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1 Introduction

The neoclassical model presented in the previous chapter takes the rate of technological

change as being determined exogenously, by non-economic forces. There is good reason,

however, to believe that technological change depends on economic decisions, because it

comes from industrial innovations made by profit-seeking firms, and depends on the funding

of science, the accumulation of human capital and other such economic activities. Technology

is thus an endogenous variable, determined within the economic system. Growth theories

should take this endogeneity into account, especially since the rate of technological progress

is what determines the long-run growth rate.

Incorporating endogenous technology into growth theory forces us to deal with the diffi -

cult phenomenon of increasing returns to scale. More specifically, people must be given an

incentive to improve technology. But because the aggregate production function F exhibits

constant returns in K and L alone, Euler’s theorem tells us that it will take all of the econ-

omy’s output to pay capital and labor their marginal products in producing final output,

leaving nothing over to pay for the resources used in improving technology.1 Thus a theory
1Euler’s Theorem states that if F is homogeneous of degree 1 in K and L (the definition of constant

returns) then
F1 (K,L)K + F2 (K,L)L = F (K,L) (E)

where Fi is the partial derivative with respect to the ith argument. The marginal products of K and L are
F1 and F2 respectively. So if K and L are paid their marginal products then the left-hand side is the total
payment to capital (price F1 times quantity K) plus the total payment to labor, and the equation states
that these payments add up to total output.
To verify Euler’s Theorem take the equation

F (λK, λL) = λF (K,L) (C)

that defines homogeneity of degree one, and differentiate both sides with respect to λ at the point λ = 1.
Since (C) must hold for all λ > 0 therefore the two derivatives must be equal, which implies (E).
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of endogenous technology cannot be based on the usual theory of competitive equilibrium,

which requires that all factors be paid their marginal products.

Arrow’s (1962) solution to this problem was to suppose that technological progress is an

unintended consequence of producing new capital goods, a phenomenon dubbed “learning by

doing.”Learning by doing was assumed to be purely external to the firms responsible for it.

That is, if technological progress depends on the aggregate production of capital, and firms

are all very small, then they can be assumed all to take the rate of technological progress as

being given independently of their own production of capital goods. So each firm maximizes

profit by paying K and L their marginal products, without offering any additional payment

for their contribution to technological progress.

Learning by doing formed the basis of the first model of endogenous growth theory, which

is know as the AK model. The AK model assumes that when people accumulate capital,

learning by doing generates technological progress that tends to raise the marginal product

of capital, thus offsetting the tendency for the marginal product to diminish when technology

is unchanged. The model results in a production function of the form Y = AK, in which

the marginal product of capital is equal to the constant A.

The AK model predicts that a country’s long-run growth rate will depend on economic

factors such as thrift and the effi ciency of resource allocation. In subsequent chapters we will

develop alternative models of endogenous growth that emphasize not thrift and effi ciency

but creativity and innovation, which see as the main driving forces behind economic growth.

But given its historical place as the first endogenous growth model, the AK paradigm is an

important part of any economist’s toolkit. Accordingly we devote this chapter to developing

the AK model and to summarizing the empirical debate that took place in the 1990s between

its proponents and proponents of the neoclassical model of Solow and Swan.

1.1 The Harrod-Domar model

An early precursor of the AK model was the Harrod-Domar model,2 which assumes that the

aggregate production function has fixed technological coeffi cients:

Y = F (K,L) = min {AK,BL} ,

where A and B are the fixed coeffi cients. Under this technology, producing a unit of output

requires 1/A units of capital and 1/B units of labor; if either input falls short of this minimum

requirement there is no way to compensate by substituting the other input.

2See Harrod (1939) and Domar (1946).
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With a fixed-coeffi cient technology, there will either be surplus capital or surplus labor

in the economy, depending on whether the historically given supply of capital is more or less

than (B/A) times the exogenous supply of labor. When AK < BL, which is the case that

Harrod and Domar emphasize, capital is the limiting factor. Firms will produce the amount

Y = AK,

and hire the amount (1/B)Y = (1/B)AK < L of labor.

Now, with a fixed saving rate, we know that the capital stock will grow according to the

same equation as in the neoclassical model:

K̇ = sY − δK. (1)

These last two equations imply:

K̇ = sAK − δK,

so that the growth rate of capital will be:

g = K̇/K = sA− δ.

Because output is strictly proportional to capital, g will also be the rate of growth of output.

It follows immediately that the growth rate of output is increasing in the saving rate s.

The problem with the Harrod-Domar model is that it cannot account for the sustained

growth in output per person that has taken place in the world economy since the Industrial

Revolution. To see this, let ν be the rate of population growth. Then the growth rate of

output per person is g − ν. But if this is positive, then so is the growth rate of capital

per person K/L, since K also grows at the rate g. Eventually a point will be reached

where capital is no longer the limiting factor in the production function. That is, K/L will

eventually exceed the limit B/A above which labor becomes the limiting factor. From then

on we will instead have Y = BL, implying that Y will grow at the same rate as L; that is,

output per person Y/L will cease to grow.

2 The Frankel model

2.1 Basic setup

The first AK model that could account for sustained growth in per-capita output was that

of Frankel (1962), who was motivated by the challenge of constructing a model that would
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combine the virtues of the Solow-Swan and Harrod-Domar models. As in Solow-Swan, this

model would display perfect competition, substitutable factors (with Cobb-Douglas produc-

tion technologies) and full employment. As in Harrod-Domar, the model would generate a

long-run growth rate that depends on the saving rate.

Frankel built his model on the foundation of learning by doing. He recognized that

because individual firms contribute to the accumulation of technological knowledge when

they accumulate capital,3 the AK structure of the Harrod-Domar model does not require

fixed coeffi cients. Instead, he assumed that each firm j ∈ {1, 2, .., N} has a production
function of the form

yj = Akαj L
1−α
j ,

where kj and Lj are the firm’s own employment of capital and labor, and A is (aggregate)

productivity. Aggregate productivity in turn depends upon the total amount of capital that

has been accumulated by all firms, namely:

A = A0 ·
(

N∑
j=1

kj

)η

,

where η is a positive exponent that reflects the extent of the knowledge externalities generated

among firms.

For simplicity assume that

Lj = 1

for all j, let

K =
N∑
j=1

kj

denote the aggregate capital stock, and let

Y =
N∑
j=1

yj

denote the aggregate output flow.

Since all firms face the same technology and the same factor prices, they will hire factors

in the same proportions, so that

kj = K/N for all j.

3He called it “development”rather than “knowledge.”
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This in turn implies that in equilibrium

A = A0K
η;

hence individual outputs are all equal to

yj = A0K
η (K/N)α

and therefore aggregate output is

Y = NA0K
η (K/N)α

which can be written as

Y = AKα+η. (2)

where A = A0N
1−α.

The model is then closed by assuming a constant saving rate, which generates the same

capital accumulation equation (1) as in Solow-Swan and Harrod-Domar. Using the output

equation (2) to substitute for Y in this equation we have

K̇ = sAKα+η − δK

so the growth rate of the capital stock is

gK = K̇/K = sAKα+η−1 − δ (3)

2.2 Three cases

We now analyze the dynamic path of the economy defined by equation (3). Three cases must

be considered.

1. α + η < 1

In this case the extent of knowledge spillovers η is not suffi ciently strong to counteract

the effect 1 − α of decreasing returns to individual capital accumulation, and the

long-run growth rate is zero. The case produces the same aggregate dynamics as the

Solow-Swan model with no technological progress and no population growth, which

we analyzed in the previous chapter. That is, according to (3) there is a steady state
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capital stock at which the growth rate gK of capital is zero, namely

K∗ = (sA/δ)1/(1−α−η) (4)

If K were to rise above K∗ the growth rate would turn negative, since in this case (3)

makes gK a decreasing function of K. Thus K would fall back to its steady state, at

which the growth rate of capital is zero and therefore the growth rate of output (2) is

zero.

2. α + η > 1

In this case learning externalities are so strong that the aggregate economy experiences

an ever-increasing growth rate. That is, again (4) defines a unique steady-state capital

stock but it is no longer stable, because gK is now an increasing function of K, so that

if K were to rise above K∗ it would keep on rising, at an ever-increasing rate. This is

known as the “explosive growth”case.

3. α + η = 1

In this knife-edge case, learning externalities exactly compensate decreasing returns to

individual capital accumulation, so that the aggregate production function becomes an

AK function, namely:

Y = AK.

Thus the aggregate growth rate becomes:

g = K̇/K = sA− δ

which is nothing but the Harrod-Domar growth rate, now obtained as the long-run

growth rate in a model with substitutable factors and full market clearing. In other

words, as capital increases, output increases in proportion, even though there is con-

tinual full employment of labor and even though there is substitutability in the aggre-

gate production function, because knowledge automatically increases by just the right

amount. Unlike in the Harrod-Domar model, here an increase in the saving propensity

s will increase the growth rate permanently even though output per person is growing

at a positive rate (namely g − 0 = g).

6



3 An AK model with intertemporal utility maximiza-

tion

Romer (1986)4 developed a Ramsey version of the AK model, in which the constant saving

rate is replaced by intertemporal utility maximization by a representative individual, again

with the assumption that individuals do not internalize the externalities associated with the

growth of knowledge.

3.1 The setup

Romer assumed a production function with externalities of the same sort as considered by

Frankel, and focused on the case in which the labor supply per firm was equal to unity and

the rate of capital depreciation was zero (δ = 0). Saving is determined by the owner of the

representative one-worker firm, whose dynamic optimization problem is to

max

∫ ∞
0

u(ct)e
−ρtdt

subject to: k̇ = Akα − c

where k is the capital stock of the individual firm, y = Akα is its output, c = ct is the current

consumption of its owner-worker, and A denotes aggregate productivity which is taken as

given by each individual firm.5

As in the previous section, aggregate productivity depends upon the aggregate capital

stock, namely:

A = A0K
η,

where

K =
∑N

1
kj.

Assuming a constant intertemporal elasticity of substitution as in the previous chapter,

4Romer actually laid out more than an AK model, in as much as his approach allowed for general
production and utility functions and assumed that there were strictly increasing social returns to capital.
What we present here is the limiting special case that many followers have extracted from Romer’s analysis,
in which there are constant social returns to capital and an isoelastic utility function.

5This maximization problem is the same as that of the Cass-Koopmans-Ramsey model analyzed in the
previous chapter, but in the limiting case where the length of the time period has shrunk to zero, so time
has become continuous.
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namely u(c) = c1−ε−1
1−ε , one obtains the Euler condition

6

−εċ/c = ρ− αAkα−1.

Having rational expectations, individuals correctly anticipate that all firms will employ the

same capital in equilibrium (given that these firms are all identical), so

K = Nk

and therefore the above Euler condition can be written as

−εċ/c = ρ− αA0Nηkα+η−1. (5)

3.2 Long-run growth

Aggregate output Y is given by the same equation (2) as in the Frankel model, because:

Y = Ny = NA0K
η (K/N)α = AKα+η,

and again there are three cases to consider depending on the exponent α + η:

1. α + η < 1

In the case of decreasing returns, again growth will vanish asymptotically as in the

neoclassical model without technological progress. To see this, assume, on the contrary,

that the growth rate is bounded above zero. The following argument shows that this

assumption leads to a contradiction. Positive growth implies that the capital stock k

will converge to infinity over time, which implies that the right hand side of (5) must

converge to ρ, since the exponent α + η − 1 is negative, and this in turn implies that

the growth rate ċ/c will become negative, which contradicts our assumption of positive

growth.

2. α + η > 1

In the case of increasing returns to capital, then as in the Frankel model there will

be explosive growth. This can be seen using the Euler equation (5). Specifically, if

growth is positive in the long run, then the capital stock k converges to infinity over

time. This, together with the fact that α + η > 1, implies that the right hand side of

6This Euler condition follows from our analysis of the Ramsey model in the previous chapter, but where
in this case the net private marginal product of capital is: F1 (k,A)− δ = αAkα−1 − 0 = αAkα−1.
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(5) converges to negative infinity, which in turn implies that the growth rate ċ/c must

converge to infinity.

3. α + η = 1

In the AK case where there are constant social returns to capital, then as in the Frankel

model the economy will sustain a strictly positive but finite growth rate g, in which

diminishing private returns to capital are just offset by the external improvements in

technology A that they bring about. More precisely, in a steady state consumption

and output will grow at the same rate, so this case (5) implies

g = ċ/c = (αA0N
η − ρ) /ε.

In particular, we see that the higher the discount rate ρ (that is the lower the propensity

to save), or the lower the intertemporal elasticity of substitution measured by 1/ε, the

lower will be the steady-state growth rate g.

3.3 Welfare

So far we have just reproduced the results already generated by the model with a constant

saving rate. However, moving to a Ramsey model where savings behavior results from

explicit intertemporal utility maximization allows us to also conduct a welfare analysis. In

particular one can show that, because individuals and individual firms do not internalize the

effect of individual capital accumulation on knowledge A when optimizing on c and k, the

equilibrium growth rate g = (αA0N
η − ρ) /ε is less than the socially optimal rate of growth.

More formally, the social planner who internalizes the knowledge externalities induced by

individual capital accumulation, would solve the dynamic program

max

∫ ∞
0

e−ρtu(ct)dt

s.t.
.

k = A0(Nk)ηkα − c,

that is, he would internalize the fact that A = A0(Nk)η when choosing k. When u(c) =
c1−ε−1
1−ε , we obtain the Euler equation

−εċ/c = ρ− (α + η)A0N
ηkα+η−1

With constant social returns to capital (α + η = 1), this yields the socially optimal rate
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of growth

g∗ = (NηA0 − ρ) /ε > g = (αNηA0 − ρ) /ε.

3.4 Concluding remarks

First, although growth has been endogenized, it relies entirely on external (and therefore

unremunerated) accumulation of knowledge. Introducing rewards to technological progress

as we shall do in the following chapters, adds a new dimension of complexity, because it

moves us away from a world of perfect competition into a world of imperfect competition

among large individual firms.

Second, in the case where α + η = 1, cross-country variations in parameters such as α

and ρ will result in permanent differences in rates of economic growth. Thus, the simple AK

approach does not predict conditional convergence in income per capita; the cross-section

distribution of income should instead exhibit both absolute and conditional divergence. We

shall return to this issue in the next sections of the chapter.

4 The debate between neoclassical and AK advocates

in a nutshell

In this section, we briefly reflect on a now closed debate between advocates of the neoclassical

approach and those of the AK model. A first argument in favor of the AK approach is that

it can account for the persistently positive growth rates of per-capita GDP which we observe

in most countries worldwide, whereas the neoclassical model cannot explain it.

However, advocates of the neoclassical model can argue that the AKmodel cannot explain

cross-country or cross-regional convergence. Two main types of convergence appear in the

discussions about growth across regions or countries. Absolute convergence takes place when

poorer areas grow faster than richer ones whatever their respective characteristics. On the

other hand, as we already saw in the previous chapter, there is conditional convergence

when a country (or a region) grows faster the farther it is below its own steady state; or

equivalently, if we take two countries or regions with identical savings rates, depreciation

rates and aggregate production technologies, the country that begins with lower output per

capita has a higher growth rate than the country that begins with higher output per capita.

This latter form of convergence is definitely the weaker.

Now consider two regions within a country (for example the US) or two countries that

share the same underlying characteristics (in particular the same saving rate and the same

depreciation rate of capital). Under constant returns in the aggregate production function,
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as in AK models, per-capita GDP in a country or region with lower initial capital stock will

never converge to that of countries with higher initial capital stock, even in the weak sense of

conditional convergence, simply because these two countries will always grow at the same rate

independently of their amounts of accumulated capital. On the other hand, with diminishing

returns to capital, the level of income per capita should converge toward its steady-state

value, with the speed of convergence increasing in the distance to the steady state. In other

words, lower initial values of income per capita should generate higher transitional growth

rates, once the determinants of the steady state are controlled for. The following figure,

drawn from Barro and Sala-i-Martin (1995) shows a clear conditional convergence pattern

among US states. This, in turn, questions the AK approach.
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Figure 2.1

Turning to the evidence on convergence of countries, we find that in some countries

(in particular China and the Asian tigers, namely Singapore, Hong Kong, Taiwan and Ko-

rea) per-capita GDP manages to converge towards per-capita GDP levels in industrialized

countries. This again may indicate that the Solow-Swan model, with its emphasis on di-

minishing returns to capital and transitional dynamics, is closer to the truth than the AK

model. However, what the neoclassical framework cannot account for is the fact that while

some countries appear to converge towards the world technology frontier, other countries

(for example in Africa) diverge from it. In Chapter 10 below we will how this phenomenon,

commonly referred to as club convergence, can be explained using an innovation-based model

of endogenous growth, the Schumpeterian growth model. But before we present this new

framework and compare it to the AK and neoclassical models, let us briefly see how the AK

11



advocates have tried to argue their case against the proponents of the neoclassical model.

A first counterargument by AK advocates involves the issue of returns to capital and the

estimation of the elasticity of output with respect to physical capital. Early empirical work

on endogenous-growth models centered on this question. In particular, Romer (1987) carries

out the following test. Suppose first that the consumption good is produced according to a

Cobb-Douglas production function as in the simplest version of the Solow-Swan model:

Y = Kα(AL)1−α, 0 < α < 1.

Under perfect competition in the market for final goods, and given the assumption of constant

returns to scale implicit in this Cobb-Douglas function, the coeffi cients α and (1−α) should be

equal to the shares of capital and labor in national income respectively, that is approximately

1/3 and 2/3 in the U.S. case. To see why, notice that under perfect competition for final

goods, capital and labor are each paid their marginal products. The share of labor in national

income is thus equal to

∂Y

∂L
L = (1− α)KαA1−αL−α.L = (1− α)Y

and similarly
∂Y

∂K
K = αKα−1A1−αL1−α.K = αY.

Now, using both time series and cross-section data, Romer estimated the true elasticity of

final goods output with respect to physical capital to be higher than the value 1/3 predicted

by the Solow-Swan model, and perhaps lying in the range between 0.7 and 1.0. This result

in turn appeared to be consistent with the existence of externalities to capital accumulation,

as captured by the formalization A ≈ Kη in the AK model. Such externalities imply that

the elasticity of final output with respect to physical capital will be larger than the share of

capital income in value added.

A second counterargument involves the speed of convergence predicted by the neoclas-

sical model. First, it is intuitive that the lower α, that is, the more decreasing returns to

capital are, the faster convergence will be over time, since decreasing returns are the source

of convergence. And indeed, in the limit case where α = 1, that is in the constant returns

case, convergence never happens! This negative correlation between α and the speed of con-

vergence can be formally established (see problem set XX). Now, performing a cross-country

regression as specified in Chapter 1, section 2.3, Mankiw, Romer, and Weil (1992) find that

the rate at which countries converge to their steady states is slower than that predicted by

a Solow-Swan model with a capital share of one-third. The empirically observed speed of
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convergence suggests a share of broad capital in output of around 0.7—0.8. One explanation

may again be the existence of externalities in capital accumulation of the kind emphasized by

AK models. However, Mankiw-Romer-Weil propose an alternative explanation, which boils

down to augmenting the Solow-Swan model by including human capital on top of physical

capital. They specify the following constant-returns production function:

Y = KαHβ(AL)1−α−β.

Using a simple proxy for the rate of investment in human capital, they argue that this

technology is consistent with the cross-country data. Their cross-section regressions indicate

that both α and β are about 1/3, suggesting that the AK model is wrong in assuming

constant returns to broad capital.

Interestingly, the elasticity of output with respect to the investment ratio becomes equal

to α
1−α−β in the augmented model, instead of

α
1−α . In other words, the presence of human

capital accumulation increases the impact of physical investment on the steady state level

of output. Moreover, the Solow-Swan model augmented with human capital can account

for a very low rate of convergence to steady states. It is also consistent with evidence on

international capital flows; see Barro, Mankiw and Sala-i-Martín (1995) and Manzocchi and

Martin (1996).Yet, the constant-returns specification of Mankiw-Romer-Weil delivers the

same long-run growth predictions as the basic Solow-Swan model.

Overall, empirical evidence regarding returns to capital tends to discriminate in favor of

decreasing returns, and hence in favor of the neoclassical growth model. Mankiw, Romer, and

Weil claim that the neoclassical growth model is correct not only in assuming diminishing

returns, but also in suggesting that effi ciency grows at the same rate across countries.

True, their augmented model suffers from the same basic problem as the original Solow

model, namely that it cannot explain sustained long-run growth. But here the line of defense

is to say that the model can still explain growth on the transition path to the steady-state,

and that such transition may last for many years so that the data would not allow us to tell

apart transitional growth from steady-state growth.

However, another criticism to the augmented neoclassical model came from Benhabib

and Spiegel (1994). Their point is that the neoclassical and MRW models all predict that

growth can increase only as a result of a higher rate of factor accumulation. However, based

on cross-country panel data, they argue that the countries that accumulated human capital

most quickly between 1965 and 1985 have not grown accordingly, and more importantly,

they show that long-run growth appears to be related to the initial level of human capital.

This in turn suggests that, when trying to explain the historical experience of developing
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countries, one should turn to models in which technology differs across countries, and where

human capital stocks promotes technological catch up and/or innovation. We will return to

this in Chapter 17.

Overall, if the AK model appears to be dominated by the neoclassical model, one must

still come to grip with the fact that growth appears to be sustained over time, and also

positively correlated with variables such as human capital stocks. Building new endogenous

growth models that account for those facts, and also convergence, will be a main challenge

of the theories developed in the next chapters.

5 An open economy AK model with convergence

In this section we present a recent attempt at saving the AK model from the criticism that

it cannot explain convergence. This attempt, developed by Acemoglu and Ventura (2002),

henceforth AV, links to international trade and the notion of terms of trade. The idea is to

show that, if we take into account that countries are tied together by international trade,

even AKmodels can exhibit convergence in growth rates. This is because in an open economy

A will depend on the country’s terms of trade, and if it keeps growing faster than the rest of

the world the supply of its goods on world markets will keep growing relative to the supply

of foreign goods, which will drive down their relative price - the terms of trade will fall,

lowering A and therefore lowering the country’s growth rate until it converges to the growth

rate of the rest of the world. In such a world each country will look like an AK model for

given terms of trade and yet it will converge, not because of a diminishing physical marginal

product of capital but because of a diminishing value of the marginal product of capital.

The argument is clever and logically tight, even though one may object to it on empirical

grounds.

Here we present in stages a simplified version of the AV model, with constant savings

rates. First we study a closed economy with two sectors - a final sector and an intermediate

sector. Next we assume that production in the final sector requires as input not just the

domestically produced intermediate product but also a foreign intermediate product, under

the assumption that the relative price of that foreign product (the inverse of this country’s

terms of trade) is given. This produces a similar version of the AK model, one in which A

depends positively on the terms of trade. Finally we close the model off by supposing that

the foreign country is just like the domestic country but possibly with a different saving rate.

In this last model the terms of trade will depend inversely on this country’s capital stock

relative to the foreign country’s.
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5.1 A two-sector closed economy

The final good Y and the intermediate goodX are both produced under perfect competition.

The final good is produced with capital K and intermediates according to:

Y = KαX1−α (6)

and the intermediate is produced with the final good one for one.

Let the final good Y be the numeraire. Then the unit price of good Y is equal to

one, and this is also the unit cost of producing the intermediate good. Since markets are

perfectly competitive, the price of intermediate good X is equal to its unit cost, thus it is

also equal to one. Given this, the demand for the intermediate good X is determined by

profit-maximization in the final sector. That is, the optimal X maximizes final-sector profits:

Π = KαX1−α −X.

The first-order condition for this problem is:

(1− α)KαX−α = 1

or equivalently

X = (1− α)1/αK.

Substituting back into (6) we obtain:

Y = (1− α)
1−α
α K

So even though the production function (6) has a diminishing marginal product of capital

we still have an AK model, with Y = AK, where the marginal product of capital A is a

constant given by:

A = (1− α)
1−α
α

The reason for this is that the production technology for the final good has constant returns

with respect to K and X , both of which are produced with K.

Now, let us assume a constant saving rate so that we can close the model with the same
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capital accumulation equation as in the Solow model, namely:7

K̇ = sY − δK.

Then, as in the Frankel analyzed in Section 2.3, the country’s growth rate depends positively

on its saving rate according to:

g = K̇/K = sA− δ = s (1− α)
1−α
α − δ.

5.2 Opening up the economy with fixed terms of trade

Now suppose that producing the Y good requires not just X but also a foreign-produced

intermediate product Xf , according to the production function

Y = KαX
1−α
2 (Xf )

1−α
2

Both X and Xf are tradable goods however capital is not tradable.

As before, since it takes one unit of final good to produce one unit of X, and since the

market for X is perfectly competitive, the price of X is unity. Suppose the price pf of the

foreign good is given. Then domestic producers of Y will choose X and Xf to solve the

problem:

max
X,Xf

{
KαX

1−α
2 (Xf )

1−α
2 −X − pfXf

}
which yields:

X =

(
1− α

2

)
Y (7)

pfXf =

(
1− α

2

)
Y (8)

7This is not quite the same as in the neoclassical model because Y is not the country’s GDP, just its
production of the final good, some of which is used as an input to the intermediate sector. However, Y is
proportional to GDP because:

GDP = value added in final sector + value added in intermediate sector

= (Y −X) + 0

= (1− α)
1−α
α K − (1− α)

1
α K

= α (1− α)
1−α
α K = αY

so the parameter s is actually the country’s saving rate, as conventionally defined, multiplied by the constant
α.
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Substituting back into the production function yields:

Y =

(
1− α

2

) 1−α
α

(pf )
− 1−α

2α K (9)

So again we have an AK model, with Y = AK, where now the constant marginal product

of capital A depends negatively on the relative price of foreign goods (that is,. positively on

the country’s terms of trade which is just 1/pf):

A =

(
1− α

2

) 1−α
α

(pf )
− 1−α

2α

The reason is that, as pf goes up, the domestic country needs to spend more on the imported

inputs that are combined with capital, thus lowering the amount of income it can generate

from an extra unit of capital.

It follows from this that the growth rate depends not just on saving but also on the terms

of trade:

g = K̇/K = sA− δ = s

(
1− α

2

) 1−α
α

(pf )
− 1−α

2α − δ. (10)

Now assume that the domestic country can only export good X in exchange for good

Xf , and suppose that “initially” the domestic growth rate exceeds the world growth rate.

Then the foreign demand for the country’s exported good X will not grow as fast as the

country’s demand for Xf , which implies that the relative price of the foreign good, pf , must

increase so as to preserve trade balance. This in turn will tend to bring the domestic country’s

growth rate down to the world level. To see how this might work in more detail, in the next

subsection we will suppose that the rest of the world consists of a single country which

behaves just like the domestic country.

5.3 Closing the model with a 2-country analysis

Suppose that the rest of the world consists of a single country, just like the domestic country,

except possibly with a different saving rate sf . This foreign country will produce its final

good using the same technology as used in the domestic country, so that its output of final

product and its use of its own intermediate product and this country’s will be determined as

above except that from the foreign country’s point of view the price of imported intermediate

products is 1/pf instead of pf .

Proceeding as above we see that the foreign country will import the amount FX of the
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domestic country’s intermediate good, where FX is given by:

(1/pf )FX =

(
1− α

2

)
Yf

which is the same as (8) except that Y has been replaced by the foreign production Yf and

pf by 1/pf .

By analogy to (9) we have:

Yf =

(
1− α

2

) 1−α
α

(pf )
1−α
2α Kf

where Kf is the foreign capital stock.8 From these last two equations:

FX =

(
1− α

2

) 1
α

(pf )
1+α
2α Kf

But FX is not just the foreign country’s imports; it is also the domestic country’s exports.

And trade balance imposes that this in turn be equal to the value (in domestic goods) of the

domestic country’s imports, namely: pfXf , because exports are what we use to buy imports.

So from equations (8) and (9) above we have:

FX =

(
1− α

2

) 1
α

(pf )
− 1−α

2α K

By equating the right-hand sides of these last two equations we can solve for the equilibrium

relative price of foreign goods:

pf = kαR

where kR is the relative capital stock:

kR =
K

Kf

If the domestic capital stock grows faster than the foreign stock, kR will rise, so will the

relative price pf of foreign intermediates, and hence the domestic growth rate will fall. This

8Note that the exponent of pf in this equation is the negative of the exponent of pf in the analogous
domestic equation (9). This is because the price of the other country’s intermediate product is pf for the
domestic country but 1/pf for the foreign country.
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will stabilize kR. More formally, we have from the domestic growth equation (10):

K̇/K = s

(
1− α

2

) 1−α
α

(pf )
− 1−α

2α − δ = s

(
1− α

2

) 1−α
α

k
− 1−α

2
R − δ

and from the analogous foreign growth equation:9

K̇f/Kf = sf

(
1− α

2

) 1−α
α

(pf )
1−α
2α − δ = sf

(
1− α

2

) 1−α
α

k
1−α
2

R − δ

Since the growth rate of the relative stock kR is just the differential growth rate K̇/K −
K̇f/Kf , these last two equations imply:

k̇R/kR =

(
1− α

2

) 1−α
α [

sk
− 1−α

2
R − sfk

1−α
2

R

]
This is a stable ordinary differential equation with the unique steady state:

k∗R =

(
s

sf

) 1
1−α

The steady state is asymptotically stable because the RHS of the differential equation is

decreasing in kR. So the growth rate of kR will approach zero, implying the growth rates of

K and Kf will approach each other - convergence.

5.4 Concluding comment

We have now seen how the AV model delivers convergence through international trade and

its effects on capital accumulation. Faster growth in the domestic economy increases the

price of the imported intermediate good, thus resulting in a deterioration of the country’s

terms of trade, which in turn reduces the rate of capital accumulation. Unfortunately, the

model is not fully consistent with empirical evidence. In particular, the prediction that

growth reduces a country’s terms of trade is counterfactual. So although the AV model is an

instructive extension of AK theory to the case of an open economy, in the end it too cannot

account for the evidence on cross-country convergence.

9Again, the coeffi cient of pf in one equation is the negative of the coeffi cient in the other, because the
price of the other country’s intermediate is pf for the domestic country but 1/pf for the foreign country.
Hence the coeffi cient of kR in one equation is also the negative of the coeffi cient in the other.
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6 Conclusion

In the previous chapter we saw that the neoclassical model provides the standard for parsimo-

niously modelling growth and convergence. However, the model leaves the rate of technolog-

ical change exogenous and hence unexplained, which means that it cannot explain sustained

long-run growth. In this chapter we have shown that the AK model can explain long-run

growth using the same basic assumptions as the neoclassical model but adding knowledge

externalities among firms that accumulate physical capital. However, the AK model does

not provide a convincing explanation for convergence.

In our view the underlying source of the diffi culties faced by the AK model is that it does

not make an explicit distinction between capital accumulation and technological progress. In

effect it just lumps together the physical and human capital whose accumulation is studied

by neoclassical theory with the intellectual capital that is accumulated when technological

progress is made. So starting with the next chapter we will focus mainly on innovation-based

models that make explicit the distinction between capital accumulation and technological

progress. Innovation-based models do a better job of fitting the data with respect to long-run

growth and convergence, and they also generate a rich set of predictions on the determinants

of growth across firms and industries, in contrast with the high level of aggregation in

neoclassical and AK models.

7 Literature Notes

The first AK models go back to Harrod (1939) and Domar (1946) who assume an aggregate

production function with fixed coeffi cients. Frankel (1962) develops the first AK model

with substitutable factors and knowledge externalities, with the purpose of reconciling the

positive long-run growth result of Harrod-Domar with the factor substitutability and market

clearing features of the neoclassical model. The Frankel model has a constant saving rate as

in Solow (1956), whereas Romer (1986) develops an AK model with intertemporal consumer

maximization. The idea that productivity could increase as the result of learning-by-doing

externalities was most forcefully pushed forward by Arrow (1962).

Lucas (1988) developed an AK model where the creation and transmission of knowledge

occurs through human capital accumulation. Rebelo (1991) uses AK models to explain

how heterogeneity in growth experiences can be the result of cross-country differences in

government policy. King and Rebelo (1991) use the AK model to analyze the effect of fiscal

policy on growth. Jones, Manuelli and Stachetti (1999) use again the AK framework to

analyze the effect of macroeconomic volatility on growth. And Acemogu and Ventura (2003)
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use the AK model to analyze the effects of terms of trade on growth.

For a comprehensive account of the AK growth literature, we again refer the readers to

the Handbook survey by Jones and Manuelli (2005).
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