it follows that xépgz §§ < Exipgz z/; % -

Proof of Theorem 10: From Lemma 14, we need to bound

ng(s,s’) B theﬁs’s/ 0'Ps,s (M) [ Us p(Ps s ) — Usp(Ps, s m,)]
N(;p(s7 5/) thens’s/ 5tps,s(ht)[U5,p(hs,s/ht) - Ué,p(hfs/,s/ht)]‘

Noting that h; € 7%378/ if and only if th € Rss, we can modified the summation in
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the numerator so that the summation set coincides with the one in the denominator:

N(;p(s, 5/) . thG’RS’S/ 5tp378(ht)(U57P(hs,s/izt) - U‘;vp(h’s,s//izt))
N(;p(s7 5/) thens’s/ 5tps,s(ht)(U5,p(hs,s/ht) - Ué,p(hs/,s/ht))

Usp(hy oi,)=Usp(hy )i,
| D, s ) A R U i) = Uy )

2ner, , 0'Pss (7)) Usp(hs,sine) — Usp(hss/n,))

Hence, by condition (18) in the statement of the theorem, it follows that

Niyls o) _ oy e, 9Pl Usasn) = Vs, )
. 4
Né,p(5> s') thmns’s/ 0'ps,s (") (Us p( s s/n) — Usp(hst s/my )

- 04.

O

Before being able to prove Theorem 6 we need to deal with two additional approxi-
mation of payoffs. First, we prove that the sum of discounted payoffs on the O-tremble
path for a uniformly efficient strategy playing against itself is close to R. As an inter-
mediate step, we show next that this is also the case for the sum of discounted payoffs

over all paths.

Lemma 15. If (s, s) is an uniformly efficient strategy, then for any hy it follows that
|R — Us (s, s/h)| < Ci(1 = p*8) for p > p(8) and sufficiently high o.

Proof. Note that for any pair of strategies (s, '), the vector of discounted sum of payoffs
(Usp(s,5' /), Us (s, s/hy)) must belong to the convex combination of the four possible
payoff realizations: (R, R), (P, P), (T,5), and (S,T). The fact that s is a uniformly
efficient strategy implies that R — Uy (s, S/iLt) < C1(1—p?d). Hence, given the previous
comment about the set of possible payoffs, it follows that Us,(s,s/h) — R < Ci(1 —
p?§) L=, Given that 2R > T+ S, it follows that Us,(s, s/hy) — R < C1(1 —p*§) and the
lemma follows given that R— Us (s, s/ht) < C1(1— p*§) by the definition of a uniformly

efficient strategy. O

In other words, while the definition of an uniformly efficient strategy says that the

sum of discounted payoffs cannot be too low relative to R, this also implies that they
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cannot be too high. The reason is that the possible vectors of discounted payoffs are
limited to the convex combination of the possible four realizations of payoffs. As can be
seen in Figure 3, if Us,(s, s/h;) is not much lower than R, then Us,(s,s/h;) cannot be

much higher than R.

U(ss|hy) |
(ss1hy R-C,(1-p?3) R+C,(1-p?3)(T-R)/(R-S)
T
\ R+C,(1-p?8)(T-R)/(R-S)
R \
R-C,(1-p2)
P
\\
S
S P R T U(ss|h,)

Figure 3: Uniform efficiency and possible payoffs

Lemma 16. If (s, s) is an uniformly efficient strategy, then for any hy it follows that
|R — Usp(hs,s/n,)| < (C1+ G)(1 — p*d) for p > p(8) and sufficiently high 6.

Proof. From the fact that s is a uniformly efficient strategy and Lemma 15, |R —
Usp(s,s/hy)| < Ci(1 — p*d). Hence, by Usyp(s,s/h) = Usp(hssm,) + Usp(hS o /n,) and

Lemma 9, it follows that |R — Us,(hss/m,)| < Ci(1 — p*d) + Gpg(_l—’i). Given condition
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17), it can be shown that % < 1 — p?6, and it follows that |R — Us,(hsem,)| <
p?(1-9) P\'¥s,s/ht

(C1 + G)(1 — p*)). O

Before moving to the proof of Theorem 6, we deal with one last approximation of
payoffs. We show that the loss in payoffs in the O-tremble path from choosing another
strategy is uniformly bounded away from zero if the strategy is a uniformly strict perfect

public equilibrium.

Lemma 17. If (s,s) is a uniformly strict perfect public equilibrium, then Usy(hss/n,) —
Usp(hg sin,) > 2Co(1 — p?8) for any hy and s’ such that s(h;) # s'(hy) when p > p(6)

and 9 is sufficiently high.

Proof. Given that Us (s, s/ht) = Usp(hs,s/n) + Usp(RS ; ,) and Lemma 9, it follows that

Usp(hssne) =Usp(h spne) = Usp(s,8/he) =Usy(s', 5/he) = 23725 G. The right hand side
(1-p*)G

(Ué,p(svs/ht)_Ué,p(S/vs/ht)) ’

of this inequality can be written as Usp(s, s/he) =Usp(s', 5/ he) [1=2 57—

By (s, s) being a uniformly strict perfect public equilibrium, we have that Us (s, s/h) —

(
Usp(s',s/hi) > Co(1—p?0) for any hy and " such that s(h:) # s'(h:). Hence, Usp(hs,s/n,)—
Ué,p(h/s/,s/ht) > 00(1 — p25)[1 — QW%] And S0, by Lemma 12, Ué,p(hfs,s/ht) —
Ué,p(hfs/,s/ht) > %00(1 —p25) ]

8.3.2 Proof of Theorem 6: A star-type strategy has a uniformly large basin

of attraction

As a start-type strategy is uniformly efficient perfect public equilibrium, by Theorem 5,
it is enough that we prove that a star-type strategy satisfies the cross ration condition.
And by Theorem 10, it is enough to show that inequality (18) holds; that is, there exists
Cjy such that

Uévp(h’s,s/izt) o U‘;vp(hs,s//izt)
Ué,p(hfs,s/ht) - Ué,p(h/s/,s/ht)

< 04, (19)
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for any hy, s', § > dg and p > p(0).

Usp(hg o /i)=Usp(hy o1 )i,)
Usp(hs,s/n ) =Usp(hgr /i)

path for s, s starting with h, and hg s /s, is the O—tremble path for s, s’ starting with A,

So, given s’ and h; we calculate where N /5, 1s the 0—tremble

and idem with th. Let us denote

r= U&p(hs,S/ht) - U&p(hs/,S/ht)> r= U&p(hs,s/l}t) - U‘;vp(h’s,s//izt)7

o = Ué,p(hfs,s/ht) U‘;vp(h’s,s/izt)
R ’ R '

joN
I

Let bg, bs, br, bp be the quantities given in Definition 13, and using that bg+bs+br+bp =

1 it follows that

r o= &R—(bRR+bss+bTT+pr)
= &R—R+R—(bRR+bss+bTT+pr)

= (@ =1)R+bs(R—S)+br(R—T)+0bp(R— P).

Then, given that v = %5%7 Yy = ?%g and that bgys + bpys — by > —C5(1 — p?d) by

condition (7) in the definition of star-type strategies, it follows that
i)
T—R
= (a=1)R+bs(T = R)v2+bp(T'— R)ya + br(R—1T)

(R—-P)
T-R

+ bT(R — T) + bP(T — R)

r = (a—1)R+bs(T — R)

= (CM — 1)R —+ (bs’)/g + bp")/4 — bT)(T — R) + bTR

> (a—1)R+brR—C5(1—p*0)(T — R).
So,
brR < r+Cs5(1—p*6)(T—R) — (a—1)R<r+C5(1 —p*6)(T — R) + |a — 1|R

Cs(1—p*0)(T — R -1
LGP R o=ty

= r(1

Since r > 3Cy(1 — p*3), from (s, s) being a uniformly strict perfect public equilibrium
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and Lemma 17, and |a — 1| < (C1 + G)(1 — p*§), by Lemma 16, it follows that

bR < (14 (- Ry O
0

i R). (20)

Next we calculate 7 and compare it with r. Following the same steps as for the calculation

of r, and recalling that h,_ e = m, it follows that
r=(@—-1)R+bs(R—T)+bp(R—S)+bp(R— P).
Then, given that bp(R — P) =7 — (o« — 1)R+ bs(R — S) + br(R — T, it follows that

= (@—1)R+bs(R—T)+br(R—S)+bp(R— P)

>

= (d—Oé)R+bs(R—T)+bT(R—S)—[bs(R—S)+bT(R—T)]+T
= (@—a)R+r+ (by —bg)(T—9)

T-S5
< (d—&)R+T+bT(T—S):(d—&)R+T+bTRT.

Then, given that & — a < |& — 1| + |1 — & and inequality (20), it follows that

C1+G) (T =8

4C 4
o< (la=1+1—a))R+r+r(1+—=2(T—R)+ (

3C, 3C, R
 (la—1+1-a)R 4Cs ACL+G) T—S§
= - FLE (2 (T = R+ = R ™).

From the fact that s is a uniformly efficient strategy, it follows that |1 — &|R <

(C1+G)(1—06p?),]1 —a|R < (Cy + G)(1 — dp?) and recalling that s is also a uniformly

G—1]+|1—
la-11+1-al _

strict perfect public strategy, it follows that r > %00(1 — 0p?) and therefore

8(C1+G)

LK) Hence, it follows that £ < 269D 41 4 (14 4% (77— p) 4 LA RIS O

3Co 3Co R

8.3.3 w has a uniformly large basin of attraction: proof of Theorem 7

Given Theorem 6 we only need to show that w is a star-type strategy. We show first
that w satisfies the sufficiently responsive condition, i.e., inequality (7), to then show

that (w,w) is an uniformly strict perfect public equilibrium.
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w satisfies the sufficiently responsive condition.:

Given the behavior of strategy w, if an alternative strategy s interacts with w and
defects when w cooperates, then s earns 7' in that period (s plays D and w plays (),
and in the next period s gets either S or P given that w will play D. Therefore, if
Iy = {7 u(Wswsm,) = St Is = {7 - (W swn,) = T}, Is = {7 : (W s0m,) = P}, it

follows that if 7 € I5 then 7+ 1 € I, U I; and so

1—p% i 1— 25 o -
bS + bP —= Tf Z 57’ tp2(7' t)+2 — p25 pf Z 57’ t 1p2(7’ t) (21)

TelaUly TeloUly
o 1 —p?d T—t—1, 2(T—t—1)+2 2
> poi—s Z 0T p = pobr, (22)
7—1613

where bg, bs, by, bp are, as for Definition 13, as follows:

1—p% )2 57— 1—p* )25
L e T LA SR e
p T:u(hTs,w/ht):P p T:u(hTs,w/ht):S

1= 2 e
bT _ 2p Z p2(7' t)+26 t.
p T:u(hTs,w/ht):T

Recalling that 2R > T+ P > T + S, it follows that v, = IT?”%;: and 3 = ?%g are
both greater than one. Hence, bgys + bpys > bs + bp = p?dby, and, for 6§ and p close to
one, inequality (7) is satisfied.

The profile (w,w) is an uniformly strict perfect public equilibrium:

To prove that (w,w) is an uniformly strict perfect public equilibrium, it is enough
to show that Us,(w,w/h) — Usp(s,w/hi) > (1 — p?0)Cy for every history h; such that
w(hy) # s(he) with Cy being a positive number.

We start by showing that the difference of payoffs are bounded in 0-tremble histories.

Let’s focus first in the case with w(h;) = C and s(hy) = D. By the fact that

R =brR+bsR+brR+bpR, bg =1 — bs — by — bp and by inequality (21), it follows
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that

Ué,p(hfw,w/ht) — U(;’p(h&w/ht) = bs(R — S) -+ bT(R — T) + bp(R — P)

V

(bs +bp)(R — P) + br(R —T)
2 5p2bT(R — P) + bT(R — T)

> br[(1+p*0)R— (T + P)].

Given that s(h;) = D and w(h;) = C, strategy s will obtain payoff 7" at period t and
hence by > 1—p?¢. Since 2R—(T+ P) > 0, it follows that, for  and p large, [(1+p?d)R—
(T + P)] > 2C, where Cj is a positive constant such that Cy = min{£=2, W}.
Therefore, it follows that Us,(Puw,w/n:) — Usp(Rsw/n:) > (1 — p*8)2Cy, provided that §
and p are large.

Let’s focus now in the case with w(h;) = D and s(h;) = C. Observe that in this
case bg > 1 — p?¢ and calculating again the quantities bg, bs, by, bp starting from ¢ + 1,

we get that Usy(hsw/n,) = (1 —p*8)S + p*§[bgR + bgS + brT + bpP]. Therefore, writing

p*0R = p*§[brR + bsR + brR + bpR] and arguing as before,

Usp(Pwwosie) = Usp(Pswfne)

= (1=p*0)(P = 8) +p*d[bs(R— S) + br(R—T) + bp(R — P)]

> (1= p*)(P— S) + p*6[(bs + bp)(R— P) + br(R—T))

> (1 - p*)(P — 8) +p*[p*dbr(R — P) + br(R — T)]

> (1 —p*§)(P — S) + p*obr[(1 + p*§)R — (T + p*s P)].
Since 2R — (T + P) > 0, it follows that for 0 and p large Usp(Ruw,w/n,) — Usp(Psw/n,) >
(1—p*8§)(P —S). Given that Cy = min{=2 w} this implies that Usp(Auw,w/n,) —

Usp(Bswsn,) > (1 — p*0)2C, for 6 and p large.

We now prove that bounded differences in payoffs in 0-tremble histories implies that

54



the difference is also bounded when all histories are considered.

From condition (17) on the minimum value of p, we have that p > \/1 — L% (1-0)2

Hence, 16G(1 — p?) < Co(1 — §)2. Given that we have assumed that § > £ and p > V/§

by condition (17), it follows that p? > % and 1% < 16. Hence, 2;’;((11?;) < Cp(1 —6), and

given that (1 —4) < (1 — p?d) it follows that
2G(1 - p*)
p*(1-9)

By Lemma 9, Us ,(w, w/he) = Usp(5,1/he) > Us p(hso/n,) = Usip(supn,) — Sa=) . Hence,

< Co(1 - p?d). (23)

by Us p(hww/ne) — Usp(Rswine) > (1 — p*6)2Ch, it follows that

2G(1 — p?

Usp(w,w/hy) — Us (s, w/hy) > (1 — p*8§)2Cy — #
p*(1—9)

Then, by inequality (23), it follows that Us,(w, w/h;) — Us (s, w/he) > (1 — p*§)Cy, for

0 and p large.

8.3.4 T'n has a uniformly large basin of attraction: proof of Theorem 8

Given Theorem 6, we only need to show that Tn is a star-type strategy. For this we
need to prove that T'n satisfies the sufficiently responsive condition, i.e., inequality (7),
and that (T'n,Tn) is an uniformly strict perfect public equilibrium. Proving the former
can be done as for w. The reason is that, in the period right after the defection when
cooperation was expected, T'n will respond to a in the same way as w. Hence, the proof
used for w applies to T'n as well. It remains to be shown that (7'n,7'n) is an uniformly
strict perfect public equilibrium for a sufficiently large n.

The profile (T'n,T'n) is an uniformly strict perfect public equilibrium.:

We need to show that Us,(Tn, Tn/ht)—Us (s, Tn/hy) > (1—p*5)Cy for every history
h: such that T'n(h;) # s(h:) with Cy being a positive number.

We start by showing that the difference of payoffs is bounded in O-tremble histories.
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Let’s focus first in the case with T'n(h;) = C and s(h;) = D. In this case, n periods
of punishment are triggered and, assuming that s differs from 7n only at h.(by the one

step deviation principle), it follows that

1—p% | , - 2(i+1) 5i
> P(R=T)+> p""§ (R - P)
i=1

Ué,p(thn,Tn/ht) - Ué,p(hfs,Tn/ht) =

Hence, for p and ¢ large:

n+1)R—T —nP

Ué,p(th,Tn/ht) - Ué,p(hs,Tn/ht) = (1 - p25)( 4

(24)

Note that given that R > P, it is possible to chose n sufficiently large so that (n+1)R >
T+ nP.

Define Cj as a positive constant such that Cy = min{Z ZS , (”+1)R4_T_"P) }. Therefore,
from (24), it follows that Us,(hrnn/n,) — Usp(hsrn/n,) > (1 — p*0)2Cy, provided that &
and p are large.

We focus now in the case with T'n(h;) = D and s(ht) = C. The best case for s is
now when they are in the first period of punishment.

By the one step deviation principle we can assume that s differs from Tn only at hy,
and it follows that

1—p%

P2
> (1-p)(P~-9)

Usp(hrnrnsng) — Usp(hsngn,) [p*(S — P) + p*"™I5"(R — P)]

Given the definition of Cj it follows that Usy(hrnrn/h,) — Usp(hsrn/m,) = (1 — p?6)2C,
for 6 and p are large.

We prove next, following the same steps as in Section 8.3.3, that bounded differences
in payoffs in O-tremble histories imply that the differences are also bounded when all

histories are considered.

From condition (17) on the minimum value of p, we have that p > \/1 — =% (1-6)>
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Hence, 16G(1 — p?) < Co(1 — §)?. Given that we have assumed that § > % and p > v/

by condition 17, it follows that p* > % and 1% < 16. Hence, 2;’;((11:7;) < Cp(1 —9), and

given that (1 —4) < (1 — p?d) it follows that

2G(1 — p?) )
Co(1 — p?0). 25
p2(1_5) < 0( p ) ( )
By Lemma 9,
2G(1 — p?
Ué’p(Tn’ Tn/ht) - U57P(S> Tn/ht) > Ué,p(th,Tn/ht) - Ué,p(hs,Tn/ht) B ﬁ

Hence, by Us,(hrnrn/n,) — Usp(hsrnsm,) > (1 — p*8)2Cy, it follows that

2G(1 —p%)

Usp(T, T /o) = Uyl Tnfhe) > (1= p*0)2C0 = ~55— 5

Then, by inequality (25), it follows that Us,(Tn, Tn/ht) — Us (s, Tn/h) > (1 —p*6)Co,

for 6 and p large. O
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