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Abstract

In this paper we propose and study a theory of adaptive consumption behavior under income uncertainty and

liquidity constraints. We assume that consumption is governed by a linear function of wealth, whose coefficients

are revised each period by a procedure that places few informational or computational demands on the consumer.

We show that under a variety of settings the procedure converges quickly to a set of coefficients with low welfare

cost relative to a fully optimal nonlinear consumption function.
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1. Introduction

The standard theory of lifetime utility maximization under uncertainty and liquidity constraints places

enormous informational and computational demands on the consumer. Carroll (2001) argues that “when there

is uncertainty about the future level of labor income, it appears to be impossible under plausible assumptions

about the utility function to derive an explicit solution for consumption as a direct (analytical) function of the

model’s parameters”. Similarly, Allen and Carroll (2001) admit that “finding the exact nonlinear consumption

policy rule (as economists have done) is an extraordinarily difficult mathematical problem”. This problem

raises two closely related questions. First, are there simpler rules that have low welfare costs? And, second,

can consumers learn the optimal rule or a simple low-cost rule? While the answer to the first question has

been generally positive (see Akerlof and Yellen, 1985a,b; Allen and Carroll, 2001; Cochrane, 1989), the second

one has only been addressed in a few papers with negative results (see e.g. Allen and Carroll, 2001; Lettau and

Uhlig, 1999).

In this paper, we provide a positive answer to the second question by proposing an novel adaptive theory

of consumption behavior. Our approach, in the spirit of Simon (1990), Arthur (1994) and Clark (1997), places

limited computational and rationality demands on the consumer. Using the basic setup of Allen and Carroll
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(2001) we show that consumers who use this adaptive mechanism are able to learn a rule with a low welfare

cost after a few periods. In particular, we show that constant-relative-risk-aversion consumers who follow a

linear consumption rule in wealth and use our proposed algorithm, which adaptively adjusts the parameters of

their rule, lose less than 0.5% of the equivalent consumption of the fully rational consumption rule within 500

periods with a probability higher than 0.9. Furthermore, we show that under social learning, the time required

to attain a loss of 0.5% falls to less than 100 periods for some parametrizations. Additionally, the mean and

median welfare losses in a population, under both individual and social learning, fall to around 1% in less than

25 periods.1

Our approach and results stand in sharp contrast with the previous literature. Lettau and Uhlig (1999) use

a variant of Holland’s (1992) classifier system, in which they call the measure of a rule’s success its “strength”.

In each period after a rule has been used, its strength is adjusted partially towards the sum of the immediate

utility attained under the rule last period plus the discounted strength of the rule that has succeeded it. They

show however that the classifier system does a poor job of approximating optimal consumption behavior, even

when the optimal consumption rule is available to the consumer. Allen and Carroll (2001), on the other hand,

assume that the consumer is able to perform what amounts to a Monte Carlo simulation to evaluate each rule.

They show that this procedure, instead of being quick and simple, actually needs 4 million periods in order to

find the optimal linear rule in their parameterization.2

We follow Allen and Carroll in restricting consumers to rules that are linear in current wealth (for their

parameterization they show that the optimal linear rule is almost as good as the fully optimal rule).3 But

instead of responding to a measure of cumulative discounted utility, we assume that the consumer adjusts her

rule gradually in response to the difference between the immediate marginal utility implied by the rule and the

discounted marginal utility of the consumption experienced next period. In effect our criterion of success is

the ex post Euler equation error, and our algorithm operates like a stochastic approximation (see Robbins and

Monro (1951), Ljung (1977) or Kushner and Yin (2003)) for solving the consumption Euler equation.4

Although our approach presumes an awareness of sophisticated notions of Euler equations, nevertheless the

1In an independent paper, Evans and McGough (2009) also address the question of adaptive approximation to optimal in-
tertemporal choice. They present a procedure for updating expectations that is asymptotically fully optimal in a linear-quadratic
environment, given that the decision maker knows enough about her environment to specify the correct functional form of her
policy function. By contrast, we have found an adaptive procedure for updating the parameters of the policy function that works
“reasonably well” even outside a linear-quadratic environment when the decision-maker does not know the correct functional form.
Özak (2013) studies our algorithm under more general assumptions and shows that convergence occurs quite generally.

2Allen and Carroll use a 5% threshold in order to assume the optimal linear rule has been found successfully. Under this
assumption they require 1 million periods in order to get a success rate of 0.75 and of 4 million to get at least a success rate of 0.85.

3Padula (2010) presents a family of two parameter non-linear consumption functions that are “almost” fully optimal. His
purpose is to use this functional form in order to simplify the computation of the rational solution by economists. His framework
might provide a new avenue to learning the optimal consumption rule.

4The idea that the opportunity cost of current spending could be learned adaptively through experience rather than calculated
ex ante was suggested by Leijonhufvud (1993) in the context of Marshallian demand theory. The ”micro-based” model in Howitt
(1992), as well as the learning models in the New Keynesian DSGE literature (Woodford (2003), pp.261-9) also suppose that people
revise their planned consumption in direct response to Euler equation errors.
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informational and computational requirements of our algorithm are very low. Moreover, these requirements are

independent of the size of the set of rules or states, which make it a good candidate for an adaptive procedure

under bounded rationality for the problem at hand. In contrast, both requirements are increasing in the number

of rules and states for Lettau and Uhlig and for Allen and Carroll. The reason for this difference is that in

our algorithm a consumer needs to revise the two parameters of her linear rule each period, based only on its

performance last period, whereas in the other papers she must keep track of the past performance of a large

number of rules under all states.

In addition to our baseline simulations, we generalize our mechanism in order to study the effects of social

learning, relaxation of credit constraints, and changes to the consumer’s income process. Our brief analysis of

social learning suggests that when imitation is allowed for, both the mean and median welfare losses become

small even faster. On the other hand, we find that relaxing the credit constraint diminishes the incentives for

consumers to learn a good rule, and thus slows down their learning process, an effect observed by Brown, Chua,

and Camerer (2009) in their experiments on saving behavior. Finally, we deal with the problem of changes in

consumer’s environment, in particular, her income process. We show how our procedure can deal with the Lucas

critique by making the consumer aware of regime changes. Furthermore, since for some parameterizations she

uses a constant gain adjustment procedure, her ex post reaction to a regime change will often be quick and in

the appropriate direction even when she is not aware of the change.

Our results show that the use of non-rational/behavioral consumption theories does not necessarily imply

costly behavior by agents.5 This is especially important for agent-based computational economics (ACE),

where the macroeconomy is studied by endowing each agent with a set of adaptive behavioral algorithms.6

Rejection of the standard paradigm of the rational agent has left ACE practitioners without a “good” model

for consumption decisions, thus creating a proliferation of consumption behavior assumptions in the ACE

literature.7 Regrettably, besides being “simple”, very little is known about the welfare properties of these

behavioral rules. Furthermore, the literature has not used adaptive algorithms, like ours, which will allow

agents to adapt to their environment through learning. On the contrary, modeling consumption decisions based

5In a similar vein, Feigenbaum, Caliendo, and Gahramanov (2011) show that irrational behavior can generate higher welfare in
certain market settings.

6 Tesfatsion (2006a) provides a much fuller account of ACE methodolgy. Advocates of ACE macro include Leijonhufvud (1993),
Chen (2003), Axtell (2006), Leijonhufvud (2006), Tesfatsion (2006b), Colander, Howitt, Kirman, Leijonhufvud, and Mehrling
(2008), LeBaron and Tesfatsion (2008), Howitt (2008), Farmer and Foley (2009) and Buchanan (2009). ACE macro models have
been developed by Albin and Foley (1992), Basu, Pryor, and Quint (1998), Bruun (1999), Arifovic (2000), Howitt and Clower
(2000), Bruce (2003), Bruun (2003), Dosi, Fagiolo, and Roventini (2005), Howitt (2006), Ashraf, Gershman, and Howitt (2013),
Chan and Steiglitz (2008), Canzian (2009), Ashraf, Gershman, and Howitt (2011), Delli Gatti, Desiderio, Gaffeo, Cirillo, and
Gallegati (2010), Raberto, Teglio, and Cincotti (2010) and the papers included in the March 2001 issue of the Journal of Economic
Dynamics and Control, among others. Early precursors include Eliasson (1977) and the microsimulation-based macro models of
Orcutt, Caldwell, and Wertheimer II (1976) and Bennett and Bergmann (1986).

7For example, almost every one of the papers cited in footnote 6 above uses a different algorithm. Some eliminate the
consumption-saving decision by assuming there are no durable household assets (Albin and Foley (1992), Bruce (2003), Dosi
et al. (2005)) or limit its scope by assuming only two period lives (Arifovic (2000)) and the rest have various ways of recognizing
that a household’s consumption will depend on such factors as income, financial assets and interest rates.
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on our theory ensures that consumption behavior

1. has low informational and computational requirements,

2. implies low welfare costs, and

3. generates observable behavior that conforms with empirical evidence.

These criteria are essential in ACE, but also in other macro-modeling frameworks. Criterion (1) is mo-

tivated partly by the need to have reasonably fast runtimes in computer simulations with a large number of

heterogeneous agents, and partly by the observation (see for example Clark (1997)) that human behavior has

evolved under conditions requiring fast reaction to a wide variety of events, such as encounters with potential

predators or prey, with little time for processing information. Criterion (2) is likewise motivated by the idea that

poorly performing algorithms are unlikely to survive evolution and adaptation. Criterion (3) is self-evidently

important.8 By using our theory and similar methods, ACE practitioners can rid themselves of one of the main

critiques they are confronted with.

The paper proceeds as follows: section 2 presents the model and the different consumption rules we use,

section 3 describes the adaptive algorithm and its properties, section 4 derives our measures of welfare, section

5 shows the results of simulations and section 6 concludes. All tables and figures are presented in appendix A.

2. The setting

A consumer’s lifetime utility is U =
∑∞

t=1 δ
tu(ct), with an isoelastic flow utility function:

u(ct) =





c
1−θ
t −1
1−θ

if θ 6= 1

ln ct if θ = 1

(1)

and

0 < δ < 1. (2)

She starts each period t with wealth wt, of which she consumes ct. She faces a liquidity constraint

ct ≤ wt (3)

and her wealth evolves according to the flow budget constraint

wt+1 = wt − ct + yt+1, (4)

8Descriptive realism of algorithms is not typically sought in ACE models, which often rely on such techniques as neural nets
and genetic algorithms that do not map readily into the observable procedures of real people.
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where yt+1 is next period’s income. (We assume for simplicity that the interest rate on saving is zero.) Income

is an independently and identically distributed random variable with discrete support
{
yi
}n

i=1
where 0 < y1 <

y2 < . . . < yn and the probability of each yi is pi > 0.

The consumer’s behavior is determined by a consumption function

ct = c (wt) , (5)

which obeys the liquidity constraint (3). We assume that the consumption function is derived from a “notional”

consumption function, ĉ (wt) that ignores the liquidity constraint, so that

c (wt) = min {ĉ (wt) , wt} . (6)

We refer to the notional function ĉ(·) as the consumer’s “rule”. In what follows, we assume that ĉ(·) is increasing

and concave, and satisfies

Assumption A. There exists w̃ > 0 such that ĉ(w) > yn for all w > w̃,

which guarantees that the consumer’s wealth will eventually be bounded above by w̃. Specifically, theorem

1.2 in Özak (2013, p.7) assures that under the above assumptions there is a unique invariant wealth distribution

π, whose support is contained in the interval
[
y1, w̃

]
.

Assume also that

ĉ (0) ≥ 0, and (7)

ĉ (w) = w for a unique w ∈
(
y1, yn

)
(8)

This implies that when wealth surpasses w the consumer is no longer liquidity constrained, so that9

c (w) =





w if 0 ≤ w ≤ w

ĉ (w) < w if w > w

(9)

We refer to w as the consumer’s “crossover wealth”. The assumption that w > y1 requires the liquidity

constraint to be binding for at least some observable wealth levels in the long-run; otherwise the consumer

9Proof : (a) If 0 ≤ w ≤ w, then by concavity ĉ (w) ≥ w−w
w

ĉ (0) + w
w
ĉ (w), (w > 0 by (8) and the assumption that y1 > 0). So

by (7) and (8) we have ĉ (w) ≥ w, which implies that c (w) = min {ĉ (w) , w} = w.
(b) If w > w, then to show that c (w) = ĉ (w) < w suppose on the contrary that either c (w) 6= ĉ (w) or ĉ (w) ≥ w. In either case

we have ĉ (w) ≥ w, so by the uniqueness assumed in (8) we have ĉ (w) > w. But, by concavity ĉ (w) ≥ w−w
w

ĉ (0) + w
w
ĉ (w) so by

(7) ĉ (w) > w, which contradicts (8).
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would start each period, after the first, with enough wealth that she would never be liquidity constrained.10 On

the other hand, the assumption that w < yn requires the consumer to save with positive probability in the long

run; otherwise (given Assumption A) she would in finite time end up with ct = wt = yt for all t. We call a rule

ĉ(·) admissible if it is increasing, concave and satisfies (7), (8) and Assumption A. The adaptive algorithm we

specify below for revising the consumer’s rule ensures that the rule always remains admissible. In the next two

subsections we give conditions under which the fully optimal consumption rule and a linear rule are admissible.

2.1. Optimal consumption

The optimal consumption function c∗ (w) can be derived from the dynamic programming problem:

V (w) = max
c≤w

{u (c) + δEyV (w − c+ y)} (10)

where Ey is the expectation with respect to income y. This corresponds to the notional function

ĉ∗ (w) = argmax
c

{u (c) + δEyV (w − c+ y)} , (11)

which we refer to as the “fully optimal” rule. For future reference, note that the first-order condition defining

ĉ∗ (w) is

u′ (c) = Eyq, (12)

where q is the marginal continuation value

q = δu′
(
c∗
(
w − c+ y

))
(13)

whose value is not known when c is chosen because it depends on next period’s income y.

It is known that under our assumptions the fully optimal rule ĉ∗(·) is indeed increasing and concave, that it

satisfies (7) and Assumption A, and that for δ close enough to unity (i.e. if the consumer is patient enough) it

also satisfies (8) and hence is admissible.11 From now on we assume that the consumer is indeed patient enough

that ĉ∗(·) satisfies (8) and is thus admissible.

10This follows directly from the liquidity constraint (3) and the flow budget constraint, which together imply that wt cannot fall
below y1 for t ≥ 1.

11(See e.g. Carroll, 2004; Carroll and Kimball, 1996; Özak, 2013)
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2.2. Linear consumption

Our approach to modelling consumption follows Carroll and Allen (2001) in assuming that each consumer’s

consumption rule is linear, with coefficients γ = (α, β):

ĉ γ (w) = α+ βw. (14)

In order for ĉ γ(·) to be increasing and to obey (7) we need α ≥ 0 and β > 0. In order to satisfy (8), given that

y1 > 0, we also need α > 0 and β < 1. The consumer’s crossover wealth is then

w γ =
α

1− β
> 0 (15)

and the consumption function can be written as

cγ (w) = min {wγ + β (w − wγ) , w} (16)

Assumption (8) also requires

(1− β) y1 < α < (1− β) yn. (17)

We say that a coefficient vector γ is admissible if the rule ĉ γ(·) is admissible. It is straightforward to demonstrate

that:

Proposition 1. The coefficients (α, β) are admissible if and only if α > 0, β < 1 and they satisfy (17).

The set of admissible coefficients is denoted A and is illustrated by the shaded triangular area in Figure 1 below.

3. Revising the coefficients

At each date t a consumer is free to choose a new linear consumption rule ĉ γt(·), with coefficients γt = (αt, βt).

The basic idea behind our proposal is to suppose that in choosing these coefficients she is attempting to solve

the Euler equation (12), which can be written as

Eyqt+1 = u′ (α+ βwt) , (18)

but she doesn’t know how to form a rational expectation of qt+1 = δu′ (ct+1). Of course, qt+1 will depend on the

distribution of income, her current choice of coefficients and her current wealth wt, which together will determine

the distribution of wt+1, and on her future choice of coefficients, which together with wt+1 will determine ct+1.

But she is unable to process all this information.
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Instead, we assume she first computes the “error” she made in period t− 1

et−1 = qt − u′ (αt−1 + βt−1wt−1) (19)

where qt is the realized marginal continuation value

qt = δRu′ (ct) (20)

Clearly if et−1 = 0 then if she had known that the marginal continuation value was going to be qt she would

have been happy with her choice of coefficients, because it led her to choose a notional consumption function

whose marginal utility was just equal to its marginal cost. In this sense, even with hindsight she did not make

a mistake. On the other hand if et−1 6= 0 she made an ex post error of consuming too much (if et−1 > 0) or too

little (if et−1 < 0).

Accordingly, we suppose that her revisions will depend on this error according to the following multi-step

procedure. She begins with a symmetric 2 × 2 “moment” matrix Mt−1, and then goes through the following

steps:

Algorithm.

1. Choose a new moment matrix Mt using the formula

Mt = (1− ε)Mt−1 +
[
ξet−1u

′′′ (αt−1 + βt−1wt−1) + u′′ (αt−1 + βt−1wt−1)
2
]



1 wt−1

wt−1 w2
t−1


 (21)

where ε ∈ [0, 1) is a constant gain parameter, ξ ∈ {0, 1} is a parameter allowing further simplification of

the procedure.12

2. If Mt is well conditioned 13 choose a provisional coefficient vector γp
t+1 =

(
αp
t+1, β

p
t+1

)
according to



αp
t+1

βp
t+1


 =



αp
t

βp
t


+M−1

t [et−1u
′′ (αt−1 + βt−1wt−1)]




1

wt−1


 (22)

3. If Mt is not well conditioned or if the provisional γp
t+1 chosen in step 1 is not admissible, choose the

12If ε = 0 this algorithm can be written as a decreasing gain algorithm. If ξ = 0 then what would have been a quasi-Newton
method, as explained in the appendix Appendix C, becomes what is known in numerical analysis as a quasi-Gauss-Newton method,
which obviates the need for calculating the third derivative u′′′.

13Specifically, if the condition number r2 (Mt) is less than the conventional limit 1010, indicating that the matrix is reliably
nonsingular. See Judd (1998).
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nearest vector to γt that would have eliminated the most recent error, i.e. let

γp
t+1 = argmin

γ
‖γ − γt‖

2
subj to qt − u′ (α+ βwt−1) = 0 (23)

4. If γp
t+1 is still inadmissible, set γp

t+1 = γt.

5. Shrink the step size by a factor η ∈ (0, 1] and set the new coefficients according to

γt+1 = γt + η
(
γp
t+1 − γt

)
. (24)

Appendix Appendix C gives some motivation of how one can interpret this algorithm.

3.1. Informational and computational requirements

The procedure outlined above requires a certain amount of sophistication, in the sense that moment ma-

trices, condition numbers, and Euler equations are not familiar household names. Still, most of these can be

translated into everyday language that most people will be familiar with. Additionally, the consumer must also

be sophisticated enough to realize that if her crossover wealth is less than y1 then her liquidity constraint will

never bind and if her crossover wealth is greater than yn then she will eventually reach a situation in which she

never again saves. Moreover she needs to realize that both of these outcomes are suboptimal for someone with

her rate of time preference. Although this level of economic sophistication might seem excessive for a boundedly

rational consumer, we show below that dispensing with it, i.e. allowing for rules in a superset of the set of

admissible rules, does not change our results dramatically.

Nevertheless the procedure makes relatively few informational or computational demands on the consumer,

especially in comparison to the demands involved in calculating the optimal consumption function. This is an

important consideration for intelligent behavior in a world where information storage capacity and computational

time are scarce resources. In particular, all the consumer needs to know is her instantaneous utility function,

the gain parameter ε, the shrinkage factor η and the minimal and maximal possible income levels y1 and

yn. Each period she must remember and update only 9 numbers. In addition to elementary addition and

multiplication, she just needs to be able to compute the first three derivatives of her utility function, to determine

the conditioning value of a 2 × 2 matrix and to compute its inverse. Of these, clearly the most stringent

assumption are the last two. We dispense with these in appendix Appendix A, where we assume agents do not

update nor invert the moment matrix. In particular, we assume agents use a constant 2 × 2 matrix M , which

eliminates both the matrix inversion and the computation of its conditioning number, which were performed

in the step 2 of the algorithm. We show in the appendix that removing this additional level of rationality

generally affects the speed of convergence to a good rule. Thus, with some luck in her choice of matrix agents

9



can learn a good rule at similar rates as the original version of the algorithm. Reassuringly, although the speed

of convergence is affected, the convergence still occurs and at faster rates than have been found in the literature.

Thus, in the long-run agents learn a good rule, even in this setting (see also Özak, 2013).

4. Welfare cost

We use two different indices to measure the welfare cost for a consumer of following a specific linear con-

sumption rule rather than the fully optimal rule. Both indices are based on ex-ante equivalent consumption for

a consumer following a certain rule, starting from a randomly assigned wealth; but each index uses a different

probability distribution for assigning initial wealth. The first index uses the stationary distribution implied by

the fully optimal consumption rule, whereas the second one uses the stationary distribution implied by the spe-

cific linear rule. In either case, the index measures the percentage difference in certainty equivalent consumption

between the fully optimal rule and the linear rule. As will be seen, the two indices produce very similar results.

More specifically, suppose that initial wealth w0 is assigned randomly according to some distribution λ. The

ex ante expected lifetime utility of a consumer using the fully optimal rule is given by

EV ∗ ≡

∫

W

V (w)λ(dw) (EV ∗)

where the value function V is defined in section 2 above. Thus we can define the certainty equivalent consumption

of the fully optimal rule as

CE∗ ≡ u−1(EV ∗ · (1− δ)) =
[
1 + (1− θ)(1 − δ)EV ∗

] 1
1−θ

(CE∗)

For any given w0, the expected life-time utility of a consumer using the specific linear rule ĉ γ(w) with parameters

γ = (α, β), is given by

Uγ(w0) =

∞∑

t=0

E0

[
δtu

(
min {α+ βwt, wt}

)]
, (25)

where wt evolves according to the flow budget constraint. So, given the distribution λ of w0, the ex-ante

expected lifetime utility and the certainty equivalent consumption for this specific rule are given by

EV γ ≡

∫

W

Uγ(w)λ(dw) and (EV γ)

CEγ ≡ u−1(EV γ · (1− δ)) =
[
1 + (1− θ)(1 − δ)EV γ

] 1
1−θ

(CEγ)

If the wealth process generated by c∗(w) satisfies Assumption A, then there exists a unique ergodic invariant

distribution over wealth π∗. In this case, let EV ∗
∗ , CE∗

∗ , EV γ
∗ and CEγ

∗ be the values implied respectively by

10



(EV ∗), (CE∗), (EV γ) and (CEγ) when λ = π∗. Thus our first index of welfare cost for a consumer using the

rule ĉγ is

Dγ
1 =

CE∗
∗ − CEγ

∗
CE∗

∗
∗ 100. (26)

If the linear consumption rule satisfies Assumption A, let πγ be the unique invariant distribution determined

by the rule and let EV ∗
γ , CE∗

γ , EV γ
γ and CEγ

γ be the values when λ = πγ . Thus our second index of welfare

cost for a consumer using the rule ĉ γ is

Dγ
2 =

CE∗
γ − CEγ

γ

CE∗
γ

∗ 100. (27)

5. Numerical results

5.1. Baseline scenario

In order to study the behavior of our algorithm, we simulate the model for a set of values of the CRRA

parameter θ and the discount factor δ, using the same income process starting from different initial conditions.

We use the income process studied by Allen and Carroll (2001), which according to these authors “matches

(very roughly) the empirical evidence on the amount of transitory variation in annual household income observed

in the Panel Study of Income Dynamics.” The income process is defined by (y1, y2, y3) = (0.7, 1.0, 1.3) with

probabilities (p1, p2, p3) = (0.2, 0.6, 0.2) respectively. We take δ ∈ {0.9, 0.95}, θ ∈ {1.5, 2, 3.0, 3.5, 4}, which

includes the values Allen and Carroll (2001) assume in their work (δ = 0.95 and θ = 3), η ∈ {0, 0.5}, ξ ∈ {0, 1}

and ε ∈ {0, 0.2}. We evaluate the linear rules in the [0, 2]× [0, 2] space (a superset of the admissible set) with a

grid of 40,000 points, each separated at a distance of 0.01.

5.1.1. Consumption rules and welfare

As a first step, we calculate the optimal consumption function c∗(w) for each parameter configuration,

which we show in Figure 2(a). Given that yn = 1.3, Assumption A is satisfied if c∗(w) = 1.3 for some w,

which the figure shows is true for all our parameters, so there exists a unique distribution π∗ for each parameter

configuration, allowing us to calculate EV ∗
∗ and CE∗

∗ . As can be seen in table E.1, EV ∗
∗ is decreasing in both

δ and θ, while CE∗
∗ is decreasing in θ and increasing in δ. In table E.2 we present the optimal linear rule for

each set of parameters. As can be seen there, all optimal rules imply that Assumption A holds, so we can also

compute EV γ
∗ , CEγ

∗ , EV γ
γ , CEγ

γ , EV ∗
γ and CE∗

γ . Our calculations show that the behavior of all EV ’s and EC’s

is similar to EV ∗
∗ and CE∗

∗ with respect to the underlying parameters, i.e. all EV ’s decrease in both θ and δ,

while all EC’s decrease in θ and increase in δ.

We find that most linear rules in [0, 2]× [0, 2] have a low welfare cost, according to both our indices. Figure

D.6 presents the welfare loss surface for the case with parameters θ = 3.5 and δ = 0.95, which is qualitatively
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very similar to the other cases.14 Furthermore, as figure D.7 shows, the set of consumption rules that achieve

a percentage deviation less than or equal to 0.5% under both the optimal and the actual distribution of initial

wealth is compact and of positive Lebesgue measure. The optimal linear rule belongs to this set, has a marginal

propensity to consume in the range 0.2-0.4 and its costs are in the range 0.2%-0.3% for our set of parameters

(see table E.2), which is very low and generalizes the case studied by Allen and Carroll (2001).

Table E.2 also shows the loss incurred when the consumer follows the “consume everything” γ = (0, 1), and

the expected loss of taking a rule at random from the whole set of parameters and from the admissible set. As

can be seen there, if the consumer figures out that she should always have a rule in the admissible set, she can

lower her expected loss by almost 40%. On the other hand, if she follows the simplest of all rules, namely the

“consume everything” rule, which according to Cochrane’s (1989) calculations also produces tiny losses when

the agent’s income process matches that of quarterly aggregate income in the United States, she can (in all but

one case) lower her loss even below her expected loss in the admissible set. This is an interesting result, since it

can explain why in certain environments people undersave and fail to learn a better rule than simply consuming

everything. Experimentation in such environments will generally make them worse off, reinforcing the status

quo. (As will be seen below however, the“consume everything” rule does not fare well when we consider different

income processes.)

5.1.2. Adaptive behavior

In order to understand the behavior of the algorithm we run 20,000 simulations for each parameter config-

uration with random initial wealth and a random initial admissible linear rule. Figures 8(a) and 8(b) show the

behavior of the distribution of welfare losses Dγt

1 and Dγt

2 across time for the simulations with ε = 0, ξ = 1 and

η = 0, θ = 3.5 and δ = 0.95, where Dγt

1 and Dγt

2 are calculated for the rule with parameters γt = (αt, βt). The

behavior of the distribution is summarized in this figure by the maximum and minimum loss (black lines), the

mean (blue), the median (green) and the 25-th, 75-th, 90-th, 95-th, 99-th and 99.9-th percentiles (red lines).

Notice that the values of all these measures decrease for the first 100-250 periods and then follow a flatter tra-

jectory, which seems to indicate that within that time frame the algorithm achieves its stationary distribution,

which is more concentrated around the mean.

In figures 8(c) and 8(d) we present the behavior of the consumption rule parameters and their distribution.

The story here is also similar, showing convergence towards a long-run distribution of the parameters and a

higher concentration of the probability of those parameters around their mean in roughly 250 periods or less.

In order to better appreciate what is happening, in table E.3 we show for periods 0, 50, 100, 250 and 500,

14Lack of space prevents us from including the figures for all cases. For this reason here and below we present only the figures
for the particular case with θ = 3.5 and δ = 0.95, since it is also the case with the slowest rates of convergence in the adaptive
analysis. The interested reader can see all the figures in the supplemental material to the paper available on the web.
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the probability of having a loss less than or equal to 0.5%, i.e. the probability that the consumption rule in

that period belongs to the sets identified in figure D.7. As can be seen in this table, the probability rises from

almost zero in period 0 for most parameter configurations to values above 30-40% in period 50, to above 40-60%

in period 100, 80% in period 250 and above 90% in period 500. Clearly there is much variation in the speed

of convergence to these sets, with the cases (δ, θ) = (0.9, 1.5) and (δ, θ) = (0.95, 1.5) being the ones with the

highest rates of convergence and the cases (δ, θ) = (0.9, 4) and (δ, θ) = (0.95, 3.5) with the slowest convergence

rates. This seems to be explained by the effect that both increases in δ and in θ have on the size of the set

of parameters that achieve a loss of less than 0.5%. However, it is not clear how changes in the underlying

parameters affect the speed of convergence, though this relation appears to be highly non-linear. In part, this

seems to be generated by the fact that changes in θ and δ have similar effects on the curvature of c∗, where

increases in δ or in θ make the function more concave. So, two functions, one with a high value of δ and a low

θ and the other with a low δ and high θ might be very similar on the domain of interest (see e.g. the rational

consumption functions for (δ, θ) = (0.9, 4) and (δ, θ) = (0.95, 2), or, (δ, θ) = (0.9, 3) and (δ, θ) = (0.95, 1.5)), so

that their respective rates of convergence are also similar.

For most macroeconomic purposes what matters is the central tendency of consumption demand; it would

be too much to ask of a macro model that it account for individual outliers. Tables 6 and 7 show that the

average and median welfare losses falls to within about 2% after only 10 years, and to within about 1% after 25

years. In this sense, it takes little time for the central tendency of aggregate consumption under our algorithm

to come quite close (in expected utility) to what full optimization would predict, suggesting that an ACE macro

model that portrayed a variety of consumers using this algorithm, but differing in random initial conditions,

would quickly exhibit the same aggregate consumption as if they were all near-rational agents. At the same

time, such a model would allow for considerable heterogeneity across consumers.

We repeated the simulations assuming different values of (ε, η, ξ). Given the overall similarity of the results

we do not present them here in detail, but limit ourselves to highlighting the major differences with our previous

simulations.15 Under this new set of parameters, the behavior of the distributions of losses and parameters in

terms of convergence to a stationary distribution within 250 periods was similar to before, though the dispersion

around the mean increased and the speed of convergence decreased, especially for the “constant gain” cases with

ε = 0.2. One striking effect of constant gain is that the probability of losses less than or equal to 0.5% fell, in

some cases dramatically, and stayed stationary at that level without any tendency to converge towards 1 as was

the case before. Still, this probability is bounded away from zero for all the simulations we realize. In table

E.4 we compare the different trajectories for the case θ = 3.5 and δ = 0.95, which is the case with the slowest

convergence rate in our baseline simulations. Table 9 shows that again the median welfare losses fall to within

15These results can be obtained from the authors by request.
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2% after 10 years and to within about 1% after 25 years under all parameter configurations, although Table 8

indicates that average losses remain somewhat higher than this.

5.1.3. Social Learning

We also study the effects of allowing consumers to learn through social interaction. To do so, we set up

consumers on circles of 25, 50, 100, 200 individuals and allow each consumer to interact with his left, right or

both left and right neighbors. Each consumer can see her neighbor’s γp
t+1. Let i denote the consumer and Ni

the set of neighbors of consumer i, φ ∈ [0, 1], then instead of ending with (Possible Final Step) we end with

γi,t+1 = ηγi,t + (1− η)
(
φγp

i,t+1 +
1− φ

|Ni|

∑

j∈Ni

γp
j,t+1

)

This crude form of imitation, in which people (partially) mimick neighbors without trying to distinguish

between successful and unsuccessful neighbors, actually speeds up convergence significantly, as can be seen in

tables E.5, E.10 and E.11, demonstrating another aspect of the “wisdom of crowds.”

5.1.4. Credit constraints

Additionally, we analyze how the credit constraint affects learning by relaxing the credit constraint and

allowing consumers to consume at most wt +B every period, where we take B ∈ {0.1, 0.3}. These simulations

show that the more the constraint was relaxed the slower consumers seem to learn. This result can be seen as

a confirmation of the conjecture proposed by Satz and Ferejohn (1994), who argue that the more constrained

consumers are, the more powerful their incentives to behave rationally. Overall we find that the behavior of

this new set of simulations is similar to the ones described previously, i.e. the less consumers are constrained

the slower they learn, but they do learn nonetheless.

5.2. Shocks to income

In all the previous simulations we held the income process fixed and changed the different parameters of the

model. In this subsection we hold the parameters fixed at θ = 3.5, δ = 0.95, B = 0, η = 0, ε = 0, ξ = 1 and

φ = 1, but change the income process. We analyze 4 additional income processes and compare the behavior

of the algorithm and the implied welfare costs under these new processes with the one implied by the original

process. In order to have comparable results across simulations, we now allow wealth to be in the range [0, 10]
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and consider a grid of wealth levels 0.0025 apart. The income processes we consider are:

Y 1 = (0.7, 1, 1.3) P 1 = (0.2, 0.6, 0.2)

Y 2 = (1.4, 2, 2.6) P 2 = (0.2, 0.6, 0.2)

Y 3 = (1, 1.4, 2, 4.1) P 3 = (0.1, 0.2, 0.6, 0.1)

Y 4 = (0.3, 0.7, 1, 2.1) P 4 = (0.05, 0.25, 0.6, 0.1)

Y 5 = (0.1, 0.7, 1, 1.3, 1.9) P 5 = (0.05, 0.15, 0.6, 0.15, 0.05)

For these income processes table E.12 shows some basic statistics, figure 5(b) the optimal consumption rules, and

table E.13 presents the losses and optimal rules. As can be seen there, the differences in the income processes

generate quite big and striking differences in the expected losses a consumer faces under different rules. For

some income processes, e.g. Y 4 and Y 5, very few linear rules have low expected losses;16 using a random rule,

or the consume everything rule, fares badly in these cases because the lowest income is close to zero, generating

huge losses for the consumer that ends up being wealth constrained. Still, the optimal linear rule for each

process has a relatively low associated loss. Furthermore, the marginal propensity to consume stays in the same

range across cases (ca. 0.17-0.25). These results imply that a simple adaptive algorithm, as the one proposed

in this paper, can have big welfare effects for boundedly rational consumers, if the algorithm converges to low

welfare losses in general.

Table E.14 shows the evolution of the probability of having a rule with a loss lower than 3% when using the

algorithm. We increased the range to 3% given that for some of the income processes no rule has a loss less

than 0.5% and almost no rule has a loss less than 1%. As can be seen in this table, the qualitative dynamics

are similar to those we found in our original setup, so that the rate of convergence is similar to our baseline

simulation for most processes. The exception is Y 5, for which convergence requires close to double the time of

the other scenarios.

Until now, we have assumed that consumers do not use any other information of the income process except

its lowest and highest possible levels. One way in which this might slow convergence to the optimal rule is

that the consumer cannot distinguish a situation where the Euler error et−1 is high because of a bad income

draw from a situation in which et−1 is high because of a bad rule. Furthermore, the consumer would not notice

any changes in the stochastic process determining income, if these do not affect the range of values that can

occur. This is especially important in the decreasing gain case (ε = 0), since this would imply that if she had

been learning for while, it would be difficult for her to change her behavior. On the other hand, if ε > 0 the

16This can be seen in figures E.15-E.16 of the supplemental material
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consumer’s behavior never settles down, so that she will incorporate any changes in her environment into her

behavior, even if she does not realize there has been a change.

In order to deal with this issue, we now assume that consumers update their parameters in the same way

as before, but change the manner in which they calculate the continuation value qt−1 in (Step 2). Instead of

using the realized continuation value δu′ (ct−1), a consumer uses the average realization of the continuation

value under their most recent parameters, i.e.

qt−1 = δ

n∑

i=1

piu′(cit−1), (28)

where cit−1 is the amount she would have consumed if she had received income level yi in period t− 1, i.e.

cit−1 = min
{
αt−1 + βt−1(wt−2 − ct−2 + yi), wt−2 − ct−2 + yi

}
, i = 1, . . . , n. (29)

This change requires the consumer to know the whole distribution of the income process, instead of just knowing

y1 and yn. Table E.15 shows the evolution of the probability of being at a loss lower than 3%. As expected,

the time to convergence is generally lowered, or equivalently, the probability of being close to the optimal rule

is increased for any period for all income processes studied.

This modification to our algorithm innoculates it against the Lucas critique. That is, the consumer can now

respond immediately to a change in regime by modifying her behavior accordingly. To see how this works, we

analyzed the effects of a shock to income in which the income process changes to some other one in the set of

processes we have studied, and then 25 years later returns unexpectedly to the original process, assuming that

the consumer is informed immediately of each change in the income process. Given that we have assumed that

consumers are sophisticated enough to know that the optimal rule lies in the set AY of admissible rules, which

depends on the income process, we need an assumption specifying the way in which consumers react to the new

information of a change in the income process. One possible assumption is that consumers dismiss all their

accumulated experience up to that point and start the process from scratch. This amounts to almost the same

exercise we have done in the previous simulations, except that the initial distribution of wealth will be closer

to the stationary distribution of the original process. Given the fact that initial wealth conditions do not affect

the long-run evolution of the system, we do not need to analyze this scenario again.

Instead, we assume that consumers keep their marginal propensity to consume β, while changing the intercept

α in a way that is commensurate with the change in the scale of their income. More specifically, given that the

old rule was admissible, the admissibility condition (17) implies that the intercept can be written as a convex

combination of the two limiting values in the admissible set given β; i.e. that α = (1− β)
(
λy1 + λyn

)
for some

λ ∈ (0, 1) . So we assume that the new intercept will be given by the same convex combination of the new
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limiting values:17

α′ = (1− β)
(
λy′1 + λy′n

)
. (30)

Once the consumer starts getting new data on Euler equation errors she will start revising her rule as before.

Figures D.9-D.10 show the dynamics when consumers’ income follows Y 1 in periods 1-25 and 51-100, while

it follows Y i, i 6= 1 during periods 26-50. As can be seen there, a permanent shock to income has various

effects. First, the distribution of consumption, wealth, (αt, βt), and losses become more disperse during the

shock. Second, welfare losses overshoot, and only slowly decrease towards the minimum loss. Interestingly, the

effect on welfare is bigger on the average than on the median. This comes from an asymmetry in the distribution

of losses, with very big losses from worse than average rules but small gains from better than average rules.

Third, although the effect on consumption comes mostly from the change in the value of the intercept, which

jumps discretely at the moment of the shock, it is the distribution of the marginal propensity to consume that

changes the most during the shock period.

5.3. Some comments

In order to better appreciate how meaningful these results are, it is useful to compare them with the previous

literature. In particular, Allen and Carroll (2001) assume that if an agent’s loss is less than 5%, then the agent

has learnt the optimal rule. They find that the probability of being at a loss of less than 5% is about 60%

only after at least 1,000,000 periods. This contrasts with the speed of convergence for our algorithm, which

in less than 250 periods converges with probability close to 1, to a welfare loss of less than 1/2%.18 This is 3

orders of magnitude faster, even though our rule space is 100 times larger.19 In a space the size of ours, their

algorithm would require 100 times more periods to converge, i.e. about 5 orders of magnitude more! This is a

major problem of all algorithms which use a comparison among different rules; the larger the number of rules,

the more time is required to analyze their behavior, and also the more computational capacity and memory is

required to keep track of the information for all these rules.

A second point that needs to be taken into account, especially when comparing with other stochastic learning

schemes, like the ones employed by Lettau and Uhlig (1999) and Yildizoglu, Sénégas, Salle, and Zumpe (2012),

is the probability of assigning a good rule to an agent independent of her learning mechanism. Given that in

our algorithm agents start with a random rule, the probability that they start with a rule that generates a

1/2% or less loss is 0.2%, while the probability of getting the optimal rule is 1/40401 = 0.0025%. So, in our

population of 20000 agents, the probability that no agent has a loss less than 1/2% or the optimal rule is 1.

17This scale measure was chosen for its simplicity; other measures such as the average would presumably produce comparable
results.

18In appendix Appendix B we show that our welfare cutoff is comparable to the cutoff levels based on their welfare measure.
19Allen and Carroll (2001) have only 400 possible rules, while our discretized rule space has 40401 rules.
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On the other hand, in Yildizoglu et al. (2012) the probability that an agent starts with the optimal rule is

1 − (380/400) = 5% and the probability that none of them has it is (380/400)20 = 36%. Thus, in their setting

learning is simplified by the high probability that the rule is already in the population. Furthermore, it also

explains why their social learning works that well: if an agent was unlucky enough not to have the optimal rule

at the start, the probability that she will copy it from one the other agents is still very high. So, although their

algorithm converges to the optimum at a speed at most one or two orders of magnitude slower than ours, their

setup favors fast convergence and learning, which is not the case in our setting. Social learning in our model

increases the speed of learning only through the joint learning process, not by contagion of the good rule.

6. Conclusion

Models of bounded rationality and learning have recently flourished in economics, but the study and appli-

cation of these ideas to approximate solutions of stochastic dynamic programming problems is still an emerging

area. In particular, the study of consumption-saving decisions under uncertainty and liquidity constraints has

been pursued by only a couple of papers with limited or negative results.

In this paper we have proposed an adaptive algorithm based on Euler equations and have studied its behavior

through time using simulations. The algorithm economizes on information and computation, and we have shown

that it allows consumers to have low welfare losses with high probability in a short time. Furthermore, we have

generalized our adaptive procedure in order to allow for social learning, relaxation of credit constraints, and

changes in the environment. An additional feature of our algorithm is that it allows for considerable individual

heterogeneity, while at the same time causing the average or median consumer to behave (nearly) optimally

almost all the time. Thus, rational behavior is an emergent property in our model.

All of this is accomplished with people making adaptations only once a year, and with an income process

calibrated to annual data. It would be interesting to analyze the model under parameterizations that allowed

for updating of the rule to occur on a monthly or quarterly basis, under calibrations that matched the monthly

or quarterly time series of individual income. If the time for convergence is still of the same order, this would

strengthen the case for using our algorithm for modeling consumption.

If further exploration of the model proves successful, it would be a step in the direction of an ACE approach

to macroeconomics, along the lines advocated by Weintraub (1979), Leijonhufvud (1993) and others.20 This

bottom-up approach would endow agents not with decision rules that are always perfectly tailored to their

specific environment, but rather with simple all-purpose rules that allow the agent to adapt in a plausibly

opportunistic yet imperfect fashion to any given environment. This approach would allow us to ask how an

20In particular, Weintraub (1979) argues that “a successful reconciliation of micro and macro might entail a return to Marshallian
price theory, or a well worked out statement of individual behavior in a non-optimizing framework” (Weintraub, 1979, p.157).
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economic system works to coordinate, for better or worse, the independent decisions of heterogeneous interacting

agents; a question that the more conventional top-down approach evades by restricting attention to equilibrium

states.
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Appendix A. Results under constant M

In the text we argued that using a constant matrix M in the algorithm does not qualitatively change the

results.21 In this section we present results based on the same type of simulations as the main text, but change

the algorithm as follows: Instead of step 1, now we fix a 2 × 2 symmetric matrix M , which has two distinct

positive eigenvalues.22 Agents use now the following modified step 2:



αt

βt


 =



αt−1

βt−1


+ κtM

−1 [qt−1 − u′ (αt−2 + βt−2wt−2)]u
′′ (αt−2 + βt−2wt−2)




1

wt−2


 (Step 2’)

where κt is either (a) a decreasing sequence of positive real numbers, such that
∑

κt = ∞ and
∑

κ2
t < ∞, or

(b) equal to some constant κ.

We will focus on simulations where θ = 3.5 and δ = 0.95, which generated the slowest rates of convergence in

our previous simulations.23 Although our choice of matrix M and the sequence {κt} is arbitrary, results shown

by Özak (2013) ensure that they hold more generally.

As a first example, let

M = 425 ·




1 0.975

0.975 1


 , κt = 0.35.

Figure A.1 shows the results of this simulation. Comparison with figure D.8 shows that the results are basically

unchanged, even though our agents now have much lower levels of rationality. In particular, notice that again the

probability of having a loss lower than 1/2% is close to 90% within 500 periods. Furthermore, the probability

of having a loss of welfare lower than 1/2% is higher in this case than when agents had the higher level of

rationality necessary to use the original matrix Mt.

Although the previous example performed better than the original analysis, it does not imply that this will

always be the case. Özak (2013) shows that the choice of matrix M and of sequence {κt} affect the rate of

convergence to the optimal linear rule. To see this, we additionally consider the following cases:

M = m ∗



1 1

2

1
2 1


 , m =





25

125

250

, κt =





√
t

t+1

0.35

1

. (A.1)

21See Özak (2013) for the analysis of this and other results.
22This ensures that the conditions for convergence shown in Özak (2013) are satisfied.
23Similar results can be obtained with other parametrizations.

20



Figures A.2 and A.3 present the results of these exercises. As can be seen there, the rates of converges are

slower than in our previous example and vary across specifications. If κt → 0 (decreasing gain) the algorithm

still converges pretty quickly to the optimal rule. In particular, the probability of being at a loss of less than

1% or 1/2% rises monotonically towards 1. Özak (2013) shows that this is to be expected for a general class

of algorithms, of which ours is a particular case. On the other hand, if κt = κ for all t ≥ 0, then the rate of

convergence depends on both the size of κ and the matrix M . This behavior is to be expected and is common in

the literature on stochastic approximation (see e.g. Kushner and Yin, 2003), where an optimal κ is usually chosen

by the user.24 These simulations show that using a fixed matrix M might increase the time for convergence

in one or two orders of magnitude. Still, the rate of convergence is 3 orders of magnitude smaller than in

other algorithms proposed in the literature. Furthermore, if social learning speeds up the rate of convergence

as before, the negative effect of having lower levels of rationality can be overcome by socializing the process of

learning.

24Here we have chosen {κt} constant across periods or convergent to 0. It is often also the case that {κt} is chosen so that it
converges to a non-zero constant.
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Figure A.1: Distribution of (a) D
γt
1
, (b) D

γt
2
, (c) αt, (d) βt, and percentage of simulations with (e) D

γt
1

and (f) D
γt
2

less than
0.5%, 1%, 3% for θ = 3.5, δ = 0.95.
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Figure A.2: Simulations with a fixed matrix M .
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Figure A.3: Simulations with a fixed matrix M .
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Appendix B. Interpreting our results

In order to better appreciate our results, it is useful to compare our loss measures with the ones employed

by Allen and Carroll (2001). Allen and Carroll (2001) measure the loss of a rule γ as

ǫγ = 1−
EW [V −1 (Uγ(w))]

w̄
(B.1)

where EW is the expected value under the stationary distribution of wealth under the optimal rule, and w̄ is

the expected wealth level under this distribution.

Let x = 1 − CEγ

CE∗
and y = ǫγ measure a loss of x and of y according to both measures for a certain rule γ.

Then by definition

(1− y)w̄ =EW

[
V −1 (Uγ(w))

]
≥ V −1 (EW [Uγ(w)]) =⇒

V ((1 − y)w̄) ≥EW [Uγ(w)] =⇒

u−1 ((1 − δ)V ((1− y)w̄)) ≥u−1 ((1− δ)EW [Uγ(w)]) = (1− x)u−1 ((1− δ)EW [V (w)])

≈ (1− x)u−1 ((1− δ)EW [V (w̄) + V ′(w̄)(w − w̄)])

= (1− x)u−1 ((1− δ)V (w̄)) ,

which implies

x ≥1−

(
(1− θ)(1 − δ)V ((1 − y)w̄) + 1

(1 − θ)(1− δ)V (w̄) + 1

) 1
1−θ

≈(1− θ)
(1 − θ)(1 − δ)V ′(w̄)w̄

(1 − θ)(1 − δ)V (w̄) + 1
y

≡By

so that

x

B
≥ y. (B.2)

Thus, as x, the loss in welfare as measured by us, decreases, so does the measure of loss y, the AC measure.

For example, for δ = 0.95 and θ = 3, which are the parameters used by Allen and Carroll (2001), B = 0.095, so

that a 1/2% loss in our measure, generates at most a 5.4% loss in the AC sense. Similarly, a 5% loss according

to Allen and Carroll (2001) generates at least a 1/2% loss according to our measure.
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Appendix C. Numerical Motivation

In order to understand where such an algorithm might come from, consider the case of a consumer who

is an econometrician but cannot process all the information required to find the optimal solution. Suppose

instead that she takes as a working hypothesis that Eyqt+1 depends only on wt. More specifically, she posits the

existence of a pair (α, β) that solves (18) for all possible values of wt. Under this working hypothesis, (18) is a

bivariate nonlinear regression and her choice of a consumption rule is equivalent to estimating the parameters

of that regression.

If she had access to a time series on wealth (w0, ..., wt−2) and the realized continuation values (q1, ..., qt−1),

and enough computational resources, then she might use the standard method of nonlinear least squares:

(αt, βt) = argmin

τ=t−1∑

τ=1

(qτ − u′ (αt + βtwτ−1))
2
, (C.1)

solving the minimization problem using an iterative Newton or quasi-Newton method (Davidson and MacKinnon

(2004), ch.6; Judd (1998), ch.5). Starting from an initial guess equal to last period’s parameters:



α0
t

β0
t


 =



αt−1

βt−1


 , (C.2)

the guess in the kth iteration of the quasi-Newton method would be



α

k

t

βk
t


 =



αk−1
t

βk−1
t


 (C.3)

+
(
Mk−1

t−1

)−1
τ=t−1∑

τ=1

[
qτ − u′ (αk−1

t + βk−1
t wτ−1

)]
u′′ (αk−1

t + βk−1
t wτ−1

)



1

wτ−1




where

Mk−1
t−1 =

τ=t−1∑

τ=1

u′′ (αk−1
t + βk−1

t wτ−1

)2



1 wτ−1

wτ−1 w2
τ−1


 . (C.4)

Appendix C.1. The baseline algorithm

What we propose is similar to the simplified variant of (C.3) that does not require storing an ever-expanding

time series. First, instead of Mk−1
τ−1 , the consumer uses the historical “moment” matrix:

Mt−1 =

τ=t−1∑

τ=1

u′′ (ατ−1 + βτ−1wτ−1)
2




1 wτ−1

wτ−1 w2
τ−1


 (C.5)
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This avoids the need to recompute (C.4) at each iteration with updated coefficients
(
αk−1
t , βk−1

t

)
. Thus the

first step in our proposed algorithm for choosing (αt, βt) is to update Mt−1 recursively:

Mt−1 = Mt−2 + u′′ (αt−2 + βt−2wt−2)
2




1 wt−2

wt−2 w2
t−2


 (Step 1)

which requires the consumer to remember and update only 6 numbers each period, namely αt−2, βt−2, wt−2

and the 3 distinct elements of the symmetric matrix Mt−2.

The second step is to take a single iteration of the quasi-Newton method, as described above, using the

historical moment matrix updated in the first step, and using only a modified version25 of the last (most recent)

term in the sum on the RHS of (C.3)



αt

βt


 =



αt−1

βt−1


+M−1

t−1 [qt−1 − u′ (αt−2 + βt−2wt−2)]u
′′ (αt−2 + βt−2wt−2)




1

wt−2


 (Step 2)

which requires that she remember three more numbers, namely αt−1, βt−1 and ct−1, bringing the total number of

variables to be stored and updated equal to 9. (She needs to remember ct−1 in order to compute the continuation

value qt−1 = δu′ (ct−1).)

Usually the algorithm requires nothing more than these two steps. Complications arise, however if the

moment matrix Mt−1 is singular, or even close26 to singular, or if (Step 2) results in an inadmissible set of

coefficients. In either of those cases we assume the consumer ignores whatever historical information is in the

moment matrix and chooses the parameter pair closest to γt−1 that would have made her most recent error

qt−1 − u′ (αt + βtwt−2) equal to zero. This additional step requires no more information than is needed for the

first 2 steps. If it still results in an inadmissible rule she simply leaves the coefficients equal to γt−1.

Appendix C.1.1. Commentary

Our proposed algorithm thus involves having each consumer adjust the parameters of her rule in response

to the most recently observed Euler equation error:

et−2 = qt−1 − u′ (αt−2 + βt−2wt−2) (C.6)

25The arguments of u′ and u′′ in (Step 2) are the notional consumption of two periods ago, whereas in the first step of the
Newton iteration they would instead be αt−1 + βt−1wt−2.

26In our simulations we deemed Mt−1 to be close to singular whenever the condition number r2 (Mt) was less than the conven-
tional limit 1010. See Judd (1998).

27



Clearly if et−2 = 0 then if she had known that the marginal continuation value was going to be qt−1 she would

have been happy with her choice of coefficients at t − 2, because it led her to choose a notional consumption

whose marginal utility u′ (αt−2 + βt−2wt−2) was just equal to its marginal cost qt−1. In this sense, even with

hindsight she did not make a mistake. Accordingly (Step 2), which can be rewritten as

∆



αt

βt


 = et−2u

′′ (αt−2 + βt−2wt−2)M
−1
t−1




1

wt−2


 , (C.7)

requires the consumer to leave her rule unchanged in this case.27

On the other hand, if et−2 6= 0 then she made an ex post error; if et−2 > 0 then the marginal cost of her

consumption at t− 2 exceeded its marginal utility, indicating that she consumed too much, whereas if et−2 < 0

then she consumed too little. In either case she will adjust her rule in an attempt to learn from this error. The

role of the moment matrix Mt−1 is to help her distribute that adjustment across the two parameters of her rule.

Indeed, following a positive error that indicates consumption should have been lower, the algorithm could well

lead to an increase in one of the parameters, much as when an econometrician running an OLS regression is

led to raise a positive regression coefficient following the addition of a data point below the previous regression

line, depending on the nature of the OLS moment matrix.

Of course even a consumer who has chosen ct−2 according to the optimal consumption rule c∗(·) will end up

making ex post errors when a low draw of yt−1 induces her to choose a low ct−1 thus raising the continuation

value qt−1 above what was rationally expected at t−2. This rational consumer would have no reason to respond

to et−2. But the rational consumer would also have to know the exact form of the income process, and the exact

form of the optimal response, whereas we are trying to specify an algorithm that requires minimal information.

To use our algorithm, all the consumer needs to know about the income process are the minimum and maximum

values y1 and yn, which are needed to determine if a rule is admissible. As we shall see, even with no more

awareness than this she will on average come close to the realized utility level of the rational consumer.28 In

section 5.2 below we will consider modifying the process to allow for more awareness of the income process.

Appendix C.2. Some variants

In deriving (Step 1) above we could have started with the original Newton method instead of quasi-Newton.

The difference is that in the original Newton method the moment matrix Mk−1
t−1 in (C.3) is replaced by the full

Hessian of the term multiplying the inverse moment matrix. (See Davidson and MacKinnon (2004), ch.6 and

27Note that, because the error made when choosing αt−1 cannot be observed until αt has been chosen, the consumer is always
adjusting αt−1 on the basis of errors made when using αt−2.

28Likewise, in the canonical stochastic approximation model of Robbins-Monro, a root φ∗ to the equation Ef (φ, x) = 0 is found
iteratively by adjusting the most recent guess φt in response to the most recent observation f (φt, xt) , where xt is a realization of
x, even though someone who knew the correct value of φ∗ would know enough not to make any adjustments.
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Judd (1998), ch.5 for a comparison of these two methods).

Because the moment matrix grows with each new observation, it will generally be unbounded (and positive

definite). Thus Step 2 is like a “decreasing gain” algorithm in stochastic approximation, in which the step

sizes will almost certainly fall to zero over time, and thus the consumer will become infinitely slow to adapt

to an unobserved change in the distribution of income unless some other procedure is invoked. We discuss in

section 5.2 below what will happen if she is aware of the change in regime. But to take make the procedure

more responsive to unperceived changes we might follow the literature on macroeconomic learning (Evans and

Honkapohja (2001)) by using a “constant gain” method.

These two changes can be allowed for by using the following generalized version of Step 1:

Mt−1 = (1− ε)Mt−2 +
[
ξet−2u

′′′ (αt−2 + βt−2wt−2) + u′′ (αt−2 + βt−2wt−2)
2
]



1 wt−2

wt−2 w2
t−2




where ξ = 0 indicates quasi-Newton, ξ = 1 indicates original Newton, and ε ∈ [0, 1) can be interpreted as the

asymptotic gain parameter. As long as ε > 0 the moment matrix will be bounded and the speed of adjustment

will not fall to zero.

Finally, a commonly used prudential measure in numerical approximation is to reduce the step size so as to

avoid unstable overshooting. Thus we could allow a final step, which is to set

γt = (1− η) γt−1 + ηγp
t (Possible Final Step)

where γp
t is the set of coefficients arrived at by all the previous steps and η ∈ (0, 1] is the “shrinkage” factor.
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Figure D.4: Admissible set of parameters.
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Figure D.6: Percentage deviation of equivalent consumption of the linear rule from the optimal consumption function for different
values of the intercept (vertical axis) and slope (horizontal axis), under (a) π∗ and (b) πγ for θ = 3.5 and δ = 0.95.

(a) (b)

Figure D.7: Set of consumption rules which have a percentage deviation less than or equal to 0.5% (black), 1% (dark gray), 3%
(light gray) and more than 3% (red) from the optimal consumption function for different values of the intercept (vertical axis) and
slope (horizontal axis), under (a) π∗ and (b) πγ for θ = 3.5 and δ = 0.95.
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Figure D.8: Distribution of (a) D
γt
1
, (b) D

γt
2
, (c) αt, (d) βt, and percentage of simulations with (e) D

γt
1

and (f) D
γt
2

less than
0.5%, 1%, 3% for θ = 3.5, δ = 0.95.
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Figure D.9: Dynamics of the distribution of αt (row 1), βt (row 2), wt (row 3), and ct (row 4) under income shocks. During periods 1-25 and 51-100 agents’ income follows Y 1.
During periods 26-50 their income follows Y 2, Y 3, Y 4, Y 5.
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Figure D.10: Dynamics of the distribution of Dγt
1

(row 1), Dγt
2

(row 2), percentage of runs with D
γt
1

(row 3) and D
γt
2

(row 4) less than 0.5%, 1% and 3% under income shocks.
During periods 1-25 and 51-100 agents’ income follows Y 1. During periods 26-50 their income follows Y 2, Y 3, Y 4, Y 5.
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Appendix E. Additional Figures
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0



Figure E.11: Percentage deviation of equivalent consumption of the linear rule from the optimal consumption function for different values of the intercept (vertical axis) and slope
(horizontal axis), under π∗ (first and third rows) and πγ (second and fourth rows) for θ = 1.5, 2, 3, 3.5, 4, δ = 0.9 (rows 1 and 2) and δ = 0.95 (rows 3 and 4).

θ = 1.5 θ = 2 θ = 3 θ = 3.5 θ = 4
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Figure E.12: Set of consumption rules which have a percentage deviation less than or equal to 0.5% (black), 1% (dark gray), 3% (light gray) and more than 3% (red) from the
optimal consumption function for different values of the intercept (vertical axis) and slope (horizontal axis), under π∗ (first and third rows) and πγ (second and fourth rows) for
θ = 1.5, 2, 3, 3.5, 4, δ = 0.9 (rows 1 and 2) and δ = 0.95 (rows 3 and 4).
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Figure E.13: Distribution of αt (column 1), βt (column 2), Dγt
1

(column 3), Dγt
2

(column 4) and percentage of simulations with D
γt
1

(column 5) and D
γt
2

(column 6) less than
0.5%, 1%, 3% for θ = 1.5, 2, 3, 3.5, 4, δ = 0.95.
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Figure E.14: Distribution of αt (column 1), βt (column 2), Dγt
1

(column 3), Dγt
2

(column 4) and percentage of simulations with D
γt
1

(column 5) and D
γt
2

(column 6) less than
0.5%, 1%, 3% for θ = 1.5, 2, 3, 3.5, 4, δ = 0.95.
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Figure E.15: Percentage deviation of equivalent consumption of the linear rule from the optimal consumption function for different values of the intercept and slope, under π∗ (row
1) and πγ (row 2) for different income processes.

Y 1 Y 2 Y 3 Y 4 Y 5

Figure E.16: Set of consumption rules which have a percentage deviation less than or equal to 0.5% (black), 1% (dark gray), 3% (light gray) and more than 3% (red) under π∗ (row
1) and πγ (row 2) for different income processes.
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Table E.1: EV ∗
∗ , CE∗

∗ , EV ∗
γ and CE∗

γ , EV
γ
∗ , CE

γ
∗ , EV

γ
γ and CE

γ
γ under optimal linear rule, for each configuration of δ and θ

δ θ EV ∗

∗
CE∗

∗
EV ∗

γ CE∗

γ EV γ
∗

CEγ
∗

EV γ
γ CEγ

γ

0.9 1.5 -0.1607 0.9841 -0.1650 0.9837 -0.1961 0.9807 -0.2003 0.9803

2 -0.1731 0.9830 -0.1786 0.9824 -0.2092 0.9795 -0.2148 0.9790

3 -0.2001 0.9806 -0.2027 0.9803 -0.2382 0.9770 -0.2408 0.9768

3.5 -0.2128 0.9795 -0.2220 0.9786 -0.2515 0.9759 -0.2607 0.9751

4 -0.2257 0.9784 -0.2275 0.9782 -0.2662 0.9747 -0.2680 0.9746

0.95 1.5 -0.1962 0.9903 -0.1987 0.9901 -0.2705 0.9866 -0.2730 0.9865

2 -0.2184 0.9892 -0.2213 0.9891 -0.2943 0.9855 -0.2972 0.9854

3 -0.2555 0.9875 -0.2554 0.9875 -0.3349 0.9837 -0.3347 0.9837

3.5 -0.2709 0.9868 -0.2819 0.9862 -0.3525 0.9829 -0.3635 0.9824

4 -0.2856 0.9861 -0.2848 0.9862 -0.3319 0.9839 -0.3310 0.9840

Table E.2: Percentage difference between between equivalent consumption measures, Dγ
1
=

CE∗

∗
−CEγ

∗

CE∗

∗

∗100 and D
γ
2
=

CE∗

γ−CEγ
γ

CE∗

γ
∗

100, and optimal linear rule. Percentage loss under the consume everything rule and expected loss over the whole set of parameters
and conditional on rule being in the admissible set.

Optimal Rule Consume Everything Random Rule

δ θ D
γ
1 D

γ
2 α∗ β∗ D

(0,1)
1 D

(0,1)
2 E(Dγ

1 ) E(Dγ
1 | A) E(Dγ

2 ) E(Dγ
2 | A)

0.9 1.5 0.35 0.35 0.61 0.39 0.98 0.93 6.54 3.79 6.34 3.27

2 0.35 0.35 0.62 0.36 1.54 1.38 7.00 4.19 6.61 3.48

3 0.36 0.36 0.61 0.34 3.00 2.50 8.16 5.28 7.38 4.16

3.5 0.37 0.36 0.65 0.30 3.84 3.11 8.80 5.90 7.82 4.55

4 0.38 0.38 0.65 0.29 4.71 3.74 9.49 6.57 8.28 4.98

0.95 1.5 0.37 0.37 0.63 0.33 1.57 1.45 5.78 3.09 5.64 2.77

2 0.37 0.37 0.66 0.29 2.34 2.10 6.41 3.65 6.14 3.20

3 0.38 0.38 0.71 0.23 4.09 3.52 7.84 4.96 7.28 4.21

3.5 0.39 0.39 0.73 0.21 5.03 4.26 8.60 5.68 7.89 4.75

4 0.22 0.22 0.72 0.21 5.79 4.83 6.97 5.57 4.94 4.19

Table E.3: Probability of D
γt
1

or D
γt
2

below 0.5% at different periods for different parametrizations of the algorithm for η = 0,
ξ = 1 and ε = 0.

t = 0 t = 50 t = 100 t = 250 t = 500

δ θ D
γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2

0.9 1.5 0.2863 0.2950 0.8980 0.8943 0.9650 0.9581 0.9954 0.9927 0.9997 0.9993

2 0.1410 0.1444 0.7706 0.7748 0.9181 0.9149 0.9847 0.9791 0.9963 0.9945

3 0.0127 0.0127 0.4573 0.4390 0.6538 0.6232 0.8781 0.8398 0.9644 0.9424

3.5 0.0104 0.0107 0.4214 0.4204 0.6241 0.6188 0.8678 0.8577 0.9544 0.9490

4 0.0082 0.0084 0.3706 0.3695 0.5725 0.5667 0.8300 0.8184 0.9405 0.9290

0.95 1.5 0.0659 0.0667 0.7436 0.7461 0.9017 0.9021 0.9772 0.9772 0.9877 0.9877

2 0.0155 0.0155 0.5636 0.5614 0.7575 0.7516 0.9212 0.9159 0.9675 0.9649

3 0.0080 0.0086 0.3535 0.3643 0.5453 0.5575 0.7741 0.7827 0.8909 0.8972

3.5 0.0075 0.0079 0.2739 0.2841 0.4241 0.4376 0.6544 0.6706 0.8003 0.8138

4 0.0159 0.0176 0.4773 0.5009 0.6622 0.6913 0.8552 0.8736 0.9248 0.9319

Table E.4: Probability of Dγt
1

or D
γt
2

below 0.5% at different periods for different parametrizations of the algorithm for θ = 3.5
and δ = 0.95.

t = 0 t = 50 t = 100 t = 250 t = 500

η ξ ε D
γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2

0 0 0.2 0.0075 0.0079 0.1355 0.1395 0.1267 0.1303 0.1203 0.1230 0.1216 0.1243

0 0 0 0.0075 0.0079 0.2234 0.2328 0.3355 0.3497 0.5153 0.5344 0.6404 0.6561

0 1 0.2 0.0075 0.0079 0.1273 0.1324 0.1262 0.1309 0.1265 0.1316 0.1279 0.1324

0 1 0 0.0075 0.0079 0.2739 0.2841 0.4241 0.4376 0.6544 0.6706 0.8003 0.8138

0.5 0 0.2 0.0075 0.0079 0.2730 0.2783 0.2497 0.2520 0.2284 0.2307 0.2223 0.2243

0.5 0 0 0.0075 0.0079 0.2222 0.2329 0.2919 0.3057 0.3999 0.4193 0.4970 0.5167

0.5 1 0.2 0.0075 0.0079 0.2549 0.2627 0.2893 0.2981 0.2922 0.3000 0.2933 0.3011

0.5 1 0 0.0075 0.0079 0.1468 0.1519 0.1954 0.2019 0.2799 0.2888 0.3660 0.3750
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Table E.5: Probability of Dγt
1

or D
γt
2

below 0.5% at different periods for different parametrizations of the algorithm under social

learning for φ = 1

3
, θ = 3.5 and δ = 0.95.

Indiv=200,
Neigh=2

t = 0 t = 50 t = 100 t = 250 t = 500

η ξ ε D
γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2

0 0 0.2 0.0075 0.0079 0.4351 0.4356 0.3520 0.3522 0.3308 0.3308 0.3397 0.3397

0 0 0 0.0075 0.0079 0.8995 0.9020 0.9848 0.9849 0.9992 0.9992 1.0000 1.0000

0 1 0.2 0.0075 0.0079 0.4810 0.4875 0.4794 0.4862 0.4850 0.4910 0.4760 0.4826

0 1 0 0.0075 0.0079 0.7925 0.7960 0.9513 0.9513 0.9991 0.9991 1.0000 1.0000

0.5 0 0.2 0.0075 0.0079 0.5216 0.5216 0.2787 0.2787 0.1790 0.1790 0.1841 0.1841

0.5 0 0 0.0075 0.0079 0.6502 0.6620 0.8203 0.8243 0.9606 0.9606 0.9939 0.9939

0.5 1 0.2 0.0075 0.0079 0.5980 0.5997 0.6468 0.6475 0.6531 0.6538 0.6380 0.6389

0.5 1 0 0.0075 0.0079 0.0276 0.0278 0.0549 0.0549 0.1800 0.1800 0.2898 0.2898

Table E.6: Expected loss under optimal distribution, ED
γt
1
, and under linear rule’s distribution, ED

γt
2
, at different periods for

different parametrizations of the consumer’s problem for η = 0, ξ = 1 and ε = 0.

t = 0 t = 5 t = 10 t = 25 t = 50

δ θ ED
γt
1 ED

γt
2 ED

γt
1 ED

γt
2 ED

γt
1 ED

γt
2 ED

γt
1 ED

γt
2 ED

γt
1 ED

γt
2

0.9 1.5 1.20 1.38 1.09 1.26 0.77 0.85 0.48 0.50 0.42 0.42

2 1.33 1.43 1.35 1.48 0.96 1.04 0.58 0.59 0.47 0.48

3 2.12 2.04 1.97 1.97 1.42 1.44 0.81 0.81 0.60 0.60

3.5 2.65 2.46 2.33 2.26 1.70 1.68 0.94 0.94 0.67 0.66

4 3.24 2.93 2.72 2.58 2.00 1.94 1.10 1.08 0.75 0.74

0.95 1.5 1.26 1.28 1.25 1.30 0.90 0.93 0.58 0.58 0.49 0.49

2 1.72 1.69 1.59 1.60 1.12 1.13 0.69 0.69 0.56 0.55

3 2.91 2.70 2.33 2.25 1.69 1.65 0.95 0.93 0.71 0.70

3.5 3.61 3.29 2.79 2.65 2.01 1.94 1.12 1.08 0.80 0.78

4 4.06 3.57 2.96 2.63 2.13 1.94 1.11 1.04 0.73 0.69

Table E.7: Median loss under optimal distribution, MD
γt
1
, and linear rule’s distribution, MD

γt
2
, at different periods for different

parametrizations of the consumer’s problem for η = 0, ξ = 1 and ε = 0.

t = 0 t = 5 t = 10 t = 25 t = 50

δ θ MD
γt
1 MD

γt
2 MD

γt
1 MD

γt
2 MD

γt
1 MD

γt
2 MD

γt
1 MD

γt
2 MD

γt
1 MD

γt
2

0.9 1.5 0.67 0.65 0.67 0.65 0.55 0.54 0.41 0.42 0.39 0.38

2 0.98 0.92 0.96 0.91 0.73 0.71 0.49 0.48 0.43 0.43

3 2.02 1.79 1.68 1.54 1.14 1.10 0.65 0.65 0.51 0.52

3.5 2.68 2.32 2.10 1.89 1.38 1.30 0.73 0.74 0.54 0.54

4 3.36 2.86 2.54 2.26 1.65 1.55 0.82 0.81 0.58 0.58

0.95 1.5 1.09 1.04 0.94 0.90 0.69 0.69 0.49 0.49 0.44 0.44

2 1.66 1.55 1.27 1.22 0.89 0.87 0.57 0.57 0.48 0.48

3 3.04 2.74 2.06 1.92 1.33 1.28 0.75 0.73 0.57 0.57

3.5 3.84 3.42 2.52 2.32 1.59 1.50 0.85 0.83 0.63 0.62

4 4.42 3.88 2.79 2.52 1.69 1.57 0.78 0.74 0.52 0.50

Table E.8: Expected loss under optimal distribution, ED
γt
1
, and under linear rule’s distribution, ED

γt
2
, at different periods for

different parametrizations of the algorithm for θ = 3.5 and δ = 0.95.

t = 0 t = 5 t = 10 t = 25 t = 50

η ξ ε ED
γt
1 ED

γt
2 ED

γt
1 ED

γt
2 ED

γt
1 ED

γt
2 ED

γt
1 ED

γt
2 ED

γt
1 ED

γt
2

0 0 0.2 3.61 3.29 2.79 2.82 2.67 2.86 2.01 2.07 1.95 2.05

0 0 0 3.61 3.29 2.79 2.81 2.38 2.51 1.51 1.49 1.28 1.26

0 1 0.2 3.61 3.29 2.79 2.65 2.17 2.13 1.40 1.42 1.24 1.25

0 1 0 3.61 3.29 2.79 2.65 2.01 1.94 1.12 1.08 0.80 0.78

0.5 0 0.2 3.61 3.29 2.51 2.30 1.74 1.63 1.05 1.01 0.94 0.93

0.5 0 0 3.61 3.29 2.49 2.30 1.71 1.60 1.12 1.07 0.92 0.89

0.5 1 0.2 3.61 3.29 2.73 2.47 2.02 1.85 1.14 1.09 0.81 0.80

0.5 1 0 3.61 3.29 2.75 2.49 2.13 1.95 1.47 1.38 1.12 1.07
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Table E.9: Median loss under optimal distribution, MD
γt
1
, and under linear rule’s distribution, MD

γt
2
, at different periods for

different parametrizations of the algorithm for θ = 3.5 and δ = 0.95.

t = 0 t = 5 t = 10 t = 25 t = 50

η ξ ε MD
γt
1 MD

γt
2 MD

γt
1 MD

γt
2 MD

γt
1 MD

γt
2 MD

γt
1 MD

γt
2 MD

γt
1 MD

γt
2

0 0 0.2 3.84 3.42 2.13 1.98 1.69 1.61 1.10 1.08 1.00 1.00

0 0 0 3.84 3.42 2.13 2.01 1.52 1.45 0.91 0.88 0.70 0.68

0 1 0.2 3.84 3.42 2.52 2.32 1.72 1.62 1.06 1.03 0.98 0.96

0 1 0 3.84 3.42 2.52 2.32 1.59 1.50 0.85 0.83 0.63 0.62

0.5 0 0.2 3.84 3.42 2.46 2.28 1.39 1.33 0.75 0.74 0.67 0.66

0.5 0 0 3.84 3.42 2.46 2.28 1.31 1.26 0.82 0.79 0.69 0.67

0.5 1 0.2 3.84 3.42 2.84 2.59 1.82 1.69 0.85 0.83 0.66 0.65

0.5 1 0 3.84 3.42 2.87 2.62 1.97 1.84 1.21 1.16 0.92 0.89

Table E.10: Expected loss under optimal distribution, ED
γt
1
, and under linear rule’s distribution, ED

γt
2
, at different periods for

different parametrizations of the algorithm under social learning for φ = 1

3
, θ = 3.5 and δ = 0.95.

Indiv=200,
Neigh=2

t = 0 t = 5 t = 10 t = 25 t = 50

η ξ ε ED
γt
1 ED

γt
2 ED

γt
1 ED

γt
2 ED

γt
1 ED

γt
2 ED

γt
1 ED

γt
2 ED

γt
1 ED

γt
2

0 0 0.2 3.61 3.29 1.65 1.53 0.97 0.93 0.64 0.63 0.71 0.71

0 0 0 3.61 3.29 1.66 1.54 0.88 0.85 0.50 0.49 0.44 0.44

0 1 0.2 3.61 3.29 1.69 1.56 0.99 0.95 0.61 0.60 0.58 0.58

0 1 0 3.61 3.29 1.71 1.57 0.92 0.88 0.54 0.53 0.46 0.46

0.5 0 0.2 3.61 3.29 2.30 2.11 1.09 1.03 0.54 0.54 0.58 0.59

0.5 0 0 3.61 3.29 2.31 2.11 1.09 1.03 0.57 0.56 0.49 0.48

0.5 1 0.2 3.61 3.29 2.44 2.22 1.52 1.42 0.69 0.68 0.52 0.52

0.5 1 0 3.61 3.29 2.45 2.23 1.63 1.52 1.00 0.97 0.77 0.75

Table E.11: Median loss under optimal distribution, MD
γt
1
, and under linear rule’s distribution, MD

γt
2
, at different periods for

different parametrizations of the algorithm under social learning for φ = 1

3
, θ = 3.5 and δ = 0.95.

Indiv=200,
Neigh=2

t = 0 t = 5 t = 10 t = 25 t = 50

η ξ ε MD
γt
1 MD

γt
2 MD

γt
1 MD

γt
2 MD

γt
1 MD

γt
2 MD

γt
1 MD

γt
2 MD

γt
1 MD

γt
2

0 0 0.2 3.84 3.42 1.52 1.41 0.74 0.71 0.50 0.49 0.52 0.53

0 0 0 3.84 3.42 1.52 1.42 0.66 0.65 0.46 0.45 0.42 0.42

0 1 0.2 3.84 3.42 1.57 1.44 0.81 0.78 0.53 0.53 0.51 0.51

0 1 0 3.84 3.42 1.58 1.45 0.75 0.73 0.50 0.49 0.45 0.45

0.5 0 0.2 3.84 3.42 2.39 2.21 0.91 0.87 0.46 0.46 0.48 0.48

0.5 0 0 3.84 3.42 2.39 2.22 0.92 0.87 0.51 0.51 0.47 0.47

0.5 1 0.2 3.84 3.42 2.54 2.32 1.46 1.37 0.63 0.62 0.47 0.47

0.5 1 0 3.84 3.42 2.55 2.34 1.59 1.49 0.96 0.93 0.75 0.73

Table E.12: Statistics of the various income processes.

Income Process Mean Std Kurtosis Skewness
Y 1 1.00 0.19 -0.51 -0.00
Y 2 2.00 0.38 -0.50 0.00
Y 3 1.99 0.78 2.64 1.68
Y 4 1.00 0.41 2.74 1.59
Y 5 0.95 0.26 3.84 -1.64
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Table E.13: Percentage difference between between equivalent consumption measures, Dγ
1
=

CE∗

∗
−CEγ

∗

CE∗

∗

∗100 and D
γ
2
=

CE∗

γ−CEγ
γ

CE∗

γ
∗

100, and optimal linear rule. Percentage loss under the consume everything rule and expected loss over the whole set of parameters
and conditional on rule being in the admissible set for θ = 3.5, δ = 0.95, B = 0.

Optimal Rule Consume Everything Random Rule

Process D
γ
1 D

γ
2 α∗ β∗ D

(0,1)
1 D

(0,1)
2 E(Dγ

1 ) E(Dγ
1 | A) E(Dγ

2 ) E(Dγ
2 | A)

1 0.02 0.02 0.72 0.22 4.62 3.88 6.40 3.27 4.46 2.80

2 0.02 0.02 1.46 0.21 4.62 3.88 7.91 6.94 7.50 5.47

3 0.47 0.36 1.26 0.22 14.64 11.76 14.50 13.97 12.64 12.32

4 0.29 0.28 0.66 0.17 23.79 19.51 21.21 18.98 17.17 15.41

5 0.80 0.76 0.44 0.24 65.99 55.90 53.78 52.53 45.53 44.87

Table E.14: Probability of D
γt
1

or D
γt
2

below 3% at different periods for fixed parametrization of the algorithm under different
income processes for θ = 3.5, δ = 0.95, B = 0, η = 0, ǫ = 0, ξ = 1 and φ = 1.

t = 0 t = 50 t = 100 t = 250 t = 500

Process D
γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2

1 0.3846 0.4980 0.8952 0.8866 0.9064 0.9011 0.9194 0.9141 0.9291 0.9224

2 0.3860 0.4989 0.9054 0.8987 0.9156 0.9124 0.9290 0.9254 0.9373 0.9318

3 0.0252 0.0299 0.3394 0.3441 0.4497 0.4460 0.5427 0.5289 0.5885 0.5701

4 0.0120 0.0129 0.3537 0.3420 0.5006 0.4865 0.6472 0.6335 0.7040 0.6961

5 0.0031 0.0038 0.0462 0.0585 0.0785 0.0958 0.1423 0.1651 0.2142 0.2415

Table E.15: Probability of D
γt
1

or D
γt
2

below 3% at different periods for fixed parametrization of the algorithm under different
income processes under ID version of the algorithm for θ = 3.5, δ = 0.95, B = 0, η = 0, ǫ = 0, ξ = 1 and φ = 1.

t = 0 t = 50 t = 100 t = 250 t = 500

Process D
γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2 D

γt
1 D

γt
2

1 0.3846 0.4980 0.9680 0.9742 0.9735 0.9785 0.9804 0.9833 0.9847 0.9862

2 0.3860 0.4989 0.9678 0.9742 0.9728 0.9783 0.9790 0.9821 0.9832 0.9847

3 0.0252 0.0299 0.8103 0.8150 0.8495 0.8468 0.8707 0.8650 0.8840 0.8762

4 0.0120 0.0129 0.6666 0.7393 0.7615 0.8062 0.8317 0.8538 0.8590 0.8707

5 0.0031 0.0038 0.2321 0.2829 0.2652 0.3251 0.3024 0.3659 0.3109 0.3773
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