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1. The simplest possible derivation of the Kelvin State. Assume that the solution is to 
be generated from Papkovich-Neuber potentials , φΨ  satisfying 
 

, ( ) ( ) , ( ) ( )i kk i kk j jb x bδ ξ φ δ ξΨ = − − = − −x x x x  
 
Here, we have chosen the body force to be a Dirac delta sequence centered at ξ . By 
taking Fourier transforms of the governing equations for , φΨ  above, find the 
Papkovich-Neuber potentials that generate the required solution.   
 
 
 
2. Papkovich-Neuber potentials for the Doublet states.  Let  ( ) ( ),k kφΨ  denote the 
Papkovich-Neuber potentials for the normalized Kelvin state, i.e. a point force of unit 
magnitude acting in the ke   direction at the origin.  Let ( , ) ( , ) ( , ) ( , )[ , , ]k l k l k l k lS ε σ= u  
denote the doublet states, i..e. 

( , ) ( ) ( , ) ( ) ( , ) ( ), , ,k l k k l k k l k
l l li i ij ij ij iju u ε ε σ σ= = =  

Show that ( , )k lS  may be generated from Papkovich-Neuber potentials 
 

( ) ( )( ) ( ) ( ), ,k kkl kl k
i l li lφ φΨ = Ψ = −Ψ  

 
Hence, verify that the Papkovich Neuber potentials for the doublet states centered at the 
origin are 

( , ) ( , )
3

1 1
4 4

k l k lki l kl
i

x
rr

δ δ
φ

π π
Ψ = − = −  

 
 
 



3. Center of Compression.  Using the results of the preceding section, find the 
displacement, strain and stress fields associated with a center of compression at the 
origin, i.e., find 

( , ) ( , ) ( , ) ( , )[ , , ]k k k k k k k kS ε σ= u  
 
 
 
 
4. Center of compression in a sphere.  Using superposition and the results of problem 
(3), find the displacement fields induced by a center of compression at the center of a 
sphere of radius a.  Assume that the surface of the sphere is free of traction.   
 
 
 
 
5. Dilatation at the center of a sphere due to arbitrary surface traction. Using the 
result of problem (4), show that the dilatation at the center of a sphere of radius a due to 
a self-equilibrating distribution of traction t acting on its surface is 
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where r is the position vector of a point on the sphere’s surface relative to the origin, and 
B denotes the surface of the sphere.  Verify the predictions that were made in our proof of 
Saint-Venants principle.  What happens if the tractions act tangent to the surface of the 
sphere? 
 


