
EN221: HW #7, Due Wednesday, 11/06.

- 1. Problem 6, Page 85, Chadwick.
- 2. Consider the cutting configuration shown in the figure below. The workpiece is assumed to be an incompressible material of mass density ρ . The opening angle of the stationary cutting tool is α . The work piece is pushed towards the tool by a force of magnitude F, at a constant speed V_0 . The thickness (length in the x_3 direction) of the workpiece is b(not shown in the figure). The contact between the chip and tool obeys Coulomb friction with coefficient of friction μ , so that $R = \mu N$, where R and N are the frictional and normal-reaction forces, respectively, as shown in the figure. Note that the chip emerges at a speed V and makes an angle β to the horizontal as shown in the figure.

- (a) Using conservation of mass, relate the chip speed V and the cutting speed V_0 .
- (b) Using linear momentum balance, compute the cutting force F and the tool reactions N and R in terms of ρ , b, h, V_0 , α , β and μ .
- 3. Problem 3.3.1, Page 151, Ogden.
- 4. Problem 6, Page 122, Chadwick. (You need to only derive the field equation; ignore the part on jump conditions)