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1. Let ( ), ( )z zωΩ  be two complex potentials that generate stresses and displacements 
according to the usual formulation (no continuation) 
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Show that the displacement and stress components in the ( , )ξ η  basis shown in the figure 
can be calculated as 
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2. Complex variable solution to a pressurized cylinder. 
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2.1 Using the results of the preceding problem, show that the complex potentials that 
generate stress and displacement fields in a pressurized cylinder (see above) must satisfy 
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2.2 By expanding  and ( )zΩ ( )zω  as Laurent series, find the potentials that solve this 
problem.  To simplify the algebra, note that 2 2 2 2/ /i ie r z z r z on z reθ θ− = = = , and 
assume that the solution can be generated from terms in the series that after substitution 
in the boundary conditions, are independent of z. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
3. Dislocation near a rigid interface 
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3.1 Begin by finding an analytic continuation that automatically satisfies D=0 on z z= . 
To do this, start with the standard complex variable formulation 
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Express the boundary condition in terms of Ω  and ω  defined in R + .  Next, express the 
boundary condition in terms of potentials ( ) ( )z zωΩ  which are analytic in R − .   Use 
the result to show that 
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where L denotes the real axis. Hence, conclude that this implies that 
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is analytic in R .  Use this to calculate an expression for ( )z z Rω ∈ + , and hence show 
that a solution with D=0 on z z=  can be generated by finding a single potential  
that is analytic in 

( )zΩ
R , and calculating displacements and stresses from 
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3.2  Let 1 2 1 2
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solution for a dislocation at position  in an infinite solid.  Deduce that, to satisfy D=0 
on L, we must superpose a second potential 

0z
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and calculating stresses and displacements from this potential using the formulation in 
3.1. 
 
3.3 Using (3.1) as a guide, write down the potential ( )zΩ  in terms of 0 ( )zΩ  and 0 ( )zω  
 
 
 
4. Stress induced by indentation with a rigid wedge 
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Suppose that an elastic half-space is indented by a rigid frictionless wedge, with profile 

1( ) 1f x xε= .  Calculate the potential '( )zΩ  that generates the stress field in the solid in 
terms of  and a 2F . Hence, determine the contact pressure distribution and the slope of 
the surface for .  Use the conditions that the contact pressure cannot be tensile, and 
the two solids cannot overlap to deduce the relationship between contact width a and the 
force applied to the punch. 
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5. An alternative solution for the pressurized crack 
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There is often more than one choice of analytic continuation for a particular boundary 
value problem.  To illustrate this, in this problem we will devise an alternative procedure 
to solve the pressurized crack problem that was discussed in class. 
 
Consider a crack that is subjected to equal and opposite tractions 1 2t it ip+ =  on its faces. 
Symmetry conditions imply that 2 120 0u σ= =  on z z=  outside the crack.  Moreover, it 
is evidently sufficient to find a solution in the upper half-plane, since the solution in the 
lower half-plane follows by symmetry. 
 
5.1 Starting with the standard complex variable formulation 
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show that setting ( ) ( ) '( )z z zω = Ω − Ω  will automatically satisfy 12 0σ =  on z z= . 
 
5.2 With this choice of ( )zω , show that the condition that 2 0u =  on z z=  implies that 
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is continuous outside the crack, and analytic in the whole plane.  Deduce that 
( ) ( )z zθΩ = . 

 



5.3 Hence show that traction boundary condition on the crack faces leads to a Hilbert 
problem for ( )zθ  
 
 
5.4 Write down the general solution to the Hilbert problem. 
 
 
5.5 Hence, find an expression for the stress intensity factors induced at the right hand 
crack tip by a pair of equal and opposite point forces acting on the crack faces. 
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