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Abstract

A model of fiat money is constructed in which money is used in equilibrium as the universal medium of

exchange despite the presence of a negotiable and perfectly divisible outside bond that dominates money

in rate of return. All trade takes place in facilities organized by competitive entrepreneurs. There are

setup costs of operating a trade facility, as well as a Baumol-Tobin cost of trading money for bonds.

∗This draft has benefited from comments received during the conference on monetary theory at the

University of Western Ontario on March 12, 2005, and seminars at Queen’s University and Washington

University at St. Louis; also from Allen Head’s suggestions and Neil Wallace’s critical comments. The

usual caveat applies.



1 Introduction

One test of a monetary theory is whether it permits equilibria in which outside money is used as a medium

of exchange despite the existence of other assets that dominate it in rate of return. This can be done by

putting money into the utility function or by invoking legal restrictions, but the former begs more questions

than it answers and the latter is difficult to justify as a general principle. So the real test is whether the

theory permits equilibria with rate of return dominance even when money is assigned no special role a priori

in preferences or regulations.

The present paper shows that this test is passed by a version of the theory developed by Starr and

Stinchcombe (1998, 1999), Howitt and Clower (2000) and Howitt (2005). In this theory all trade takes place

in facilities that are organized by competitive merchants who incur an irreducible setup cost with each facility

created. The theory is closely related to the familiar cash-in-advance model of money, but it allows for the

possibility of bonds being used as a medium of exchange. The main difference from the similar papers by

Krishna (2005) and Wallace (2004), which reaches different conclusions, is that I allow for a setup cost to

visiting the bond market, a la Baumol-Tobin.

The basic idea is that without this setup cost, shops offering to trade goods for money would be unable

to compete against shops offering to trade goods for bonds, because people selling goods for money would

bear an interest-opportunity cost of holding their receipts until the beginning of next period (as in any cash-

in-advance model) whereas people selling for bonds could avoid this cost because their receipts would bear

interest. But when there is a setup cost to visiting the bond market and we are in a situation where all other

shops trade goods for money instead of for bonds, the advantage of avoiding the interest-opportunity cost

when selling for bonds is counteracted by the disadvantage of receiving payment in a less liquid form than

when selling for money. When the rate of interest is low enough this disadvantage outweighs the advantage,

and shops that conform to the convention of trading goods for money but not for bonds cannot be driven

out by those deviating from the convention.

The model analyzed below is an example of what is commonly called a “directed search” model. Other

examples include the models in Moen (1997), Rocheteau and Wright (2005) and Head and Kumar (2005).

Unlike these other models, it is assumed here that there is a cost to creating a market; Howitt (2005) shows

that this setup cost is necessary for the existence of a monetary equilibrium when entrepreneurs have the

alternative of opening shops trading commodities directly for each other. Unlike these other directed-search

models it is also assumed below that entrepreneurs undertake all the costly marketing activities, with no

residual search needed by households.

Other recent papers that have included a Baumol-Tobin cost include Jovanovic (1982), Romer (1986),
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Chatterjee and Corbae (1992) and Alvarez, Atkeson and Kehoe (2002). These papers do not however explain

why bonds are not used as a medium of exchange.

The outline of the paper is as follows. Section 2 below outlines the basic structure of the model, in

which activities take place according to a specific sequence each period. Section 3 analyzes the strategic

decisions at each stage under the assumption of an exogenously given function determining each household’s

continuation value. Section 4 defines a Stationary Monetary Equilibrium, derives the continuation value

from the structure of the model, and shows that a Stationary Monetary Equilibrium does not exist when

the cost of visiting the bond market is zero but it does exist for low enough rates of interest when there the

cost is positive. Section 5 offers some brief concluding remarks.

2 Basics

2.1 Preferences and endowments

Time is discrete, consisting of an infinite sequence of periods. There are three different kinds of tradeable

objects, all of them perfectly divisible: (1) a large number n of distinct commodities, none storable from

one period to another; (2) money, a perfectly durable object and (3) government bonds, which are perpe-

tuities paying r > 0 unit of money each period forever. There are three groups of transactors: households,

entrepreneurs and the government.

Each household has a type (i, j) , with i 6= j. The household has a constant endowment of y units per

period of commodity i (is an i-maker) and wants to consume commodity j (is a j-eater). Households live

forever and have a utility function:

∞X
t=0

βt
³
ln (xt)− eδt´ , β = 1

1 + r

where xt is consumption and eδt is a “Baumol-Tobin” cost - a lumpy cost that must be paid each time the
household visits the bond market to trade bonds for money:

eδt =
⎧⎪⎨⎪⎩ δ ≥ 0 if the household visits the bond market at t

0 otherwise

⎫⎪⎬⎪⎭
There is a continuum of households, with a mass 1

n−1 of each type.

Each entrepreneur has a type i, where i indexes a commodity. The entrepreneur has the ability to trade

i, for either money or bonds. In order to use this ability the entrepreneur must set up a “shop” in which i
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can be traded for money (a “money-shop”) or bonds (a “bond-shop”). By assumption the shop cannot trade

both money and bonds. Each entrepreneur lives for only one period. For each i there are two entrepreneurs

each period. An entrepreneur consumes only the commodity he trades, and has a utility function equal to:

π − s

where π is his consumption and s is a setup cost of operating his shop, with s = σ > 0 if the entrepreneur

opens a shop and s = 0 otherwise. To make it possible for shops to operate profitably in equilibrium I

assume:

σ < y (1)

The government issues money and bonds, and distributes the amount ms > 0 and bs > 0 to each

household at the beginning of the first period. It also imposes a tax on all sales from a household to a shop,

collected from the shop, at the rate τ per unit of commodity. To avoid having money assume a special role

because of legal restrictions, I suppose the tax is payable in either money or bonds. In an effort to keep the

outstanding stocks of money and bonds constant the government sets the tax rate at:

τ = rbs/y (2)

I assume the bond issue is small enough that this tax can be paid each period in cash:

rbs < ms (3)

2.2 Trading logistics

The logistical constraints imposed on people are similar to those described in more detail in my earlier paper

(Howitt, 2005). People meet anonymously except for the government, and this anonymity rules out private

debt. All trade must take place through shops. In order for a shop to compete, it must put up a sign

indicating what commodity it deals in, whether it uses money or bonds, its retail price p (either in money

per unit of commodity or bonds per unit of commodity) and its wholesale price w (in terms of money or

bonds per unit of commodity). The wholesale price w is quoted net of taxes. All posted prices must be

strictly positive, a constraint which for notational simplicity I will leave implicit throughout the analysis.

Each period, trade proceeds in the following order:

0. Interest is paid on outstanding bonds

1. Entrepreneurs set up their shops, posting their prices
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2. The bond market convenes

3. Households visit shops to place their buy and sell orders

4. Entrepreneurs execute these orders

5. Consumption takes place

Stage 1 consists of two meta-stages. In the first one, one of the entrepreneurs for each commodity i

decides whether to open a money shop, and if so what prices to post. Since I am only looking for a monetary

equilibrium I assume for simplicity that this first entrepreneur does not have the option of opening a bond-

shop. In the second meta-stage the other entrepreneur decides whether to set up a bond shop, or a money

shop, and at what prices. If an entrepreneur enters in the first meta-stage his prices are known to the other

entrepreneurs in the second meta-stage.

In stage 2 the government stands ready to trade bonds for money, at an exchange rate of unity. Since

the coupon rate r on the bonds equals the households’ rate of time preference, this exchange rate will be

consistent with a stationary equilibrium with no inflation. If a household is going to trade money for bonds

then it must send a member to the bond market in this stage and must therefore incur the Baumol-Tobin

cost δ.

In stage 3, each household can see which shops have entered, trading which objects, and posting which

prices. The household sends one member (worker) to sell endowment and one (shopper) to purchase con-

sumption. Each of these members can visit only one shop during the week, and must have in her possession

enough of the object she is offering to sell (commodities in the case of the worker and money or bonds in

the case of the shopper) to honour all orders that the entrepreneurs will accept in stage 4.

In stage 4, entrepreneurs have received their orders, and are free to refuse any of them, although by

this time it is too late for them to avoid paying the psychic setup cost σ. I assume however that they are

committed to the prices they have posted.

I restrict attention to stationary monetary equilibria, in which aggregate events repeat themselves each

period. In such an equilibrium only one shop enters in each market, in the first meta-stage of stage 1; all

open shops are money shops; and all shops post the same pair of prices (w, p); and no open shop refuses

all buy orders or all sell orders. The solution concept will be a variant of stationary Markov equilibrium,

although each infinitesimal household will take all other agents’ choices as being independent of its own

decision.1

1The setup is an example of what is commonly called “directed search.” Other examples include Moen (1997), Rocheteau
and Wright (2005) and Head and Kumar (2005). Unlike these papers it is assumed here that there is a cost to creating a
market; Howitt (2005) shows that this setup cost is necessary for the existence of a monetary equilibrium when entrepreneurs
have the alternative of opening shops trading commodities directly for each other. Unlike these other papers it is also assumed
below that entrepreneurs undertake all the costly marketing activities, with no residual search needed by households.
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3 Equilibrium choices.

3.1 Stage 4: Acceptance rates

In stage 4 each entrepreneur has received buy and sell orders from households, and must decide how much

of each order to accept for execution. All accepted orders must be executed at the prices that were posted

in stage 1. How the acceptances are distributed across customers and suppliers is a matter of complete

indifference to the entrepreneur, who is at the end of his economic life. I assume accordingly that he will

ration all buy orders in the same proportion and ration all sell orders in the same proportion.

Consider first an entrepreneur who has opened a money shop posting prices (w, p) and has received orders

(s, d) . The entrepreneur will choose acceptance rates (as, ad) ∈ [0, 1]2 so as to maximize

ass− add− σ

subject to the two material balance constraints:

ass− add ≥ 0

and

padd− (w + τ) ass ≥ 0

The quantity ass− add is the entrepreneur’s consumption, since he will receive in delivery the fraction as of

the s units of commodity i offered to him by his suppliers (i-makers) but will have to pay out the fraction

ad of the d units ordered by his customers (i-eaters). He must also incur the setup cost σ which was sunk in

stage 1. The first constraint says that consumption cannot be negative while the second constraint says that

the money paid to suppliers wass plus the money paid to the government τass cannot exceed the money

received from customers padd.

We can assume at this point that p > w+ τ , since otherwise the entrepreneur would not have entered in

stage 1. Define

R = min {(w + τ) s, pd}

If R = pd then sales revenue is a binding constraint on the entrepreneur, which will limit his ability to accept

sell orders, whereas if R = (w + τ) s then the entrepreneur will have no incentive to accept buy orders beyond

those needed to pay for the sell orders received (recall that the entrepreneur consumes only the commodity
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that he trades). Formally, one solution to his decision problem during this stage is:

(as, ad) =

⎧⎪⎨⎪⎩
³

R
(w+τ)s ,

R
pd

´
if s > 0 and d > 0

(0, 0) otherwise

⎫⎪⎬⎪⎭ (4)

According to (4) the entrepreneur must receive orders on both sides in order to operate. He will ration

customers if they are demanding more than enough to pay for all supplies and will ration suppliers if he

cannot afford all their sales orders, but he will never ration both sides if both sides have made orders. The

solution is unique in the case where s > 0 and d > 0 but not otherwise. However, the solution (4) will give

the correct signal to households in stage 3, namely that a shop to which nothing has been delivered on one

side of the market will not be accepting any deliveries on either side of the market. So this is the one I

assume is chosen by all entrepreneurs.

Consider next an entrepreneur who has opened a bond shop posting prices
¡
wb, pb

¢
and has received orders

(s, d) . These prices commit the entrepreneur to paying wb bonds for each unit of i accepted in delivery and

to charging pb units of bonds per unit for each buy order executed. This entrepreneur will have to pay taxes

in the form of bonds, in which case the per unit rate is:

τ b = τ/ (1 + r) (5)

The rate (5) represents a discount for paying taxes in the form of bonds. However it will be a matter of

indifference to the government in which form the tax is paid, since paying in bonds reduces the government’s

debt service charge.

Other than this the decision problem facing the entrepreneur is the same as that facing an entrepreneur

who has opened a money shop, so his acceptance rates will be given by the analogous formula:

¡
abs, a

b
d

¢
=

⎧⎪⎨⎪⎩
³

Rb

(wb+τb)s
, R

b

pbd

´
if s > 0 and d > 0

(0, 0) otherwise

⎫⎪⎬⎪⎭ (6)

where

Rb = min
©¡
wb + τ b

¢
s, pbd

ª
.

3.2 Stages 2 and 3: Household decisions

Each household of type (i, j) enters stage 2 holding the stocks (ms, bs) of money and bonds. At this point

I take as given the function V (m0, b0), continuous and increasing in both arguments, that determines the
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household’s continuation value, where (m0, b0) are the stocks held at the beginning of next period, including

interest receipts. I also take as given the universal pair of money prices (w, p) assumed to prevail at all future

dates. The household takes as given the prices being charged by all shops trading i and j. The household is

also aware of the orders currently being placed by all others, knows that acceptance rates will be given by

the functions (4) and (6), and hence can perfectly anticipate the acceptance rates that will be charged in

stage 3 by all shops. Being infinitessimal, the household takes these acceptance rates as given.

In looking for a stationary equilibrium I can restrict my analysis of household decisions to situations in

which there is at most one commodity for which the universal pattern (one money shop, posting (w, p) with

strictly positive acceptance rates, and no bond shop) does not prevail.

3.2.1 Money shops

Suppose that all commodities other than the household’s consumption commodity conform to the universal

pattern, and that the household plans to send its shopper to a money shop posting a retail price p, whose

acceptance rate on buy orders will be ad. Its worker will be going to a money shop posting the equilibrium

wholesale price w with an acceptance rate on sell orders equal to as > 0. Then the household will choose

order quantities (s, d) ≥ 0 and next-periods stocks (m0, b0) ≥ 0 so as to maximize

ln (add)− eδ (b0 − bs) + βV (m0, b0)

subject to:

padd+ b0 ≤ ms + bs,

ass ≤ y

and

m0 + b0 = ms + bs − padd+ wass+ rb0

where the function eδ is defined as:
eδ (∆) =

⎧⎪⎨⎪⎩ δ if ∆ 6= 0
0 if ∆ = 0

⎫⎪⎬⎪⎭
The first constraint says that after the bond market has convened, the shopper must have enough cash

on hand to pay for all accepted buy orders she has placed, the second says that the worker must have enough

commodity i to make delivery on all accepted sell orders she has placed, and the third says that the household

will start next period with an amount of money m0 equal to the initial holdings ms, plus the proceeds of
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bond sales (or minus cost of bond purchases) bs − b0, minus the cost of commodity purchases padd, plus the

receipts from commodity sales wass, plus the interest received on bonds rb0.

If the acceptance rate ad is also strictly positive, then the household can game the rationing scheme by

over-ordering. That is, the worker will offer to sell the amount s = y/as such that all of its endowment will

be sold, and the shopper will offer to buy the amount d = x/ad, knowing that the amount x will actually be

bought, where the choice of x is made by solving the problem:2

⎧⎪⎨⎪⎩
Wd (p) = max

(x,b0)≥0
ln(x)− eδ (b0 − bs) + βV (ms + bs − b0 − px+ wy + rb0, b0)

subject to px+ b0 ≤ ms + bs,

⎫⎪⎬⎪⎭ (7)

The solution to this problem is not necessarily unique, because of the discontinuous function eδ in the objective
function. Let ξ (p) be the solution correspondence:

ξ (p) = {(x, b0) ≥ 0 | (x, b0) solves the problem (7)}

Then x will be chosen from the set:

ξx (p) = {x ≥ 0 | (x, b0) ∈ ξ (p) for some b0 ≥ 0} (8)

On the other hand, if the acceptance rate ad is zero, then the household’s payoff will be independent of its

choice of d, so I assume it will choose d = 0.

Suppose now that all commodities other than the household’s endowment commodity conform to the

equilibrium pattern, and that the household is planning to send its worker to a shop posting the wholesale

price w with an acceptance rate as. Since in this case the household’s consumption good conforms to the

equilibrium pattern, the shopper will be going to a money shop posting the price p with a strictly positive

acceptance rate. If as > 0, then by the same logic as used above the household will choose to sell all its

endowment by having its worker offer s = y/as and will choose its consumption x according to the decision

problem:

⎧⎪⎨⎪⎩
Ws (w) = max

(x,b0)≥0
ln(x)− eδ (b0 − bs) + βV (ms + bs − b0 − px+ wy + rb0, b0)

subject to px+ b0 ≤ ms + bs,

⎫⎪⎬⎪⎭ (9)

On the other hand, if as = 0, then the household’s payoff will be independent of its choice of s, so I assume

2Existence of a solution to each of the problems (7), (9), (10) and (12) is guaranteed by the assumed continuity of V and
the compactness of the constraint set.
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it will choose s = 0.

Because V is continuous and increasing in both arguments therefore Wd is a continuous, decreasing

function of p and Ws is a continuous, increasing function of w.

3.2.2 Bond shops

Suppose again that all commodities other than the household’s consumption commodity conform to the

equilibrium pattern, and that the household sends its shopper to a bond shop posting a retail price pb > 0,

whose acceptance rate on buy orders will be abd. Then the household will choose order quantities (s, d) ≥ 0
and next-period stocks (m0, b0) ≥ 0 to maximize

ln
¡
abdd

¢− eδ ¡b0 + pbabdd− bs
¢
+ βV (m0, b0)

subject to:

pbabdd+ b0 ≤ ms + bs,

ass ≤ y

and

m0 + b0 = ms + bs − pbabdd+ wass+ rb0.

Notice that if the household does not go to the bond market then its next period’s bond holding b0 will be

the initial holding bs minus the amount pbabdd spent on its consumption good. Accordingly, the number of

bonds bought (or minus the amount sold) in the bond market is b0 + pbabdd − bs; hence the second term in

the objective function. The first constraint says that the household cannot purchase more than ms bonds in

the bond market. The third constraint says that the amount of money on hand at the start of next period

will be the initial holding ms, plus the proceeds from bond sales (or cost of bond purchases) bs− pbabdd− b0,

plus receipts from commodity sales plus bond interest.

If the acceptance rate abd is strictly positive then the household will choose order quantities s = y/as and

d = x/ad, where the choice of x is governed by the decision problem:

⎧⎪⎨⎪⎩
W b

d

¡
pb
¢
= max

(x,b0)≥0
ln (x)− eδ ¡b0 + pbx− bs

¢
+ βV

¡
ms + bs − b0 − pbx+ wy + rb0, b0

¢
subject to pbx+ b0 ≤ ms + bs

⎫⎪⎬⎪⎭ (10)
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whose solution correspondence is:

ξb
¡
pb
¢
= {(x, b0) ≥ 0 | (x, b0) solves the problem (10)}

Thus x will be chosen from the set:

ξbx
¡
pb
¢
=
n
x ≥ 0 | (x, b0) ∈ ξb

¡
pb
¢
for some b0 ≥ 0

o
. (11)

On the other hand, if abd = 0 we may assume the household chooses d = 0.

Finally, suppose that all commodities other than the household’s endowment commodity conform to the

equilibrium pattern, and that the household sends its worker to a bond shop posting the wholesale price

wb > 0 and accepting the fraction abs of sell orders. If a
b
s > 0 then the household’s decision problem is

equivalent to:

⎧⎪⎨⎪⎩
W b

s

¡
wb
¢
= max

(x,b0)≥0
ln (x)− eδ ¡b0 − wby − bs

¢
+ βV

¡
ms + bs − b0 − px+ wby + rb0, b0

¢
subject to px+ b0 − wby ≤ ms + bs and b0 ≥ wb

y

⎫⎪⎬⎪⎭ (12)

and the worker will place a sell order equal to s = y/abs. Note that in this case the household leaves the bond

market holding in stage 2 holding the amount b0 − wby of bonds, so the size of the bond purchase (minus

the sale) is b0 − wby − bs, and in order to rule out private borrowing we must impose the constraint that

b0 ≥ wby. On the other hand, if abs = 0 then I assume the worker places no sales order: s = 0.

Because V is increasing in both arguments therefore W b
d is a continuous decreasing function of p

b and

W b
s is a continuous increasing function of w

b.

3.2.3 Shop Selection

Suppose that both entrepreneurs chose to open shops trading commodity i in stage 1. The zero-activity

problem of trading-post models implies that any choice of a common shop to patronize in stage 3 would be

an equilibrium of the shop-selection game. This is because when there are two shops then, regardless of their

posted prices, if all customers went to the first entrepreneur’s shop no one would have an incentive to go

to the second shop, since the second shop would have to refuse all deliveries, as indicated by the rationing

functions (4) and (6) above. On the other hand if they all went to the second shop then no one would have

an incentive to go to the first, for the same reason.

I deal with this problem by supposing that there is a convention of choosing the first money-shop if it

has entered, unless the payoffs to i-makers and i-eaters from choosing that shop are strictly dominated by
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the payoffs from visiting the other shop (if it has entered), where the payoffs are defined by the functions

Wd,Ws,W
b
d and W b

s described above.
3 This way I can be sure that if no bond shop enters then it is not

because of the zero activity problem but rather because there is no way that an entrepreneur can profitably

open a bond shop that is attractive to the money shop’s customers and suppliers.

3.3 Stage 1: Entry and price setting

3.3.1 Money shops

Consider an entrepreneur thinking of opening a money shop for commodity i, posting the money prices

(w, p) , when all other commodities conform to the equilibrium pattern. Suppose that all i-makers and i-

eaters choose to visit this shop. It follows from our discussion in the previous section that the orders received

by the shop will depend on its acceptance rates (as, ad) according to:

s =

⎧⎪⎨⎪⎩ y/as if as > 0

0 otherwise

⎫⎪⎬⎪⎭ and d =

⎧⎪⎨⎪⎩ x/ad if ad > 0

0 otherwise

⎫⎪⎬⎪⎭ (13)

for some x ∈ ξx (p) . But the shop’s acceptance rates in turn will depend upon (s, d) according to (4) above.

The only way conditions (4) and (13) can both hold is if there is either no “effective” rationing or 100

percent rationing. That is, it follows directly from (4) that if (as, ad) 6= (0, 0) then as (w + τ) s = adpd;

substituting in this equation for ass and add using (13) implies that in order for any orders to be executed

in stage 4, the shop’s prices (w, p) must satisfy the existence condition:

(w + τ)y = px for some x ∈ ξx (p) . (14)

The result is an instance of the well-known difficulty of establishing an equilibrium with manipulable rationing

schemes like the one we are assuming (Bénassy, 2002, pp. 21 ff.). It says that either the shop’s prices must

give it exactly enough revenue to execute all sell orders or else the only equilibrium will be the degenerate

one in which the shop accepts no orders and no orders are forthcoming.

If this condition is satisfied, then one solution to (4) and (13) is (as, ad) = (1, 1) , s = y and d = x. All

other solutions, except for the degenerate one of no orders or acceptances, are payoff-equivalent to this one

(they involve rationing of one side only and over-ordering on that side so that accepted orders are identical),

3Note that if in fact the convention selected a bond shop then there is no reason to believe that the assumed equilibrium
pattern of prices underlying these functions would actually prevail in every period in the future. However this does not
mean that households are acting with less than rational expectations when making their selection of shops, just that the self-
reinforcing convention by which everyone is collectively making the selection would not be a rational choice function for an
isolated household or group of households that was in a position to dictate the selection. In fact I am assuming that no one is
in such a position.
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so this is the one I assume will be acted out by the transactors. Thus, provided that condition (14) is satisfied

the entrepreneur’s payoff will depend on his posted prices according to:

Π (w, p) = y − x− σ =

µ
p− w − τ

p

¶
y − σ. (15)

On the other hand, if the shop’s prices do not satisfy (14) then the only solution to (4) and (13) will be

s = d = as = ad = 0, and the entrepreneur’s payoff will be −σ < 0. Therefore the entrepreneur will never

choose prices violating (14), since he can achieve a zero payoff by choosing instead not to enter. Nor, for the

same reason, will he choose prices that yield a negative profit. Formally, his choice of prices will be restricted

to the set of feasible prices, defined as follows:

Definition 1 The money prices (w, p) are “feasible” if and only if they satisfy (14) and Π (w, p) ≥ 0.

3.3.2 Bond shops

Next, consider an entrepreneur thinking of opening a bond shop for commodity i, posting prices
¡
wb, pb

¢
,

when all other commodities conform to the equilibrium pattern. Suppose that all i-makers and i-eaters

choose to visit this shop. It follows from our discussion in the previous section that the orders received by

this shop will depend on its acceptance rates
¡
abs, a

b
d

¢
according to:

s =

⎧⎪⎨⎪⎩ y/abs if abs > 0

0 otherwise

⎫⎪⎬⎪⎭ and d =

⎧⎪⎨⎪⎩ x/abd if abd > 0

0 otherwise

⎫⎪⎬⎪⎭ (16)

for some x ∈ ξbx
¡
pb
¢
. But the shop’s acceptance rates in turn will depend upon (s, d) according to (6) above.

It then follows from the same reasoning used to establish the existence condition (14) above that the shop

will accept all orders if the existence condition:

(wb + τ b)y = pbx for some x ∈ ξbx
¡
pb
¢

(17)

is satisfied, and otherwise it will accept no orders.

So if (17) is satisfied, then the outcome will be
¡
abs, a

b
d

¢
= (1, 1) , s = y and d = x, and the entrepreneur’s

payoff will be:

Πb
¡
wb, pb

¢
= y − x− σ =

µ
pb − wb − τ b

pb

¶
y − σ (18)

Again, the entrepreneur will restrict his choice of prices to those that are not dominated by choosing not to

enter; that is, prices that satisfy the following definition of feasibility:
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Definition 2 The bond prices
¡
wb, pb

¢
are “feasible” if and only if they satisfy (17) and Πb

¡
wb, pb

¢ ≥ 0.
3.3.3 Threat of entry

In addition, the first entrepreneur will enter only at prices that are immune to entry. That is, there must

be no possibility for the second entrepreneur to break even by opening a shop with prices that dominate

those of the first entrepreneur’s shop. For if that were the case then the second entrepreneur would do

so, resulting in the second entrepreneur’s shop being selected and the first entrepreneur getting a payoff of

−σ < 0. Formally, I define “immune to entry” in two parts as follows:

Definition 3 The prices (w, p) are “immune to money entry” if and only if there exists no feasible set of

money prices (w0, p0) such that w0 ≥ w and p0 ≤ p with at least one strict inequality.

Definition 4 The prices (w, p) are “immune to bond entry” if and only if there exists no feasible set of bond

prices
¡
wb, pb

¢
such that W b

s

¡
wb
¢ ≥Ws (w) and W b

d

¡
pb
¢ ≥Wd (p) with at least one strict inequality.

4 Stationary Monetary Equilibrium

The first entrepreneur in each shop, who will be the only one to open in a stationary monetary equilibrium,

will post prices that maximize the payoff Π (w, p) over the set of feasible money prices that are immune to

money and bond entry. A pair of prices satisfying this condition is however not necessarily a stationary

monetary equilibrium, because for stationarity we require that it equal the pair (w, p) which we have until

now taken as given in deriving the entrepreneur’s profit function.

We also require that the excess demand for bonds be zero, since otherwise the asset holdings (ms, bs)

would be changing over time rather than stationary. Because in general there is no demand function for

bonds, just a correspondence, we need that there be a point in the solution correspondence that is consistent

with both the existence condition (14) required for feasibility and also with the stationarity condition that

b0 = bs.

Accordingly we define a Stationary Monetary Equilibrium as follows:

Definition 5 A Stationary Monetary Equilibrium is a pair of money prices (w, p) such that (a) (w, p)

maximizes Π (w, p) over the set of feasible money prices (w, p) that are immune to both money and bond

entry, and (b) ((w + τ) y/p, bs) ∈ ξ (p).

Before examining the issue of the existence of a Stationary Monetary Equilibrium we need to characterize

the continuation function V to ensure that it is consistent with the specification of the model and to verify

that it is indeed continuous and increasing in both arguments as assumed above.
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4.1 The continuation function

In a stationary monetary equilibrium, each commodity is traded each period by a single shop, each one

posting the same constant prices (w, p) and each accepting all deliveries. The continuation function V (m, b)

is the value function of a household starting any period with asset holdings (m, b) not necessarily equal to

the per-capita supplies (ms, bs), facing the constant prices (w, p) each period from now until forever. Thus

V is defined in the same way as Wd was defined in (7) above, except with the restriction that p = p and

without the restriction that (m, b) = (ms, bs):

⎧⎪⎨⎪⎩
V (m, b) = max

(x,b0)≥0
ln(x)− eδ (b0 − b) + βV (m+ b− b0 − px+ wy + rb0, b0)

subject to px+ b0 ≤ m+ b

⎫⎪⎬⎪⎭ (19)

It is straightforward to establish that this function is indeed continuous and increasing in both arguments.

A closed form solution can be found in the case where the Baumol-Tobin cost δ equals zero. For then V

depends only on the sum of asset holdings m+ b and can be expressed as: V (m, b) = V0 (m+ b) , where:

⎧⎪⎨⎪⎩
V0 (m+ b) = max

(x≥0)
ln(x) + βV0 ((1 + r) (m+ b− px) + wy)

subject to px ≤ m+ b

⎫⎪⎬⎪⎭ (20)

because the fact that V is an increasing function of b implies that the constraint b0 ≤ m+ b− px will always

be binding when δ = 0.

Straightforward analysis of the problem defined by (20) implies that its unique solution is: x = (m+ b) /p

if m+ b < wy and x = (r (m+ b) + wy) / ((1 + r) p) otherwise. Accordingly:

V0(m+ b) =
1 + r

r
ln

µ
r (m+ b) + wy

(1 + r) p

¶
if m+ b ≥ wy (21)

V0(m+ b) = ln

µ
m+ b

p

¶
+
1

r
ln

µ
wy

p

¶
if m+ b < wy (22)

In the general case, whether or not δ = 0, we have:

V (m, b) ≤ V0 (m+ b) , (23)

because adding a cost of trading cannot make the household better off, and:

V (ms, bs) =Wd (p) =Ws (w)
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4.2 Non-existence with costless bond trading

Suppose there is no cost to visiting the bond-money market: δ = 0. Then it is easy to show that a Stationary

Monetary Equilibrium does not exist, for essentially the same reasons as in the analyses of Krishna (2005)

and Wallace (2004).

The function (7) can be re-expressed in terms of the continuation function (20) as:

⎧⎪⎨⎪⎩
Wd0 (p) = max

(x≥0)
ln(x) + βV0 ((1 + r) (ms + bs − px) + wy)

subject to px ≤ ms + bs,

⎫⎪⎬⎪⎭ (24)

and (10) can be re-expressed as:

⎧⎪⎨⎪⎩
W b

d0 (p) = max
(x≥0)

ln (x) + βV0
¡
(1 + r)

¡
ms + bs − pbx

¢
+ wy

¢
subject to pbx ≤ ms + bs

⎫⎪⎬⎪⎭ (25)

where in both cases I make use of the fact that the constraint in the original formulation of the problem will

be binding when δ = 0.

Since V0 is given by (21) and (22), it is continuous and concave, so it follows immediately from (24) and

(25) that:

Result 1 When the Baumol-Tobin cost δ is zero, there is a unique solution
³ex0 (p) ,eb0 (p)´ to problem (7)

and a unique solution
³exb0 ¡pb¢ ,ebb0 ¡pb¢´ to problem (10).

Moreover, inspection of (24) and (25) reveals that when p = pb, these two problems are identical and

have identical solutions:

For all p > 0, W b
d0 (p) =Wd0 (p) and exb0 (p) = ex0 (p) . (26)

This is because when there is no cost to accessing the bond market it makes no difference to the household

whether it has to pay for consumption using a certain amount of money or an equal valued amount of bonds.

Likewise I can rewrite (9) as:

⎧⎪⎨⎪⎩
Ws0 (w) = max

(x≥0)
ln(x) + βV0 ((1 + r) (ms + bs − px) + wy)

subject to px ≤ ms + bs,

⎫⎪⎬⎪⎭ (27)
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and rewrite (12) as:4

⎧⎪⎨⎪⎩
W b

s0

¡
wb
¢
= max

(x≥0)
ln (x) + βV0

¡
(1 + r)

¡
ms + bs − px+ wby

¢¢
subject to px ≤ ms + bs

⎫⎪⎬⎪⎭ (28)

Inspection of (27) and (28) shows that the two problems are identical when w = (1 + r)wb:

For all w > 0, W b
s0 (w) =Ws0 ((1 + r)w) (29)

This is because when the household is paid in an equivalent amount of bonds, it will receive interest on its

sales proceeds that it would not have received if it had been paid in the form of money. In effect, sending

the worker to a bond shop is a means of avoiding the interest-opportunity cost of holding sales proceeds in

non-interest-bearing money.

This last point is the key to our non-existence result. A Stationary Monetary Equilibrium does not exist

when there is costless access to the bond market because an entrepreneur operating a bond shop can offer

to its suppliers the possibility of avoiding the interest-opportunity cost of holding cash receipts, and hence

it can offer its suppliers and customers terms that dominate those offered by any money shop. Formally we

have:

Proposition 1 When the Baumol-Tobin cost δ equals zero there exists no Stationary Monetary Equilibrium.

Proof. Consider any feasible money prices (w, p) . I show that there is a feasible pair of bond prices¡
wb, pb

¢
such that:

W b
d0 (p) =Wd0 (p) (30)

and

W b
s0

¡
wb
¢
> Ws0 (w) . (31)

Consider the pair of bond prices: ¡
wb, pb

¢
=
¡
w + τ − τ b, p

¢
(32)

This pair is feasible because (26) and the assumed feasibility of (w, p) imply:

(wb + τ b)y = (w + τ) y = pex0 (p) = pbexb0 ¡pb¢
4Note that when the first constraint in (12) is binding, which again it must be when δ = 0, then the second constraint is

equivalent to the constraint in (28).
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and

Πb
¡
wb, pb

¢
=

µ
pb − wb − τ b

pb

¶
y − σ =

µ
p− w − τ

p

¶
y − σ = Π (w, p) ≥ 0

Also it follows immediately from (26) that pb = p satisfies condition (30). Finally it follows from (5) that

wb = w +
τr

(1 + r)
> w >

w

1 + r

This and the fact that W b
s0 is an increasing function implies:

W b
s0

¡
wb
¢
> W b

s0

µ
w

1 + r

¶

which together with (29) implies that wb satisfies condition (31). It follows that there is no feasible pair

of money prices that is immune to bond entry. Therefore there is no pair of money prices that satisfy the

immunity condition in part (a) of the definition of Stationary Monetary Equilibrium (Definition 5 above).

Therefore there is no Stationary Monetary Equilibrium.

4.3 Existence with a positive Baumol-Tobin cost and a small enough rate of

interest

When there is a positive Baumol-Tobin cost, then a bond shop can no longer automatically offer terms that

dominate those of any money shop. This is because in order to convert the sales receipts into cash that can

be used to purchase consumption in the future the household will have to either incur the cost of visiting the

bond market or be content with consuming just the interest on the bonds received. If the rate of interest is

small enough then this disadvantage will outweigh the advantage of avoiding the interest-opportunity cost.

In effect, the supplier may value the extra liquidity yield of the cash receipts more highly than the extra

pecuniary yield of the bond receipts.

Suppose therefore that δ > 0. My candidate for a Stationary Monetary Equilibrium is the pair of money

prices ( bw, bp) defined as:
bw = ms

y
− τ (33)

and

bp = ms

y − σ
. (34)

which are also the prices I showed to constitute a unique stationary monetary equilibrium in my earlier

(2005) paper, where by assumption there are no government bonds. Note that assumptions (2) and (3)

17



imply that bw is strictly positive, and assumption (1) implies that bp is strictly positive.
These prices are obvious candidates for a stationary equilibrium because in a stationary equilibrium the

cash-in-advance constraint should bind, with households spending all their money each period: px = ms.

Under these circumstances the feasibility condition (14) requiring that a shop’s receipts be just enough to

cover its wage and tax costs would require a wholesale price equal to bw. And under the same circumstances
the zero profit condition: y − σ −ms/p = 0 which must be satisfied for a shop to survive the Bertrand-like

entrepreneurial competition of stage 1, would require a retail price equal to bp.
I will need to show that the conditions defining a Stationary Monetary Equilibrium are satisfied under

the assumption that:

(w, p) = ( bw, bp)
which I now maintain for the rest of the analysis.

First I show that under this assumption each household will indeed spend all its money each period, and

that moreover it will always have a zero excess demand for bonds. Because it never visits the bond market

the household will never incur the Baumol-Tobin cost and will therefore attain the same payoff as if δ were

equal to zero, which according to (24) is the function cWd0 defined by:

⎧⎪⎨⎪⎩
cWd0 (p) = max

(x≥0)
ln(x) + βV0 ((1 + r) (ms + bs − px) + bwy)

subject to px ≤ ms + bs,

⎫⎪⎬⎪⎭ (35)

That is, I will establish:

Result 2 When (w, p) = ( bw, bp) then, for all p > 0, (a) Wd (p) = cWd0 (p) and (b) the solution to the

household’s decision problem (7) is uniquely given by x = ms/p and b0 = bs. This result holds even when

the Baumol-Tobin cost δ is strictly positive.

Proof. Consider a household whose shopper is patronizing a money shop posting the retail price p while

all other shops, now and in the future, are posting the pair ( bw, bp).
Suppose first that p = bp. Then Wd (p) is just the the continuation function V evaluated at (ms, bs), andcWd0 (p) is just V0 (ms + bs). So part (a) of Result 2 is equivalent to:

V (ms, bs) = V0 (m
s + bs) (36)

To see that (36) must hold, note that the pair (x, b0) = (ms/bp, bs) is feasible for the problem (19) defining
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V (ms, bs) , so we have:

V (ms, bs) ≥ ln
µ
msbp
¶
+ βV (ms + bs − bs −ms + bwy + rbs, bs)

But the assumption (2) that the tax rate is set just high enough to pay the interest on bs bonds, together

with the definition (33) of bw, implies that:
bwy + rbs = ms (37)

Therefore:

V (ms, bs) ≥ ln
µ
msbp
¶
+ βV (ms, bs)

From this and the fact that β = (1 + r)−1 we get:

V (ms, bs) ≥ 1 + r

r
ln

µ
msbp
¶

However, since (37) implies that ms + bs ≥ bwy, therefore the closed-form solution (21) for V0 (ms + bs)

applies, so:

V0 (m
s + bs) =

1 + r

r
ln

µ
r (ms + bs) + bwy

(1 + r) bp
¶

which together with (37) implies:

V0 (m
s + bs) =

1 + r

r
ln

µ
msbp
¶

(38)

So I have established that:

V (ms, bs) ≥ V0 (m
s + bs)

This and the inequality (23) stating that the continuation value cannot be greater than if the Baumol-Tobin

cost were zero establish the equality (36).

Next consider the general case where p is not necessarily equal to bp. I will show first that:
Wd (p) = cWd0 (p) = ln

µ
ms

p

¶
+
1

r
ln

µ
msbp
¶
, (39)

which will establish part (a) of Result 2 in the general case. First note that because δ ≥ 0, and because (23)
implies that the continuation value in (7) is never greater than that in (35), therefore:

Wd (p) ≤ cWd0 (p) (40)
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According to (37) and the closed-form solution (21) we can rewrite (35) as:

⎧⎪⎨⎪⎩
cWd0 (p) = max

(x≥0)
ln(x) + (1/r) ln ((ms + r (ms − px)) /bp)

subject to px ≤ ms + bs,

⎫⎪⎬⎪⎭
which has the unique solution: x = ms/p, yielding:

cWd0 (p) = ln

µ
ms

p

¶
+
1

r
ln

µ
msbp
¶

which is the second equality of (39).

Next, note that because the choice (x, b0) = (ms/p, bs) is feasible for the problem (7) we have:

Wd (p) ≥ ln
µ
ms

p

¶
+ βV (ms + bs − bs −ms + bwy + rbs, bs)

So (37) implies:

Wd (p) ≥ ln
µ
ms

p

¶
+ βV (ms, bs)

which together with (36) and (38) implies:

Wd (p) ≥ ln
µ
ms

p

¶
+
1

r
ln

µ
msbp
¶

Together with (40) and the second equality of (39) this implies the first equality.

The above argument establishes that (ms/p, bs) provides one solution to the problem defined by (7).

Together with Result 1 it also shows thatms/p is the unique solution to (35). To complete the demonstration

of Result 2 we need to show that the solution to (7) is unique. So consider any (x, b0) ≥ 0 in the constraint
set of (7). Because b0+px ≤ ms+ bs therefore x is in the constraint set of (35). This and the fact that ms/p

is the unique solution to (35) implies:

cWd0 (p) ≥ ln (x) + βV0 ((1 + r) (ms + bs − px) + bwy) with strict inequality if x 6= ms/p

This and part (a) of Result 2 imply that:

Wd (p) ≥ ln (x) + βV0 ((1 + r) (ms + bs − px) + bwy) with strict inequality if x 6= ms/p

20



Also, because b0 + px ≤ ms + bs therefore:

(1 + r) (ms + bs − px) + bwy ≥ ms + bs − px+ bwy + rb0

which, together with the fact that V0 is an increasing function, implies:

Wd (p) ≥ ln (x) + βV0 (m
s + bs − px+ bwy + rb0) with strict inequality if x 6= ms/p

From this, the inequality (23) and the fact that δ > 0 we have:

Wd (p) ≥ ln (x)− eδ (b0 − bs) + βV (ms + bs − b0 − px+ bwy + rb0, b0)

with strict inequality if either x 6= ms/p or b0 6= bs

Therefore (x, b0) does not solve the problem (7) if it is not equal to (ms/p, bs), which is therefore the unique

solution. This establishes part (b) of Result 2.

With Result 2 in hand we can now demonstrate, as suggested above, that ( bw, bp) is the only set of money
prices that are both feasible and immune to money entry:

Result 3 The money prices (w, p) are feasible and immune to money entry if and only if w = bw and p = bp.
Proof. To demonstrate this result, consider any money prices (w, p) . Since Result 2 implies that ms/p

is the only element of ξx (p) therefore (w, p) satisfies the first condition (14) in the definition of feasibility

(Definition 1 above) if and only if

(w + τ) y = m

which, according to the definition (33), is true if and only if w = bw. Using this and the definition (15) of Π,
the prices (w, p) satisfy both conditions of feasibility in Definition 1 if and only if w = bw and

µ
p− bw + τ

p

¶
y − σ ≥ 0

which, according to the definition (34), is true if and only if p ≥ bp. It follows from this and Definition 3 that

the prices (w, p) are feasible immune to money entry if and only if (w, p) = ( bw, bp).
It follows immediately from part (b) of Result 2 that the candidate prices ( bw, bp) satisfy the second

condition in the above definition of Stationary Monetary Equilibrium (Definition 5), i.e., that there be

no excess demand for bonds. It then follows from this and Result 3 that ( bw, bp) constitutes a Stationary
Monetary Equilibrium if it is immune to bond entry, for then it will satisfy not only the second but also the
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first condition of Definition 5. The rest of this section will show that this will happen if the rate of interest

is low enough. That is:

Proposition 2 For any Baumol-Tobin cost δ > 0 the prices ( bw, bp) constitute a Stationary Monetary Equi-
librium when the rate of interest r is small enough.

Proof. As indicated above, I just need to demonstrate immunity to bond entry for small enough r > 0.

I do this in three (very unequal) steps:

1. I find a number ε > 0 such that W b
s

¡
wb
¢ ≥Ws ( bw) implies wb > (1 + ε) bw for small enough r > 0.

2. I show that if
¡
wb, pb

¢
is a feasible pair of bond prices and wb > (1 + ε) bw then pb > bp for small enough

r > 0.

3. I show that if pb > bp then W b
d

¡
pb
¢
< Wd (bp).

It follows immediately from these three results and Definition 4 that ( bw, bp) is immune to bond entry for
small enough r > 0, which will complete the demonstration of Proposition 2.

1. Take any value of ε such that:

0 < ε < min {2 ln(2)− 1, δ} (41)

By construction:

Ws ( bw) = V (ms, bs)

From this and the results (36) and (38):

Ws ( bw) = V0 (m
s + bs) =

1 + r

r
ln

µ
msbp
¶

(42)

So given that W b
s is an increasing function I just need to demonstrate that

W b
s ((1 + ε) bw) < 1 + r

r
ln

µ
msbp
¶
for small enough r > 0. (43)

Note that:

W b
s ((1 + ε) bw) = max©W bε

s−,W
bε
s+

ª
(44)

where W bε
s− is the maximum payoff a household could obtain by supplying to a bond shop at the price

wb = (1 + ε) bw if the household was constrained not to visit the bond market this period or next, and W bε
s+

is the payoff that the same household could get if it was constrained to visit the bond market at least once

during these first two periods.
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Consider first W bε
s−. By definition:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W bε
s− = max

(x0,x1,m1,m2,b1,b2)≥0
ln (x0) + β ln (x1) + β2V (m2, b2)

subject to bpx0 ≤ ms,

bpx1 ≤ m1,

m1 = ms − bpx0 + rb1

b1 = bs + (1 + ε) bwy
m2 = m1 − bpx1 + bwy + rb2

b2 = b1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(45)

So

W bε
s− ≤W

bε

s−,

where: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W
bε
s− = max

(x0,x1,m1,m2,b1,b2)≥0
ln (x0) + β ln (x1) + β2V0 (m2 + b2)

subject to bpx1 ≤ m1,

m1 = ms − bpx0 + rb1

b1 = bs + (1 + ε) bwy
m2 = m1 − bpx1 + bwy + rb2

b2 = b1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(46)

because the absence of the constraint bpx0 ≤ ms makes the constraint set in (46) a superset of the constraint

set in (45) and the fact that V0 (m2 + b2) ≥ V (m2, b2) makes the objective function in (46) never smaller

than the objective function in (45). Using the last four constraints to replace m1,m2, b1 and b2 we can

rewrite (46) as:

⎧⎪⎨⎪⎩
W

bε

s− = max
(x0,x1)≥0

ln (x0) + β ln (x1) + β2V0 (m
s − bp (x0 + x1) + bwy + (1 + 2r) (bs + (1 + ε) bwy))

subject to bp (x0 + x1) ≤ ms + r (bs + (1 + ε) bwy)
⎫⎪⎬⎪⎭

From this and the closed-form solution (21) for V0:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W

bε

s− = max
(x0,x1,x2)≥0

ln (x0) + β ln (x1) + β2 1+rr ln (x2)

subject to bp (x0 + x1) ≤ ms + r (bs + (1 + ε) bwy)
and x2 = (r (m

s − bp (x0 + x1) + bwy + (1 + 2r) (bs + (1 + ε) bwy)) + bwy) / ((1 + r) bp)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
The following argument shows that the first inequality constraint in this problem will bind for small
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enough r > 0. Suppose on the contrary that the constraint is not binding. Then some tedious but elementary

calculations yield the solution to the problem:

x0 = (1 + r)−1X/bp, x1 = (1 + r)−2X/bp and x2 = (1 + r)−3X/bp
where

X = r (ms + (1 + 2r) (bs + (1 + ε) bwy)) + (1 + r) bwy
Now consider what happens as we send r to zero, keeping ms and bs constant, but allowing τ to adjust to

keep (2) satisfied, so that, by (37) bwy → ms. Therefore: X → ms, so:

ms + r (bs + (1 + ε) bwy)− bp (x0 + x1)

= ms + r (bs + (1 + ε) bwy)− ³(1 + r)
−1
+ (1 + r)

−2´
X

→ ms − 2ms

< 0

So for small enough r > 0 the solution will violate the first inequality constraint, a contradiction. Therefore

for small enough r > 0 the first inequality constraint will bind and routine calculation shows that:

x0 =
ms + r (bs + (1 + ε) bwy)

(2 + r) bp ,

x1 =
ms + r (bs + (1 + ε) bwy)

(1 + r) (2 + r) bp
and

x3 =
bwy + r (bs + (1 + ε) bwy)bp ,

so:

W
bε

s− = (1 + β) ln

µ
ms + r (bs + (1 + ε) bwy)

(2 + r) bp
¶
− β ln (1 + r) + β2

1 + r

r
ln
bwy + r (bs + (1 + ε) bwy)bp
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Using (37) and the fact that β = (1 + r)−1, we have:

W
bε

s− −
1 + r

r
ln

µ
msbp
¶

=
2 + r

1 + r
[ln (ms + r (bs + (1 + ε) (ms − rbs)))− ln (2 + r)]− 1

1 + r
ln (1 + r)

+
1

1 + r

1

r
ln (ms + r (1 + ε) (ms − rbs))− 1 + r

r
ln (ms)

Define

f (r) = r (1 + r)

µ
W

bε

s− −
1 + r

r
ln

µ
msbp
¶¶

Then:

f (r) = r (2 + r) ln (ms + r (bs + (1 + ε) (ms − rbs)))− r (2 + r) ln (2 + r)

−r ln (1 + r) + ln (ms + r (1 + ε) (ms − rbs))− (1 + r)2 ln (ms)

f (0) = 0

and

f 0 (0) = 1 + ε− 2 ln (2) < 0.

Therefore for small enough r > 0 we have f (r) < 0, hence W
bε

s− − 1+r
r ln

³
ms

p

´
< 0 and hence

W bε
s− <

1 + r

r
ln

µ
msbp
¶
for small enough r > 0. (47)

Next, consider W bε
s+. In this thought experiment the discounted sum of Baumol-Tobin costs is at least

equal to βδ. So W bε
s+ is no greater than what the household could get from paying the cost βδ and then

having unlimited access, at no additional cost, to the bond market forever. That is

W bε
s+ ≤W b

s0 ((1 + ε) bw)− βδ,

where the function W b
s0 is the function W b

s defined by (28) above. By (29) we have:

W b
s0 ((1 + ε) bw) =Ws0 ((1 + r) (1 + ε) bw)
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where Ws0 is defined by (27) above. From (27) and the close-form solution (21):

⎧⎪⎨⎪⎩
Ws0 ((1 + r) (1 + ε) bw) = max

(x≥0)
ln(x) + 1

r ln
³
r((1+r)(ms+bs−px)+(1+r)(1+ε)wy)+wy

(1+r)p

´
subject to bpx ≤ ms + bs,

⎫⎪⎬⎪⎭
Therefore:

Ws0 ((1 + r) (1 + ε) bw) ≤ max
(x≥0)

ln(x) +
1

r
ln

µ
r ((1 + r) (ms + bs − bpx) + (1 + r) (1 + ε) bwy) + bwy

(1 + r) bp
¶

or, solving for the maximization problem on the right-hand side:

Ws0 ((1 + r) (1 + ε) bw) ≤ 1 + r

r
ln

⎛⎝r (ms + bs) +
³
r (1 + ε) + 1

1+r

´ bwy
(1 + r) bp

⎞⎠
Putting all this together yields:

W bε
s+ ≤W

bε
s+

where:

W
bε

s+ ≡
1 + r

r
ln

⎛⎝r (ms + bs) +
³
r (1 + ε) + 1

1+r

´ bwy
(1 + r) bp

⎞⎠− βδ

Define

h (r) =
r

1 + r

µ
W

bε
s+ −

1 + r

r
ln

µ
msbp
¶¶

Then:

h (r) = ln

µ
r (ms + bs) +

µ
r (1 + ε) +

1

1 + r

¶ bwy¶− ln (1 + r)− r

1 + r
βδ − ln (ms)

Using (37) we have:

h (r) = ln

µ
r (ms + bs) +

µ
r (1 + ε) +

1

1 + r

¶
(ms − rbs)

¶
− ln (1 + r)− r

1 + r
βδ − ln (ms)

so:

h (0) = 0

and

h0 (0) = ε− δ < 0
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So for small enough r > 0 we have h (r) < 0, hence W
bε

s+ < 1+r
r ln

³
ms

p

´
and hence

W bε
s+ <

1 + r

r
ln

µ
msbp
¶
for small enough r > 0. (48)

The results (47) and (48) together with (44) imply (43) and this establishes step 1 of the proof.

2. To establish step 2, consider any feasible bond prices
¡
wb, pb

¢
with

wb > (1 + ε) bw
By the definition of feasibility (Definition 2 above) and the definition (18) of Πb, we have:

µ
pb − wb − τ b

pb

¶
y − σ ≥ 0

so: µ
pb − bw (1 + ε)− τ b

pb

¶
y − σ > 0

or:

pb >
ε bwy
y − σ

+
bwy − τ by

y − σ

As r → 0 equations (1), (2), (5), (34) and (37) imply that

ε bwy
y − σ

+
bwy − τ by

y − σ
→ (1 + ε) bp > bp

Therefore, for small enough r > 0 we have pb > bp. The establishes step 2.
3. Result (26) above establishes that

cWd0 (p) = cW b
d0 (p) for all p > 0

where cWd0 and cW b
d0 are defined respectively by (24) and (25) with w = bw. Result (39) establishes that:

Wd (p) = cWd0 (p) for all p > 0

and the fact that δ > 0 implies that:

cW b
d0 (p) ≥W b

d (p) for all p > 0
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Hence:

Wd (p) ≥W b
d (p) for all p > 0

Step 3 follows from this and the fact that Wd is a decreasing function.

This finishes the proof.

5 Conclusion

I have shown that with a Baumol-Tobin cost there exists a stationary equilibrium in which all trades use non-

interest-bearing money and non involve bonds. This does not mean however that there does not also exist

a stationary equilibrium in which all trades use bonds and not money. Instead what the Baumol-Tobin cost

does is to establish superior liquidity for whatever is dictated by convention to be the medium of exchange,

and hence it aids in making that convention self-sustaining. The more interesting question is whether or

nor society would be any better off under a convention of using only interest-bearing bonds as the universal

medium of exchange. This is the subject of ongoing research
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