
Engineering 1620: High Frequency Effects in BJT Circuits – an Introduction 

Especially for the Friday before Spring Break 

 

I prepared these notes a few years ago to give out around spring break because I would 

finish the material on the day before vacation break.  As this material is only partially 

covered in Razavi, I wanted to summarize it for you. Unfortunately, this year I am finish-

ing late in a rush. I hope it will also help you understand the calculations for Lab 5, a cas-

code amplifier for video signals. While there aren’t any labs this year, I encourage you to 

look at the calculations for them, in this case for Lab 5. 

 

Over recent classes, I developed a number of formulae first for the capacitances in the 

junctions of a transistor and then for their effect on the gain, input impedance and output 

impedance of a generalized common emitter amplifier.  Let me begin by recounting the 

capacitances of a transistor.  (A full derivation of these results is in an Appendix to this 

set of notes.) 

 

The small-signal model in its simplest form has two capacitances:  the base-emitter ca-

pacitance is commonly called Cπ  while the collector-base capacitance is variously 
OB

C  

orCµ .  (The first nomenclature is common on data sheets while the latter is more com-

mon in papers.  The CAD/SPICE usage is “cmu.”  There is a slight but difficult to deter-

mine difference between the two when there is parasitic series resistance in the base.  We 

do not observe this distinction.)   

 

OB
C is the capacitance of a reverse biased 

junction and often has the dependence on 

voltage of an abrupt-junction. For at least one 

value of collector-base voltage, it is straight-

forwardly shown on any datasheet.  Often it 

is given as a graph against VCE.  

 

 The transconductance and the dynamic re-

sistance of the base-emitter junction are needed first before one can tease the value of Cπ  

out of the datasheet.   

The Q-point determines the remaining model parameters in the usual way: C
m

qI
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kT
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fe
h  interchangeably with β  as the DC 

current gain of the transistor.  In class, we showed 

that because of the base-emitter capacitance, the cur-

rent gain becomes frequency dependent.  For a 

grounded-collector circuit, the gain becomes 
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function that looks like this sketch when β  is graphed on a log-log Bode plot.  Here we 

have defined two frequencies: fβ  at which the gain is down –3dB from its DC value and 

T
f  at which the magnitude of the gain is unity.  If 

fe
h  is large, then 

1

T

fe

f
f

h
β

+
≃ .  The 

datasheet gives 
T

f  as a function of the quiescent current because that frequency is not 

sensitive to the DC current gain.  (It also helps in advertising the properties of a transistor 

to advertise the larger number!) The dependence of 
T

f  on current comes from rπ  (or 

equivalently 
e

r ) being inversely proportional to current. Part of the Cπ  capacitance is due 

to the depletion layer and is roughly independent of current.  The other part of Cπ  is due 

to charge in transit from emitter to collector and when that is dominant, 
e

r Cπ τ= , the 

transit time.  The typical curve for a 2N2222A device is shown below next to a general-

ized common emitter circuit.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The capacitance from collector to base complicates the simple calculation of gain and 

input impedance. To simplify the problem, we take advantage of the Miller effect (named 

after John W. Miller who published it in 1920).  Miller’s theorem points out the equiva-

lence for input impedance, output impedance and gain of the two block diagrams below 

as long as the gain of the amplifier is known with the feedback capacitor in place.  (The 

proof of the theorem simply equates the current in the feedback capacitor to the two cur-

rents through the capacitors of the second configura-

tion.) Because the feedback capacitor connects be-

tween output and input and the output voltage is often 

bigger than the input, the current in the capacitor is 

generally greater than it would be if the capacitor 

were across the input to ground.  The theorem points 

out that this is equivalent to a larger, possibly fre-

quency-dependent (because ( )A A s= ) capacitor 

across the input and a marginally bigger one across 

the output.  What often makes this theorem useful is 

that the low frequency gain is known and that gain is 
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constant enough to use over most of the useful frequency range of the amplifier. 

 

We also developed a set of formulas for the input impedance and gain of the generalized 

common emitter amplifier shown at the top right.  The idea was to use Miller’s theorem 

to move the collector base capacitance to two places: the (1+1/A)COB component simply 

became part of ZC and contributes to calculating the gain.  The (1+A)COB element moved 

to the left and ended in parallel with the input.  This transform left only Cπ  to complicate 

life.  The input impedance with only that parasitic capacitance was:  

 
( )( )1

1 1

fe e E E
tr
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π π
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The first term is our old result for input impedance at low frequency but now there is a 

decrease in impedance with increasing frequency from an extra single pole at 

1

2 1

T

fe

f
f

r C h
β

π ππ
= =

+
, a nice but not surprising result. The second term assures that even 

when the base capacitance shorts the base-emitter junction, there will still be ZE left as 

part of ztr.  This term is not important until roughly 
T

f  and one would not usually try to 

use a device close to its maximum frequency limit.  Notice that the first term has the form 

of a resistor ( )( )1
fe e E

R h r Z= + + ] in parallel with a capacitor of value 
( )

e

e E

r C
C

r Z

π=
+

.  

The resistance value is the low-frequency result we derived a couple of weeks ago.  The 

capacitance is proportional to but generally smaller than Cπ .  We will use this result in an 

analysis example.   

 

The gain formula has a similar form:
( ) ( )

1

1 /

C

e E e E e E

Z
G

r Z sr Z C r Zπ

α ′
= − ⋅

+ + +
 where 

C
Z ′  is 

C
Z  in parallel with Miller’s second capacitor ( )1 1/C Aµ + .  [I am playing fast and loose 

with exact results here.  Actually as A becomes frequency dependent one has to be care-

ful to include the effect of that change on the input capacitance.  We will see this more 

clearly in MOS circuits later.]  The first factor is the low frequency gain and the second is 

a new pole generally somewhat above 
T

f .  In other words, Cπ  does not have a big effect 

on the Gain except through a decrease in input impedance that causes loading of the input 

signal source. 

 

Now let us look at an example of these effects.  The circuit on the left below is one we 

used as a low frequency example some time ago.  It has a quiescent point around 6 mA, a 

current gain about 
fe

h  = 120 typical, and therefore re = 4.2 ohms and 500rπ = ohms.  

From the graph above, 250
T

f ≈ MHz.  The datasheet value of COB is 7 pf.  From this, 
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The midband gain is 
3.99 1 10

34
4.3 25

− ⋅ ⋅
= −

+
.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By employing Miller’s theorem, we can draw the small signal model as: 
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For Zin we have (neglecting CIN because it provides only a low-frequency, high-pass cut-

off): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The resulting system is 1.42 K in parallel with 266 pf. The input impedance is dominated 

by the Miller capacitance (245 pf of 266 pf total) and its magnitude will start to decrease 

with single pole behavior at 421 KHz.  By contrast the effect of Cµ  on the gain is to in-

troduce a high-frequency low-pass pole at about 23 MHz from the 1K resistor and 7 pf 

capacitance in parallel.  [If there is appreciable source loading at this frequency, it is even 

possible that this second pole will be even higher in frequency but that is a later topic.] 

 

An amplifier that has constant gain to some high frequency but has so low an input im-

pedance as to load the signal source well below its gain cutoff frequency is a poor design 

because one cannot use the gain for the full range of the amplifier’s potential usefulness.  

The circuit on the right above is called a cascode amplifier and it attempts to solve this 

problem with a second transistor.  The tandem arrangement of a common emitter stage, 

Q1, with a common base stage, Q2, is called a cascode connection.  (And no, this is not a 

spelling error.)  The voltage gain of the common emitter Q1 is very low, fractional in this 

case, because ZC for that stage is the input impedance of the common base stage, Q2.  

(That input impedance is 2 2 2||
in e

z r Cπ= .  The capacitance of Q2 is not important at a few 

megahertz so the voltage gain of Q1 is 
( )

0.99 4.2
.15

4.2 25

e

e E

r
G

r Z

α ⋅
= − ≅ − = −

+ +
)  There is no 

longer a direct capacitance between input and output.  The output load no longer affects 

the input impedance.  For that reason, cascode circuits are sometimes said to be ‘unilat-

eral.’  This time the input impedance is the same 1.42 K resistive part but the capacitor is 

only 21+7 = 28 pf and the capacitive part becomes a factor in loading the input only 

above 4.5 MHz.  That is a full order of magnitude improvement in pole placement. 

 

RBB = 2.5 K 

2.7 K 

21 K 

 245 pf 

ztr 

121*29.2 

= 3.5 K 

146 4.3
21

25 4.3

⋅
=

+
 pf 



 6 

 

 

  

 

 

 

 

Appendix: The Effect of Cπ on Input Impedance and Gain  

of a BJT CE Circuit 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basic Equations: 

KCL at the emitter terminal, e: 0
eg

b m be

E

v
i g v

Z
= + −  

Ohm's law across base-emitter: 
1

b
be

r i
v

sC r

π

π π

=
+

 

KVL from input across base-emitter and emitter to ground: 
bg eb bg

v v v= +  

 

Definition of ztr : 
bg

tr

b

v
z

i
≡  

Connection between hybrid-pi transconductance model and current controlled h-

model: 0m
g rπ β=  where  0β  is the low-frequency current gain. 

 

Steps to solve:   
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  (Used: ( )01 er rπ β= + ) 

 

Input impedance is: 

 

( ) ( )01

1

e E E

tr

r Z sC r Z
z

sC r

π π

π π

β+ + +
=

+
 

 

 

( ) ( )01

1 1

e E E
tr

r Z sC r Z
z

sC r sC r

π π

π π π π

β+ +
= +

+ +
 

 

 

Gain is the ratio:  
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Summary: 

 

The input impedance is lowered by Cπ beginning at the beta cutoff frequency.  It is also 

asymptotic to ZE for frequencies above fT. In this equation the first term is the low fre-

quency impedance with a new pole at the beta cutoff frequency.  The second term takes 

care of the behavior that makes ZE the impedance at very high frequency. 
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Notice that the first term has the form of a resistance in parallel with a capacitance.  As 

you did in the first lab, we can manipulate that into the form of a resistance with an 

equivalent capacitance in parallel by multiplying and dividing the frequency in the de-

nominator by the resistance from the numerator. 
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The gain is little affected except there is a new pole at some frequency above fT. The first 

factor is the low frequency gain and the second is a new high frequency pole. 

 

( )
( )( ) ( )

0

0

1

1 1 /

C

e E e E e E

Z
H s

r Z sC r Z r Zπ

β

β

−
= ⋅

+ + + + +
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


