Formulae for the Memory-Challenged

$$r_{o} = \frac{V_{A} + V_{CEQ}}{I_{CO}}.$$
 The full non-linear Shockley equation at constant V_{CE} and $I_{C} > 0$ is:

and

$$I_C = I'_S \exp\left(\frac{nqV_{BE}}{kT}\right)$$
 where $n \ge 1$ and $I'_S \propto T^3 \exp\left(\frac{qV_G}{kT}\right)$.

Stage Type	Sign	Qual	G(s)	Qual.	Zin	Qual	Zout
	of	Gain		Zin		Zout	
	Gain						
Common Emitter	-	high	$-\alpha Z_{c}$	high	$R_{BB} \parallel [(1 +$	high	Z_{c}
			$r_e + Z_E$		$h_{fe})(r_e + Z_E)]$		
Common Base	+	high	αZ_{c}	low	$r_e + Z_1$	high	Z_{c}
			$r_e + Z_1$				
Common Collector			Z_E		$R_{BB} \parallel [(1 +$		$Z_E \parallel [r_e +$
(Emitter Follower)	+	< 1	$r_e + Z_E$	high	h_{fe})($r_e + Z_E$)]	low	$Z_{S}/(1 + $
							h _{fe})]

Notes: 1.) Z_{BG} is the entire source impedance of the signal driving the base of the Common Collector stage.

2.) Z_1 is the impedance of any passive components in series with the input.

Engineering 162 - Spring 2004

High frequency effects: parasitic capacitances

$$f_{T} = \frac{1}{2\pi r_{e} \left(C_{\pi} + C_{\mu} \right)}$$
 and $f_{\beta} = \frac{1}{2\pi r_{e} C_{\pi} \left(1 + \beta \right)}$

Equivalent input impedance at high frequencies of a CE or CC circuit exclusive of the Miller effect from C_{OB} and the base series resistance $r_{bb'}$ is: $z_{tr}(s) \cong \frac{z_{tr}(0)}{1 + jf / f_{\beta}}$ and is equivalent to an effective capacitance $C_{eff} = \frac{r_e C_{\pi}}{r + Z_{\pi}}$ across the low frequency input resistance $z_{tr}(0)$.

Widlar current sources (bipolar) have reduced output I_o from an emitter resistor R_E satisfying the equation: $I_O R_E = \frac{kT}{q} \ln \left(\frac{I_{REF}}{I_O} \right)$.

For long-channel MOSFETs:

$$I_{DS} = \frac{W}{L} \cdot K_{N} \cdot \begin{cases} 0 & \text{if } V_{GS} \leq V_{TH} \\ \left(V_{GS} - V_{TH} - \frac{(1+a)}{2}V_{DS}\right)V_{DS} & \text{if } V_{DS} \leq \frac{(V_{GS} - V_{TH})}{(1+a)} \\ \frac{(V_{GS} - V_{TH})^{2}}{2(1+a)} & (1+\lambda V_{DS}) & \text{if } V_{DS} \geq \frac{(V_{GS} - V_{TH})}{(1+a)} \end{cases}$$

$$I_{D} = \frac{W}{L} K' (V_{GS} - V_{TH})^{2} (1 + \lambda V_{DS}) \text{ where } \lambda = 1/V_{A} \text{ in active operating mode}$$

MOSFET small signal model: $g_m \approx \frac{2I_{DQ}}{V_{OV}}$ and $r_o = \frac{1 + \lambda V_{DSQ}}{\lambda I_{DQ}} = \frac{V_A + V_{DSQ}}{I_{DQ}}$

"Overvoltage" is defined as: $V_{OV} \equiv |V_{GS} - V_{TH}|$ when the device is biased for operation above threshold.

A diode with an abrupt junction operated with reverse voltage V_{REV} has capacitance:

$$C_D = \frac{C_0}{\sqrt{1 + V_{REV} / V_{BI}}}$$