EN221 - Fall2008 - HW # 5 Solutions

Prof. Vivek Shenoy

1). For the bending of a rectangular block on page 114 of Ogden, The
deformation is described by

T:f(Xl), 9:g(X2), Z:)\Xg

(a) Derive the expression for the deformation gradient (second equation on page
115).

(b) Find the stretch tensors U, V and the rotation tensor R.

(¢c) For iso-choric deformations, derive Equation 2.2.80. Discuss why this rela-

tion is different from the result for pure bending derived in class.
Soln.
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This relation is different from that obtained in the class for the following reasons
(1) det A =1 (in-compressibility) in this case as opposed to the example in the
class

(2) In the class example stretch along X; is 1, while it in this case it’s not equal
to 1

(3) In class, stretch A along the X5 at X7 = 0 is 1. In this case its not true



2.) An initially planar sheet of deform-able material is to be wrapped uni-
formly around a non-deform-able cylinder as shown in the figure below (like a
rubber insulating layer wrapped around a metal wire). Assume that the defor-
mation is plane strain, so that strains involving the 3-component vanish. The
initial length of the sheet is equal the circumference of the cylinder, 7D, where
D is the diameter of the cylinder.

(a) With the choice of coordinate axes and origin shown in the sketch, view the
de- formation as a compound (2-stage) deformation, X — ¢ — . First, impose
a non-uniform extension of the sheet in the 2-direction given by

g = Xie1 + h(Xa)ea + Xzes

where h(X32) is a function to be determined, subject to the condition h(0) =
0.This deformation is followed by pure bending, so that the sheet wraps around
the cylinder as shown in part (b) of the figure. By writing the final deformed co-
ordinates x in terms of X, calculate the deformation gradient F and the stretch
tensor U. Note that U should depend on h(Xs) and h'(X2), where prime de-
notes differentiation with respect to Xs.

(b) Assume that there is no volume change at any point in the body. From
the condition that J = det(F') = 1, determine the ordinary differential equation
that the function h(Xz) must satisfy, and solve that equation.

Soln.

We write the deformation gradient in cylindrical coordinates

R= g + h(Xs) (13)

Now, since it is pure bending planes perpendicular to X;direction remain per-
pendicular on deformations. Means 6 is independent of X, and thus
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3). Consider the combined axial and azimuthal shear deformation of a cir-
cular tube defined by

r=R,  0=0+6(R), z=Z+u(R)

where upper(lower) case symbols indicate undeformed(deformed) coordinates.
(a) Calculate the deformation gradient in cylindrical coordinates.

(b) Obtain the principal stretches and verify that the deformation is iso-choric
(J=1).

Soln.

Deformation is given by

r=R,  0=0+6(R), z=Z+u(R)

T =re, + ze,

Consider deformation gradient in cylindircal coordinates
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Hence J =1 imples the deformation is iso-choric
To find the principal stretches we find eigenvalues of U2. The principal stretches
are square roots of those values

(14+w?2+ (R )2 - N1 —=XN2—R¢ (R (1= N)+w (—w (1—X) =0
[(1 S (RO N1 -\ — (RO —w?|(1-N) =0
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A2z = % [(2 +w?+ (Re)?) £ \/(2 + w2+ (R¢')?) — 4 (23)

So the principal stretches are v A1,V A, and v/ A3



4). Show that the gradient of the spherically symmetric deformation x =
f(R)X, where R = |X|, is

FIRI+ % f(RX®X

and find f(R) if the deformation iso-choric.
A spherical shell is defined by
A< R<B, 0<O<m, 0<d <2

in some reference configuration where (R, ©, ®) are spherical polar coordinates.
If the material of the shell is incompressible and the shell deformed so that
spherical symmetry is maintained, show that

P =R+d -4 0=0, ¢=0

where the current configuration of the shell is defined in terms of spherical polar
coordinates (7,0, ¢) such that a <r <b

Deduce that the principal stretches are A=2, A,and A, where A\ = /R and show
that if A\, = a/A Ay = b/B then

(%)3()\2—1)_)@—1

and hence either A\, < X \y <lor A, > X\ >1
Soln.

X =REgp
%= f(R)X = Rf(R) Ex

so, Deformation gradient in the spherical coordinates
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Since spherical symmetry is maintained # = © and ¢ = @

Since F is diagonal

the princ}pal stretches are clearly
f(R) + [ (R), f(R), and f(R)
But, f(R) = 7 = A and

Since, J = 1 (by assumption)

J =X =23 =1
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