EN221: HW #1, Due Wednesday, 09/17.

- 1. Exercise 1.2, Page 47, Chadwick. (Cayley-Hamilton theorem is given by Eq.(58) on page 25.)
- 2. Exercise 1.3, Page 47, Chadwick. (Hint: Use Eq. 1.1.26 on page 6 of Ogden to do the first part. Make sure that you understand how this equation is obtained.)
- 3. Exercise 1.4, Page 47, Chadwick.

Note: Pages 47 and 25 of Chadwick and page 6 from Ogden are included in this pdf

Vector and Tensor Theory 47	1*. Show that an arbitrary tensor A can be expressed as the sum of a spherical tensor (i.e. a scalar multiple of the identity tensor) and a spherical tensor with zero trace. Prove that this decomposition is unique and that A', the traceless part of A, is given by $A' = A - \frac{1}{3}(\text{tr} A)I.$	[A' is called the deviator of A.]	2*. Let A be an arbitrary tensor. Show that $II_A = \frac{1}{2} \{ (tr A)^2 - tr A^2 \}.$	Using the Cayley-Hamilton theorem, deduce that $III_A = \frac{1}{6} \{ (tr A)^3 - 3 tr A tr A^2 + 2 tr A^3 \}.$	3. Using the result det A det B = det (A^TB) $\forall A, B \in L$,	or otherwise, show that	$\varepsilon_{ijk}\varepsilon_{imu} = \delta_{il}(\delta_{jm}\delta_{kn} - \delta_{jh}\delta_{km}) + \delta_{im}(\delta_{jn}\delta_{kl} - \delta_{jl}\delta_{kn}) + \delta_{in}(\delta_{jn}\delta_{kn} - \delta_{jm}\delta_{k}) + \delta_{in}(\delta_{jl}\delta_{km} - \delta_{jm}\delta_{k})$	Hence derive the formulae	(a) $\varepsilon_{ijp}\varepsilon_{imp} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$, (b) $\varepsilon_{ipq}\varepsilon_{lpq} = 2\delta_{il}$.	4. Let A be an arbitrary tensor and A* its adjugate. (i) Given that A_{ij} are the components of A relative to an orthonorm basis e_s show that the components of A* are $\frac{1}{2}e_{ipq}e_{jrs}A_{pr}A_{qs}$. Dedu that $A^{T*} = A^{*T}$.	(ii) Show that	(a) $(A^*)^* = (\det A)A$,	(b) tr $\mathbb{A}^* = II_{\mathbb{A}}$,	(c) $A\{a \land (A^Tb)\} = (A^*a) \land b \lor a, b \in E.$	5. Let A and B be arbitrary tensors, A* and B* the adjugates of
46 Continuum Mechanics	where Γ has positive orientation relative to the unit vector field n normal to Λ . The reference in the foregoing statement to the orientation (or sense of description) of Γ is illustrated in Figure 2. x , y and z are				T				FIGURE 2 Orientation of a simple closed curve Γ relative to a unit normal vector field m on a spanning surface Λ .	nearby points, x and y on Γ and z an interior point of Λ . The indicated sense of description of the circuit xyz , induced by the orientation of Γ , is related to the direction of the unit normal to Λ at z by a right-hand screw rule. ²⁰		EXERCISES	(The starred exercises contain results which are used in the later	chapters.)	²⁰ In more formal terms, there exists a positive real number ε such that $[\bar{x}\bar{z}, \bar{y}\bar{z}, n] > 0$ whenever xz and yz are less than ε .

24 Continuum Mechanics

The reader is invited to write out the right-hand side of equation (52) as a sum of six terms and to verify that the same answer is obtained on expanding $e_{par}A_{1p}A_{2q}A_{3r}$. This means that

$$\det A^{\mathrm{T}} = \det A \quad \forall A \in \mathcal{L}.$$
 (54)

4 PROPER VECTORS AND PROPER NUMBERS OF TENSORS

Let A be an arbitrary tensor. A non-zero vector p is said to be a proper vector⁸ of A if there exists a scalar (i.e. a real number) λ such that

$$Ap = \lambda p$$
, i.e. $(A - \lambda I)p = 0$; (55)

 λ is called the *proper number*⁸ of *A* associated with *p*. Reciprocally, a scalar λ is a proper number of *A* if there is a non-zero vector *p* such that (55) holds, and in this situation *p* is said to be a proper vector of *A* associated with λ .

Problem 5 (p. 19) implies that λ is a proper number of A if and only if it is a real root of the equation

$$\det\left(A - \lambda I\right) = 0.$$

This is known as the characteristic equation of A and in view of equation (30) it can also be expressed as

$$[Aa - \lambda a, Ab - \lambda b, Ac - \lambda c] = 0, \qquad (56)$$

where a, b, c are arbitrary vectors. On expanding the left-hand side of (56) with the aid of equations (10) and (11), then using the definitions (28) to (30), the arbitrary factor [a, b, c] can be removed and we arrive at the alternative form

$$\lambda^3 - I_A \lambda^2 + II_A \lambda - III_A = 0 \tag{57}$$

of the characteristic equation. Since the principal invariants I_A , II_A , III_A are real, we deduce from equation (57) that A has either three proper numbers or only one.

Problem 10 Let f be a real polynomial, A an arbitrary tensor and

 λ a proper number of A. Show that $f(\lambda)$ is a proper number of f(A) and that a proper vector of A associated with λ is also a proper vector of f(A) associated with $f(\lambda)$.

Solution. Let p be a proper vector of A associated with λ . Because of equation (55) the relation

$$A^r p = \lambda^r p \tag{A}$$

holds for r = 1. Suppose that it holds for r = 1, 2, ..., n. Then

$$A^{n+1}p = A(A^np) = A(\lambda^np) = \lambda^n Ap = \lambda^{n+1}p,$$

and it may be inferred, by induction, that (A) holds for all positive integers r. Since f(A) is a linear combination of powers of A it follows that $f(\lambda)$ is a proper number of f(A) and p an associated proper vector.

When applied to the characteristic polynomial on the left of equation (57), Problem 10 shows that if A has three proper numbers, the tensor $A^3 - I_A A^2 + II_A A - III_A I$ has three proper numbers each equal to zero. The Cayley-Hamilton theorem⁹ asserts that, for arbitrary A, this tensor is in fact zero;¹⁰ that, in other words, a tensor satisfies its own characteristic equation:

$$A^{3} - I_{A}A^{2} + II_{A}A - III_{A}I = \mathbf{0} \quad \forall A \in \mathsf{L}.$$
 (58)

5 SYMMETRIC TENSORS

A symmetric tensor S possesses three proper numbers $(\lambda_1, \lambda_2, \lambda_3, \text{say})$ and an orthonormal set of proper vectors, p_1 , p_2 , p_3 , associated respectively with λ_1 , λ_2 , λ_3 .¹¹ Using successively equations (44), (46)₁, (55) and (42)₁, we can express S in terms of λ_i and p_i (i = 1, 2, 3)as follows:

$$S = SI = S(p_r \otimes p_r) = (Sp_r) \otimes p_r = \sum_{r=1}^{\infty} \lambda_r (p_r \otimes p_r).$$
(59)

See K. Hoffman and R. Kunze, op. cit. p. 166.

- ¹⁰ Problem 9 (p. 22) shows that if u and v are non-zero orthogonal vectors, all the principal invariants of $u \otimes v$ are zero. This furnishes an example of a non-zero tensor possessing three proper numbers all equal to zero.
- ¹¹ See K. Hoffman and R. Kunze, op. cit. p. 264.

⁸ The terms characteristic vector, characteristic root (or value) and eigenvector, eigenvalue are also widely used.

$$\begin{aligned} & \zeta_{ijk} = \left(\begin{array}{c} \delta_{ij} & \delta_{ij} & \delta_{ik} \\ \delta_{ij} & \delta_{ij} & \delta_{ik} \\ \delta_{ij} & \delta_{ik} \\ \delta_{ik} & \delta_{ik} \\ \delta_{ik}$$

between the basis vectors.

$$(=0...)$$
 $e_{1}=0...e_{2}$ (1113)

A matrix Q satisfying (1.1.31) is said to be an orthogonal matrix.

Premultiplication of (1.1.28) by Q_{ij} and use of (1.1.32) leads to the dual

where I is the identity matrix, or, in component notation,

 $QQ^{\mathrm{T}} = I = Q^{\mathrm{T}}Q,$

(1.1.31)

 $\mathcal{Q}_{ik}\mathcal{Q}_{jk} = \delta_{ij} = \mathcal{Q}_{ki}\mathcal{Q}_{kj}.$

(1.1.32)

and so

It is convenient to represent the collection of coefficients Q_{ij} as a matrix O, with transpose O^{T} . Then (1.1.30) shows that O^{T} is the inverse matrix of O

cosines of the vectors e'_i relative to the e_j , as indicated in Fig. 1.1.

The definition (1.1.10) with (1.1.29) shows that the Q_{ij} 's are the direction

Fig. 1.1 Orientation of the basis vectors e'_i relative to e_i

e

cos⁻¹ Q₁₁

0

02

0

cos⁻¹ Q₂₃

e2

By orthonormality and (1.1.28), we have

 $\delta_{ij} = \mathbf{e}'_i \cdot \mathbf{e}'_j = Q_{ik} \mathbf{e}_k \cdot \mathbf{e}'_j = Q_{ik} Q_{jk}.$

(1.1.30)

connections

$$j, \quad \mathbf{e}_j = \mathcal{Q}_{ij} \mathbf{e}'_i \tag{1.1.3}$$