
 
Governing Equations
 
The equations governing the motion of a rattleback comprise the following.  (e.g. Garcia and Hubbard, 1988) 

 

Rate of change of linear momentum –
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where 
[image: image2.wmf]m

is the mass of the body, 
[image: image3.wmf]v

&

 is the acceleration of the center of mass, 
[image: image4.wmf]P

 is the force on the body at the point of contact, g is the acceleration of the center of mass, and 
[image: image5.wmf]n

 is the inward normal to the surface of the body at the point of contact.                                                              [image: image6]                                           

Rate of change of angular momentum –
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where 
[image: image8.wmf]H

 is the angular momentum and 
[image: image9.wmf]r

is the position vector locating the point of contact from the center of mass.  


                                                                                                              

Rate of change of a unit normal to the surface in an intertial reference frame –
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where 
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 is the rate of change of 
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 for an observer on the reference frame corresponding to the body that is rotating with an angular velocity
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  The rates of change 
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 are rates of change relative to an inertial reference frame.  The angular momentum 
[image: image15.wmf]H

, relative to the center of mass of the body,  is related to the angular velocity by 
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where I is the moment of inertia tensor, relative to the center of mass of the body.  The body is assumed to remain in contact with the flat, horizontal surface on which it spins ─ without sliding.  These two conditions require 





[image: image17.wmf]()

=

rrn







 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.5)


and 
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If the surface of the body is described by 
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, then the interior normal can be expressed in terms of the position 
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by
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where 
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 is the gradient of 
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To put the equations in suitable form for numerical integration 
[image: image24.wmf]P

 from (1.1) and (1.2) to obtain 
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Then, substitution of 
[image: image26.wmf]v

 from (1.6) into (1.8) gives 
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or
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From (1.4) the left side of (1.4) can be written as 
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Substitution of (1.11) into (1.10) gives
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Equation (1.12) represents three, first order, ordinary differential equations for the three components of the angular velocity 
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 as long as 
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 and 
[image: image33.wmf]r

can be updated by means of Eqns. (1.3) and (1.5).  From (1.3)
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constitutes two first order ordinary differential equations for the two independent parameters that characterize the unit vector 
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 Thus, (1.12) constitute five, coupled ordinary differential equations for 
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 and 
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 as long as 
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 can be expressed in terms of  
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 by Eqn. (1.5) and 
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 can be expressed in terms of  
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 by differentiation of  (1.5) and the substitution for 
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 from (1.13).  
Although the unit vector 
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 can be characterized by two parameters, it appears more straightforward to treat it as having three components whose rates of change are obtained from (1.13).  Because of the form of (1.13) the length of the vector 
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should be unchanged.   Thus, if 
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is taken to be a unit vector initially it should remain a unit vector throughout the motion, except for discretization errors associated with the numerical solution.  If these errors prove to be troublesome, then one can consider a formulation in which 
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 is represented in terms of two parameters that ensure its being a unit vector.  

Because it is not easy to invert the function 
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 obtained from (1.7)  it appears to be advantageous to work directly from 
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.  Thus, for 
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differentiation of  
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in which 
[image: image53.wmf]Ñ

n

 denotes the tensor called the gradient of 
[image: image54.wmf]n

.   In matrix form, 
Eqn(1.15) becomes





[image: image55.wmf].

xxx

x

yyyy

z

zzz

nnn

n

x

xyz

t

t

nnnn

y

txyzt

nz

nnn

t

t

xyz

¶¶¶

æö

¶

éù

¶

éù

ç÷

êú

êú

¶¶¶

¶

¶

ç÷

êú

êú

¶¶¶¶

ç÷

¶

êú

êú

=

ç÷

êú

êú

¶¶¶¶¶

ç÷

êú

êú

¶¶

ç÷

¶¶¶

êú

êú

ç÷

êú

êú

¶

¶

ëû

¶¶¶

ëû

èø





 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.16)


For smooth, convex surfaces the gradient 
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is invertible so that 
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 can be 
obtained from 
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where 
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 is the inverse of 
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.  From (1.13), Eqn (1.17) can be rewritten as
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Then, Eqns (1.12), (1.13), and (1.18) constitute 9 coupled, first-order differential 
equations for the 3 components of each of the three vectors, 
[image: image62.wmf](
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The form of these equations can be improved to put all time derivatives on the left 
side by substituting (1.18) into (1.12) to obtain
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where the left side has also been simplified by evaluating the double cross product 
in (1.12) to obtain the moment of inertia tensor 
[image: image64.wmf]'
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 which, in matrix form, has the  
representation
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in which the first matrix on the right side of (1.20) is the moment of inertia of the 
body referred to principal axes through its center of mass.  Equations (1.19), 
(1.13), and (1.18) represent a suitable form of the governing equations for 
generating numerical solutions.  
Reference

Garcia, A. and Hubbard, M., “Spin reversal of the rattleback: theory and experiment,” Proc. R. Soc. Lond. A 418, pp. 165-197 (1988).
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