EN221 - Fall2008 - HW # 10 Solutions

Prof. Vivek Shenoy

1.) (i) Show that, for a compressible Newtonian viscous fluid, the extra
stress power tr (0®D) is universally non-negative if and only if the bulk and
shear viscosities are non negative.

(ii) An incompressible Newtonian viscous fluid occupies a regular region B with
a fixed rigid boundary 0B and is not acted on by body forces. Show that the
totoal kinetic energy of the fluid decreases at the rate.

i [ ol 1)
B
1 being the viscosity and w the vorticity.
Soln.
For a compressible Newtonian Viscous fluid
2
o = (—p+ (H— §’u> trD) I+2uD
= —pI+o”F
2
o = (H— gﬂ) tr (D)I+2pD
The extra stress power is
E 2 2
tr (c¥D) = tr =g tr (D)D| + tr [2uD?

= (H - §u> (tr D)% + 2ptr (D?)

writing, D = D’ + % (tr D)L (tr D’ = 0, by definition)

we obtain

tr (c®D) (/@ - §u> (tr D)? + 2putr (D' + %(tr D)I]?)

1 2 1
D'+ 5(tr D)I? D+ Z(tr D)D' + < (tr D)L

tr [D’—l—%(tr D)2 = tr(D?) + =(tr D)?

wl

2
w | (tr D)? + 2utr (D) + ?'u(tr D)?

C»DI[\D

= tr (6®D) = (



= tr (¢¥*D) =

k(tr D)? + 2utr (D?)

(2)

since (tr D)2 > 0 and tr (D’2) > 0. hence, tr (¢¥D) > 0 if &, ;1 are non-negative

(ii) The total KE is

dK

1 E
KE:—/pUQdV:»—:/pv-vdv

But

pv=dive + pb+ pV3v

V - v =0, incompressible fluid

Thus,
dKE

dt

/Vp-vdV:/V~(pv)dV: pv-ndA =0
B B OB

p0 = —Vp+uViv

:—/ VpdV—i—,u/ Vv dV
B B

now, V- (pv) = Vp- v+ pV -v = Vp- v so; Using the divergence theorem

But since the boundary is fixed v-n =10

Vv =
/ pV2-vdV =
B

but, VAv =w

V(V-v)=VANVAv)==VA(VAD)

—/ uVA(VAv)-vdV
B

/;LVQdeV:—/,u(V/\w)de
B

But,

(VAw)- v

B

8wk
€Cijk 7 Vi
8.Ij
O(wrv;) ov;
Cijk— 5 — GijkWk 5 —
8$j 8$j
0— (wAv); v,
Cijk— o — CijkWk 5 —
8$j 8$j

-V -(wAv)+(VAD) - w
-V - (wAv)+w-w



Thus,

/ uV23v - vdV
B

/BV~(w/\v)dV

/ uV3v - vdV
B

,u/ V-(w/\v)dV—,u/ |w|?dV
B B

/ (wAv) - ndA=0 since v-n =0
9]

B
—y / lw[2dV
B



2.) (a) Show that the circulatory motion defined in Exercise 2.9 pg 85 Chad-
wick, can be maintained in an incompressible Newtonian viscous fluid without
the aid of body forces if the function f satisfies the partial differential equation

o*f 30f\ Of
(52 Te) =5 (15)

and that the pressure is then given by

p=pto [ (s, )25 ds (16)

Here p is the density and v the kinematic viscosity of the fluid and pg is a
constant.

(b) An incompressible Newtonian fluid is confined between long coaxial rigid
cylinders of radii 71 and 79 (r1 < ro)which rotate about their common axis
with angular speeds €21 and €5 respectively. Assuming that the fluid performs
a steady circulatory motion and that body forces are absent, deduce from the
results of part (a) that the circumferential velocity at distance r from the axis
is

Qor? — Q12 Qo — Qq rir2
2T§ 21T1 r— ; 21 i (17)
T3 — T} rs—ri r
Calculate the torque per unit length needed to drive each cylinder.
Soln.
vy = —xzof(r,t) = —rsind f(r,t) (18)
ve = x1f(r,t) =rcosb f(r,t) (19)
vy = 0 (20)
=v = f(r,t)reg (21)
d
= pd—‘tf = —Vp+uV* +pb (22)
av 9
Por +pgradv-v = —Vp+ uVv (23)
gradv = (er(% + i—e% + €z(%> ® f(r,t)reg
= ar—feg@)er—rfer R ey (24)
ar
gradv-v = (ag—fee Qe —rfe, ® 69) (freg)
T
= —frie, (25)

B Op ey dp op



Note that, v is function of only r and t so % =0= % by the symmetry in the

problem

Vv = |==—r—+

0 ofr e

K 8TT or r 002

(10 Ofr f]
€9

ror or 1
On substituting Eqn(25 t027) in Eqn(23)
orf

[ — 2 ] — — JEE—
p ET el frer_ erar
orf 10 Ofr
TP T “(FETW__
dp
2 = —_—
== or

Using Eqn(28) on simplification

of _u (0°f  30f
:‘E—;(wﬁa—r

Using Eqn(29) on integrating
Op o
a7

p = / f?sds + po

(b) Fluid motion is steady

of
rri 0
IUEY
dr?2 = rdr
The general solution of Eqn(32) is give by
_ B
= /= 2r2 7
now v|freg
V(R1> = QlRl = —ﬂ +")/ Rl
2R?

100 12
ror Or 12002 022

dp 1 8T8fr
ror Or

(27)

(30)

(31)



B
QR — R
2112 ( 2R§+”Y 2
B
orz T
B
org T
prL_ L
2 \R: R?
0 — ,
2———=(R1R
m g )
01— Qs (RiRy)?
R?— R} R?
OsR% — O R?
RS — RY
QD R) — R} Q1 — O (R1Ry)?
fr= 2 2 Ly 2 2
R; — R Ri—R; r

The torque will be created by the shear stress 0,9 on the cylinder.

g

L
using vgp = fr
L
D

= Orp

TorqueT

—pI 4 2uD

0
gradv = 8Lf€9 Qe —rfer Qeg
r

Vo
= STepQe — —e ey
T

= _<——7> (eg ®er+ e Rep)

8’09 (o]

= arg*27r>kr>kr:2,u7rr2 (———)

or r

using the vy obtained earlier

T =

T

ZﬂR%R% (QQR% — QlR%> . 2% 7TT2

r2 R3 — R?
47T,LLR%R§ QQR% — QlR%
r2 R3 — R?

(45)

T is constant, which is not surprising because if we draw a annular cylindrical
control volume; the angular momentum within this volume does not change
with time. so the torque is constant.



3). Show that the constitutive equation of an incompressible Reiner-Rivlin
fluid can be expressed in the form

o= —pl 4+ 11D 4 1,D? (46)

where the response function v; and v, depend upon the principal stretching
invariants IIp and I11p.

Such a fluid fills the space between parallel rigid plates. One plate is held
fixed and an steady shearing motion is produced in the fluid by translating the
other plate in its own plane with constant speed V. Introducing a system of
rectangular Cartesian coordinates z1, z2, x3 in which the stationary and moving
plates occupy the planes xo = 0 and z9 = d respectively and the moving plate
travels in the 1-direction and assuming that the velocity field in the fluid is of
the form

vy = v(x2), vg =0 v3 =0 (47)

calculate the stress components. Verify that the shear stress o2 is a function
(1, say) of Dio only. Given that there is no pressure gradient in the 1-direction,
that no body forces act, and that 7 is single-valued, show that v; = Vza/d and
p is constant.

Specialize your results to the case in which the fluid is Newtonian. In what
main respect do the two solutions differ?

Soln.

o= (—p+v,)I4+11D+ voD? (48)

since the fluid is incompressible, the constraint is,
AC)=detC—1 (C=F F="U? (49)

as shown on pg 146-147 of Chadwick

AMC) = (detC)tr CC™ =tr C71C (50)
also, \=tr )\CC
R (51)
aC

The constraint stress is hence, N = aF)\cFT = ol where « is some constant.
The effective stress is

o = (—p+v,)I+11D+ vsD? + ol
— (—p + v, + Oz)I +uv1D + I/2D2 (52)

« is independent of D or p (i.e. not determined by the configuration of the
body),



It has to be determined only via equilibrium equations .It is hence legitimate to
call =p + v, + a = —P (effective stress)

U1 = V({EQ)
V2 =
vy = 0
ov
L = gradv=—¢e1Q®e2 (53)
8x2
1 10V
D = —(L—|—L )*——(61@624‘62@61) (54)
2 2 0xo
1 /0V
D2 = — | — (61 ®Xer+e® 62) (55)
2 8$2
o = —PI—|—I/1D+V2D2
=0 —PI+v laV(e ®ext+e2®er)| +v LoV 2(6 ®e1 + e Qey)
= 11395, 2+ e 1 215\ oy 1 1 2 2
ov
g12 ﬂ—61 (24 €y = I/1D12 (56)
2 8x2
Ip =0,IIp =—D3,, and IIIp = 0, hence v, and v, are just functions of Do
since g12 = 718_‘/ X eg = I/l(D12)D12

012 is only function of Do

Now,
pv = V.o+pb
(%‘Z—Fgradv v) = V.o
=0 = V.o since %—‘Z:O and gradv -v=20

Since g—fl and

d”C}Dm =0 = v9(D12)D12 = 7(Constant in space)
Note that Dy2 = ((constant in space)
would mean

v1(D3%,) = v1(3*) = v(a constant) (57)
=7=0y (58)
if Dig =03
av
i 5
SV = Brato (59)



from no slip conditions V(0) = 0 and V(d) =V = V = Yz, is a solution

=Dp=1Y

dive = 0 in 2-direction

j-i-<41+@%?ﬁ(ﬁz)v<—o (60)

dCCQ dCCQ
D2, [/ adv \?
L po_py 2D (AV (61)
4 dCCQ
2
1] V
P=_-pP+2(=2 2
= 0+ 3 (d> (62)

Thus the presuure is constant
hence, V = %xg and P =Constant is one solution
there might be another solution if v (D%,) has some particular form vo(D%,) D1 =
T = if vy = Dng
Then we obtain v5(D3%,) D12 =constant
This means that any velocity field and Djo will satisfy the dive = 0, equation,
which is not a physical possibility. Similarly, the conditions of velocity and
pressure are independent of the nature of the fluid and should hold universally
for any v5(D%,). This implies that Di» = ¥ or V = Yz, is the only solution.

v

if the fluid is non-Newtonian vy (¥) =0 and v1(D},) = p

It can be easily seen that 017 = 012 = P,
so, in Non-linear fluids, we need additional stress % (%)2 2 ((%)2) to keep the

motion. Note that this is a second order effect in(%)



4). (i) if I, Iy and I3 are principal invariants of the left stretch tensor V,
prove the following identities,

oL _y ObL _ L E -1
v =L Gy luV-V, 22 =det(V)V (63)

(ii) In class we showed that the Cauchy stress can be expressed as
T = ¢ol + 41V + ¢2V? (64)

where ¢; are functions of the principal invariants of V. Show that the Cauchy
stress can also be expressed as

T = ol + 1, V2 + 95, V2 (65)

and derive expressions for ¥;’s in terms of ¢;’s and the principal invariants of
V.
(Hint use Cayley-Hamilton theorem)

Soln.
3
vV = Z e e A; are eigenvalues of V (66)
i=1
I AL+ Ao+ As (67>
oI, oL >
Tav T Lpesesyesest 0
I A2 + Aad3 + A3 A (69)
L RO
oV —on
= (M+X)es®@es+ (M +A3)e2®ea+ (A2 + A3)er @ eg
= I()\1+)\2+)\3)_Z)\iei®ei
= Itr V-V (70)
Is = Aol (71)
ol
= W = )\2)\361 ®er + )\3)\162 ® eo + )\1)\263 X e3
= A2 i X e + i ® e + i ®
= 1A2A3 A\ €1 e )\262 €2 )\3@3 es
= detvV! (72)
(i)
T = ¢l + 91V + ¢ V? (73)

10



using Cayley Hamilton theorem

on Solving,

V3L, VZ4+I,V-I31=0

V3=1;VZ -1,V + I51

Vi = LLVE-LVZ4I3V

Ii(I; V2 - L,V + I3I) - I, V2 + I3V
= (12 1)V + (-I115 + I3)V + 11131

Yol + 11 V2 + V2

Yol + 1 V2 + (17 = 12) V2 + (—I1Iz + I3)V + L1 151

ol + p1V + ¢ V2

bo =
o1 =
¢ =

Y2 =
Y =
Yo =

Yo +oli 13
Y1+ (IF — 1)
oIz — I 12)

b1
I— I 15
I— I 15

_ ¢1lil3
I3 — I I,

11

_f — o)

(76)

(77)
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