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Homework 3: Half space problems, Eshelby Inclusions,  
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1. Tangentially loaded half-space. 
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(1.1)  State the appropriate boundary conditions for a half-space subjected to a   point 
          force acting tangent to its surface, as shown in the figure. 
(1.2)  Examine the list of Boussinesq potentials given at the end of Sect 3.1 of the online 
          lecture notes.  Consider solutions A, B and E, which generate stresses from  
          harmonic potentials  ˆ, andφ ω Ω  as follows: 
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Following the procedure outlined in Sect 3.7 for a normally loaded half-space, 
find a way to combine solutions A, B, and E so as to generate an elastostatic state 
which automatically satisfies 33 23 0σ σ= =    on the surface of the half-space.  You 
should find you can generate the required solution from a single harmonic 
potential Θ  .  Set up the boundary conditions that represent a point force at the 
origin. 

 
(1.3) Take Fourier transforms of the governing   equations and boundary conditions  
         found in (1.2).  Hence, deduce that the transform of the required potential satisfies 
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Θ = − −  

Use the result for the normally loaded half-space to write down 3,Θ  and hence 
deduce the potential Θ   

(1.4)    Determine the displacement field for the tangentially loaded half-space. 
 
 
2.  Spherical inhomogeneity. Suppose that an infinite solid with shear modulus and 
Poisson’s ratio 0 0,µ ν  contains a spherical inclusion with shear modulus 1 1,µ ν .  The solid 
is loaded in uniaxial tension 11σ ∞  at infinity.  Calculate the stress, strain and displacement 
in the inclusion (take the displacement to be zero at the origin) 
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3.  Energetics of Eigenstrains.  Consider a homogeneous, stress free, linear elastic solid 
with elastic constants ijklC .  Suppose that an eigenstrain distribution ijε ∗   is introduced 

into a bounded subregion of the solid B.  Let e
ij ij ijε ε ε∗= +   denote the total strain 

distribution in the solid. 
 
Show that the total strain energy of the solid is 
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To do this, begin by writing down the strain energy within B.  Then, write down an 
expression for the total strain energy outside B in terms of the traction acting on the 
boundary of B.  Then find a way to rearrange the sum of these two terms into the form 
given above. 
 



 
 
4. General Axisymmetric Contact. Suppose that two isotropic, linear elastic spheres 
with radii  ,A BR R  and  moduli and Poisson’s ratios , ,, ,A A B Bµ ν µ ν                                           
are pressed into contact. 
 
Assume that if the two spheres did not deform, they would overlap by a distance h as 
shown in the figure. 
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Make the following assumptions: 
 

(1)  The radius of the contact area between the two spheres is much smaller than 
the radius of either sphere. 
(2) Both spheres deform as though they were infinite half-spaces.  That is to say, 
the radial displacement of a point on the surface of sphere A due to a point force 
acting a distance r away on its surface is 
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(3) Approximate the profile of each sphere by a parabola. 
 

Write down an integral equation for the contact pressure distribution acting between the 
spheres, in terms of the sphere radii and the elastic constants. 
 
Compare the result with the integral equation that governs the pressure distribution acting 
between a rigid sphere and an elastic half-space.  Hence, find expressions for the radius 
of the contact area between the spheres, the contact pressure distribution and the 
relationship between the load P and the approach of remote points on the spheres h. 
 
 


