EN221: HW #1, Due Wednesday, 09/17.

1. Exercise 1.2, Page 47, Chadwick. (Cayley-Hamilton theorem is given by Eq.(58) on page
25.)

2. Exercise 1.3, Page 47, Chadwick. (Hint: Use Eq. 1.1.26 on page 6 of Ogden to do the
first part. Make sure that you understand how this equation is obtained.)

3. Exercise 1.4, Page 47, Chadwick.

Note: Pages 47 and 25 of Chadwick and page 6 from Ogden are included in this pdf
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24 Continuum Mechanics

The reader is invited to write out the right-hand side of equation (52)
as a sum of six terms and to verify that the same answer is obtained on
expanding g, A, A, 4,,. This means that

det AT=detd VAel. (54)

4 PROPER VECTORS AND PROPER NUMBERS
OF TENSORS

Let A be an arbitrary tensor. A non-zero vector p is said to be a
proper vector® of A if there exists a scalar (i.e. a real number) A such
that

Ap = ip, ie.(A — ADp = 0; (55)

A is called the proper number® of A associated with p. Reciprocally, a
scalar A is a proper number of A if there is a non-zero vector p such
that (55) holds, and in this situation p is said to be a proper vector of
A associated with A.

Problem 5 (p. 19) implies that 4 is a proper number of A if and only
if it is a real root of the equation

det(4 — AI) = 0.

This is known as the characteristic equation of A and in view of
equation (30) it can also be expressed as

[Aa — Aa, Ab — Ab, Ae — 2] =0, (56)

where a, b, ¢ are arbitrary vectors. On expanding the left-hand side
of (56) with the aid of equations (10) and (11), ther using the defini-
tions (28) to (30), the arbitrary factor [a, b, ¢] can be removed and
we arrive at the alternative form

D L P Bl < TH; D (57)

of the characteristic equation. Since the principal invariants I,
I1,, 111, are real, we deduce from equation (57) that 4 has either
three proper numbers or only one.

Problem 10 Let f be 2 real polynomial, 4 an arbitrary tensor and

® The terms characteristic vector, characteristic root (or valué) and eigenvector,
eigenvalye are also widely nsed.
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A a proper number of A. Show that f(2) is a proper number of f ()l)
and that a proper vector of A associated with 4 is also a proper vector
of f(4) associated with f(4). ‘

Solution. Let p be a proper vector of A associated with A. Becauge
of equation (55) the relation

Ap=Tp (A)
holds for r = 1. Suppose that it holds for r = 1,2,. .., n Then ‘
Au+1p — A(A”p =A(A"p) - A”Ap= j,”*ip, ‘

and it may be inferred, by induction, that (A) holds for all positi
integers r. Since f(A) is a linear combination of powers of 4 wﬁ.
follows that f(1) is a proper number of f(4) and p an associa
proper vector. |

When applied to the characteristic polynomial on the left of
equation (57), Problem 10 shows that if A has three proper numberi
the tensor A° — ;A% + II4A — IIT I has three proper numbe
each equal to zero. The Cayley—Hamilton theorem® asserts tha#,
for arbitrary A, this tensor is in fact zero;1° that, in other word
a tensor satisfies its own characteristic equation: sf

A — A2+ 1A -, I=0 VYAdel. (58&

5 SYMMETRIC TENSORS QJ

A symmetric tensor S possesses three proper numbers (4, 4,, 45, say
and an orthonormal set of proper vectors, p,, p,, p,, associat
respectively with 4,, A,, A,.'* Using successively equations (44))
(46),, (55) and (42),, we can express § in terms of 4, and p, (i = 1, 2, 3%
as follows:

S=8I=Sp @p)=(05p)Qp, = Zl Alp, ®p.) (59{

# gee K. Hoffman and R. Kunze, op. cit. p. 166. ‘

¢ Problem 9 (p. 22) shows that if w and v are non-zero orthogonal vectors, all the
principal invariants of ¥ @ ¢ are zero. This furnishes an example of a non—zero‘
tensor possessing thres proper numbers all equal to zero.

11 See K. Hoffman and R. Kunze, op. cit. p. 264.



1 d1; O Oy By Oy
= dai mx Oz | = | 8yj Bz &
O3; O35 O | |Ou O O3

Use of this with (1.  5) leads to the representation

mu_n mS %N...
Eipbpgr = | O Oyg Oy (1.1.26)
mwm m“s mr.

and on setting r =% and summing over & from 1 to 3 in (1.1.26) we obtain
the useful identity

mkm‘q..m#hn = mﬂ.kmvnk = %:u%.i = mmnmbu. A.—H.Nﬂu

With reference to the basis {e;} the triple vector product u A (v A W) is
expanded as

Usls A (EipglpWelh) = EipgbirsVpW sk,

by use of (1.1.15), (1.1.17) and (1.1.19). Application of (1.1.27) reduces this to
UgWalp@, — UplpWee,

and the identity
uA(¥AW=@wy—(uvw

follows.

1.1.2 Change of basis
We now consider a second (right-handed) orthonormal basis {e;} oriented
with respect to {e;} as depicted in Fig. 1.1.

Since {e;} is a basis, each of ej,e;,e; is expressible as a linear
combination of e,,e,,e;. We therefore write

e=0.e, (i=123), (1.1.28)

and, on taking the dot product of (1.1.28) with e;, it is seen that the coefficients
Q,; are given by

Q;;=eie;. (1.1.29)

(2 cos™ (7

€,

N

cos™ Q,
m.._
Fig. 1.1 Orientation of the basis vectors e/ relative to e;
The definition (1.1.10) with (1.1.29) shows that the Q;’s are the direction

cosines of the vectors e; relative to the e;, as indicated in Fig. 1.1.
By orthonormality and (1.1.28), we have

0y =eiej=Quey'e;= QuQj. (1.1.30)

It is convenient to represent the collection of coefficients Q;; as a matrix Q,
with transpose Q. Then (1.1.30) shows that Q" is the inverse matrix of Q
and so

Qg = =0 (1.1.31)
where | is the identity matrix, or, in component notation,

Qi i = 0= QuQy- (1.1.32)
A matrix Q satisfying (1.1.31) is said te be an orthogonal matrix.

Premultiplication of (1.1.28) by Q;; and use of (1.1.32) leads to the dual
connections

e/ =0 e, e; =0 (1.1.33)

between the basis vectors.



