EN221 - Fall2008 - HW # 8 Solutions

Prof. Vivek Shenoy

1.) Cousider a static situation in which a body occupies the region By for
all time.Assume that the body force b = 0 and that the body is bounded by
surfaces Sp and S; as shown in Fig. (a). Assume further that Sy and S; are
acted on by uniform pressures 7y and 7;. Show that the average stress in By is

a pressure of amount
T1V1 — ToUo

(1)

where vy and vy are, respectively, the volumes enclosed by Sy and S;. (b)
Consider a steady, ir-rotational flow of an ideal fluid of density po over an
obstacle R, where R is a bounded regular region whose interior lies outside the
flow region By (see Fig. (b)). Assume that the body force is zero. Show that
the total force exerted on R by the fluid is equal to

p?O/ v*ndA (2)
OR

U1 — Vo

where OR is the boundary of R.

Soln.

(a) Please see problem 9 on pg. 105 in Chadwick.
(b) For an ideal fluid,

v = grad¢
= 2 grad
v o= 5 terade v
= grad (%f) + %grad(z?) +(VAv)Aw

= grad (?9—?) + fracl2grad(v?)

; 90 _
The flow is steady, hence Z7 =

1
=0 = §gradv2

Balance of linear momentum gives, note, p is constant,

pov = _Vp =+ pob (3)



but, there’s no body force.

= pov = —Vp
02
= grad (p0? + p) =0
02
= poy +p = C(constant)

Thus, the force on the obstacle is

F = —/ npda
OR
02
/ po—=—nda—C nda
or 2 OR

2
= / pov—n da
or 2

/. ar N da =0 since, the region is closed and regular.



2.) Derive the boundary conditions (26.2c) for the flow problem sketched in
Fig. 2.5 of the notes from the OCAIM institute distributed in class.
Soln.
velocity in layer-1 and 2 are given by

v = V¢ (6)
vy = Vo +ue; (7)

now the boundary conditions at the interface n = z are that, any particle on
the interface is given by equation

f(@,t) =n(@1,22,t) —25 =0 (8)
and that any particle on interface always stays at the interface.
Df
D Y
D(n—=2) _
= i =0
A(n —
= (n )—|—grad(17—z) v=0
ot
0 0
grad(n —z) = _7761 + —7762 —e3
8$1 8$2

v o= (%) er + (%) e2 + (%) es (layer-1)
(% + u) €1+ (%) ez + (%) es (layer-2)

at the interface n = x3

00 _ 0% on 06 0
8$3 o 8t 8%1 8%1 8$2 8$2
o2 . on 092 on 02 On
8$3 - 8t + (8$1 +u> 8$1 + 8$2 8$2
picking only terms with first order derivatives,
o On
8$3 N ot (9)
O¢y _ On . On
ors ot " “om (10)
further linearizing about x5 = 0 (Eq.2.4.1 OCIAM)
we obtain
dor o
8$3 N ot (11)
dpa  On 092
s ot “om (12)



Now, at the interface
P, — P,=—yk (Eq.2.58 OCIAM) (13)

Now using Bernoulli eqn for ideal incompressible ir-rotational fluid

99
ot

1 i
+ ol + 5 gn = () (14)

where 7 = 1,2 and v; = uei1d9; + Vo; As explained in the OCIAM notes, since
¢; is arbitrary to a function of ¢, we can choose Fj(t) arbitrarily.

Choosing P1F1 (t) = pQFQ(t)

we obtain at n = x3

0do
;il +p1z Ivll2+p1 + gnpr = p2 ;i + p2z |02|2+p2+g77p2 (15)

Using v; = ue1do; + Vo, (i = 1,2), and p; —ps = —vk and standard linearization
in OCIAM notes, we obtain.

961 ¢z O¢2 _ 9 _
( 5 +g77> —p2 ( o T Yo, +g77> = Vg2 (at 23=0) (16)



3). Using the traveling wave solutions (2.63 of the OCAIM notes) derive
the dispersion relation (relation between w and k, 2.64 in the notes) and verify
the conditions (2.67) and (2.68) for the Rayleigh-Taylor and Kelvin-Hemholtz
instabilities, respectively.

Soln.

The process for obtaining the dispersion relation is given in the mathematica
work-out.

we obtain

w?p1 coth (khy) + (w — uk)?pa coth (kha) = ((p1 — p2)g + vk k (17)
Taking limit h; — oo, hey — 00, we obtain
coth (khy) — 1
coth (khg) — 1
= o1+ (W —uk)’p2 = (01 — p2)g +7k*)k
= W (p1 + p2) — 2wukpz + u’kpy = ((p1 — p2)g + 7k )k (18)
for, u = 0, we obtain

o ((p1 = p2)g + )k
W? = . (k > 0) (19)

if pr < p2 (p1 — p2)g +9k* <0

; (p1—p2)g
ie., 4/ 172 >k

w? < 0i.e., w is imaginary means any disturbance will grow exponentially.

If w # 0 then Eqn(18) is a quadratic in w. To find values of w, for which
flow is unstable we need w to be complex.
i.e., the discriminant of the quadratic Eqn(18)< 0

(2ukpa)® = 4(p1 + p2)((pr — p2)g + 7K )k +u?k?p2) < 0

(
(

= 4uPk?p3 — 4(pr + p2)((pr — p2)g + 7>k — 4(p1 + p2)u’k?p2 <0
= wkpipz > (p1 +p2) [(01 = p2)g + K] k
_ k2
L g2 (it [(pr = p2)g 4K 20)

p1p2 k



4). In class we derived the Rayleigh-Plesset equation for bubble dynamics
in an incompressible fluid using the Cauchy equation of motion (you can find a
similar analysis in Chadwick, Problem 7, page 101). Derive this equation using
the Bernoulli equation for incompressible fluids given in the class notes. Note
that the flow in this case is not steady, but is ir-rotational.

References on bubble dynamics and solutions of the Rayleigh-Plesset equation:
Z. C. Feng and L. G. Leal, Non-linear bubble dynamics, Annual Reviews of
Fluid Mechanics, vol. 29, pp 201-243 (1997).

Bubble Puzzles : http://www.aip.org/pt/vol-56 /iss-2 /p36.html

Soln.

For ir-rotational and in-compressible flow, the Bernoulli eqn becomes,

¢ 2 p
d{ =+ —+%=0 21
gra ((% + 5 + P (21)
v = grad ¢
since there is only radial dependence
grad = %f and
% =0=250s0 Eqm(21) =
8—¢+ﬁ+£*h(t) (22)
ot 2 p
now from the class notes,
a’a  0¢
= d = ——= —
v grad ¢ 5 o
a’a
¢ = ——+f) (23)
S0;
2. 2 2
uPEL N0 (24)
ot r r
a’a  2aa® n ata? n P ) (25)
r r 2rt  p, g
This is time for all r. So putting r — oo
P =
= Plr =) = g(t) = P~ (constant)
Po
a’a 2a6®  a*a®
P = p,|— - — P 2
= P [ r r 2rt ] + (26)
putting r = a
P — Py =p, [d—i—;d] (27)



also note, the Bernoulli equation 21

d(grad ¢)

1 1
2 + §grad1)2 + EgradP =0

0

Note VAv =0
hence

o 1
:>—:+gradv~v+(V/\v)/\v+p—gradP:0

1
=a+ —gradP =0 (Equilibrium Eqn)
p

(28)
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We first write down the expression for the travelling waves

n=AExp[i (kx ~-wt)]
f; = BExp[i (kx-wt)] Cosh[k (2 + h;)]
f, = CExp[i (kx - wt)] Cosh[k (2 - hy)]

A el (k x-t w)
Be! ¥*¥t9 coshlk (z+hy)]

cel &xt0) coghlk (z-hy)]
Here, we apply the boundary conditions given in Eq.2.62c

El = (D[f,, 2] - D[n, t]) /.z->0
E2 = (D[fs, 2] - D[N, t] - UD[n, x]) /.2 -0
E3 =

Expand[ (o1 (D[f1, t] + gn) - p2 (D[£2, t] + UD[f,, x] + gn) - ¥ D[n, x, x]) /. 2-0]

EEl = {A>1, B0, C- 0}
EE2 = {A>0, B>1, C- 0}
EE3 = {A-»0, B»0, C-»1}

iAet ®xte) 1 Bel k¥ tW) K ginh[kh;]
—iAet BF¥tO) putsinel B0 o cel B*¥t9) kginh[kh, ]

Aei (k x-t w) k2 Y+A@i (k x-t w) go1 - iB (Ei (k x-t w) w COSh[khll o1 -
Ael k¥ t0) gp, —1Ccel ®*¥t9 kxUCosh[khy] oy +1Cel ¥*t® ¢ cosh[kh,] ps
g

{A-1,B->0, C->0}
{A-0,B->1, C>0}

{A->0,B->0, C>1}

Here we write the matrix M, so that M.x = 0, where x = {A, B, C}.

M = {{El/.EEl, E1/. EE2, El/.EE3},
{E2 /. EE1, E2 /. EE2, E2 /. EE3}, {E3/.EEl, E3 /. EE2, E3 /. EE3}}

{{ie k*tW) ), e ¥t kginh[kh;], 0},

(-iel ¥* 0 pysiel kxtw) y, o, el ®*t9 kginh[kh,]},

{(Ej (kx-tw) k2 Y+ e]’l (kx-tw) gpo1 - e]i (kx-tw) g2, i e]i (kx-tw) w COSh[k hl] 01,
-1 et (k¥ t0) kycosh[khy] pp +1 el ®*t® yycosh[khy] 02}}

If we want non—trivial values of A, B, C, the determinant of matrix M should be
zero.

FullSimplify[Det[M],
Assumptions-» {k>0, h; >0, h, >0, w>0, g>0, p; >0, p, >0, U>0}]

—e3t (kxtw) 1 (_(w? Cosh[kh;] -gkSinh[kh;]) Sinh[kh,] p1 +
Sinh[kh;] (- (-kU+w)? Cosh[khy] p; +kSinh[kh,] (k® vy-gpz2)))
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This implies that

(w? Cosh[kh;] -gkSinh[kh;]) Sinh[kh,] p; +
Sinh[kh;] (- (-kU+w)? Cosh[kh,] p; +kSinh[kh,] (k2 ¥-gpz)) = 0

After some rearrangements, we will recover Eq.2.64



