
A Verilog HDL Test Bench Primer
Application Note

i A Verilog HDL Test Bench Primer

Table of Contents

Introduction ...1
Overview...1
The Device Under Test (D.U.T.) ...1
The Test Bench ..1
Instantiations...2

Figure 1- DUT Instantiation...2
Reg and Wire Declarations ...2

Figure 2 – Reg and Wire Declarations...3
Initial and Always Blocks...3

Figure 3 – An Initial Block Example...3
Figure 4 – An Always Block Example ..4
Initialization ...4
Delays...4
Clocks and Resets ..4

Assign Statements..4
Figure 5- An Assign Example..5

Printing during Simulations ...5
$display ..5
Figure 6- $display Example ...5
$monitor...5
Figure 7- Using $monitor...5

Tasks ..6
Figure 8- An Example of a Task – load_count ..6

Count16 Simulation Example..6
Table 1- Simulation Steps..6
Figure 9 – The Transcript Window for the Count16 Simulation....................................8
Figure 10 – The Simulation Waveform Window for the Count16 Simulation................8

Gate Level Simulations...9
Appendix A- The count16.v Verilog Source File ..9
Appendix B- The cnt16_tb.v Verilog Test Bench Source File10

Reference Materials..12

Publication #: AN013-1 Revision: A
Amendment: 0 Issue Date: October 1999

Introduction
As digital systems become more complex, it becomes increasingly important to verify the
functionality of a design before implementing it in a system. Hardware Descriptions
Languages (HDL’s) have become extremely popular because the same language can be
used by engineers for both designing and testing CPLD’s and FPGA’s. The two most
common HDL’s are Verilog and VHDL. This document focuses on using Verilog HDL
to test digital systems, by giving the designer a handful of simulation techniques that can
be used on the majority of digital applications.

Overview
This applications note and the included Verilog source code describe how to apply
stimulus to a behavioral or gate level description of a CPLD design. The designer should
have access to a Verilog simulator and be familiar with its’ basic functionality. In short,
the Verilog code for each of the individual modules is compiled and the simulation is run.
By applying stimulus and simulating the design, the designer can be sure the correct
functionality of the design is achieved. This design uses a loadable 4-bit counter and test
bench to illustrate the basic elements of a Verilog simulation. The design is instantiated
in a test bench, stimulus is applied to the inputs, and the outputs are monitored for the
desired results.

The Device Under Test (D.U.T.)
The Device Under Test can be a behavioral or gate level representation of a design. In
this example, the DUT is behavioral Verilog code for a 4-bit counter found in Appendix
A. This is also known as a Register Transfer Level or RTL description of the design. In
the HDL source, all the input and output signals are declared in the port list. There is one
always block that is sensitive to the positive edge of the clock and the negative edge of
reset. The reset (rst_l) is asynchronous and active low. The count enable (enable_l) and
count load (load_l) are both active low and are only checked at the positive edge of a
clock. The output enable (oe_l) is also active low. When it’s asserted the current count is
output on the count_tri bus, otherwise the outputs are tri-stated. This 4-bit counter will be
implemented in a Lattice/Vantis CPLD, and its functionality needs to be confirmed
before implementation.

The Test Bench
The goal of this design is to implement a loadable 4-bit counter with an asynchronous
reset, and count enable, into a Lattice/Vantis CPLD. Before design time is spent
synthesizing and fitting the design, the RTL description is simulated to assure correct
functionality. Each feature of the design should be tested to ensure that unexpected bugs
have not been introduced into the design. This entails testing the specific features
designed into the DUT, one at a time, as they would be used in the system. Does the
counter reset properly? Will it increment properly and when expected? Does it roll when
reaching the maximum count, and can it be loaded with an initial count using load_l?
Does the output enable (oe_l) function correctly?

The Verilog test bench module cnt16_tb.v is found in Appendix B. Notice that there are
no ports listed in the module. This is because all stimulus applied to the DUT is

2 A Verilog HDL Test Bench Primer

generated in this module. The DUT is instantiated into the test bench, and always and
initial blocks apply the stimulus to the inputs to the design. The outputs of the design are
printed to the screen, and can be captured in a waveform viewer as the simulation runs to
monitor the results.

The following sections go into detail on each part of the test bench and it’s function.

Instantiations
The test bench applies stimulus to the DUT. To do this the DUT must be instantiated in
the test bench, which is the equivalent to placing a component on a schematic. Figure 1
shows how count16 is instantiated in cnt16_tb of Appendix B.

Figure 1- DUT Instantiation
 //---
 // instantiate the Device Under Test (DUT)
 // using named instantiation
 count16 U1 (.count(cnt_out),
 .count_tri(count_tri),
 .clk(clk_50),

 .rst_l(rst_l),
 .load_l(load_l),
 .cnt_in(count_in),
 .enable_l(enable_l),
 .oe_l(oe_l)
);

 //--

Comments in Verilog use a // for one line or a /* and */ when spanning multiple lines,
just like C. Notice in Appendix A, the module name of the counter is called count16. So,
Count16 is used to place an instance of the counter in the test bench with the instance
name U1. The name U1 is arbitrary, and the instance can be given any descriptive name.
In between the outer parenthesis are the signals connecting up to U1. The signals with a
dot in front of them are the names for the signals inside the count16 module, while the
wire or reg they connect to in the test bench is next to the signal in parenthesis. For
example, the clock to the counter is called clk in count16, but in the test bench a more
descriptive clock name clk_50 is used, which now connects to clk of count16. This
allows a signal to be called different names in the test bench and the DUT. This type of
instantiation is called “named instantiation” and allows the signals to be listed in any
order, or even omitted when a module is instantiated.

Reg and Wire Declarations
There are two signal types in the test bench used to drive and monitor signals during the
simulation of the counter. These two types of signals are reg and wire types. The reg
data type holds a value until a new value is driven onto it in an initial or always block.
The reg type can only be assigned a value in an always or initial block, and is used to
apply stimulus to the inputs of the DUT. The wire type is a passive data type that holds a
value driven on it by a port, assign statement or reg type. Wires can not be assigned
values inside always and initial blocks. The wires declared in cnt16_tb.v of Appendix B
are used to hold the values of the outputs of the DUT. Figure 2 is an example of the
declaration of reg and wire types in the test bench.

3 A Verilog HDL Test Bench Primer

Figure 2 – Reg and Wire Declarations
 //---
 // inputs to the DUT are reg type
 reg clk_50;
 reg rst_l, load_l, enable_l;
 reg [3:0] count_in;
 reg oe_l;

 //--
 // outputs from the DUT are wire type
 wire [3:0] cnt_out;
 wire [3:0] count_tri;

Initial and Always Blocks
Always and initial blocks are two sequential control blocks that operate on reg types in a
Verilog simulation. Each initial and always block executes concurrently in every module
at the start of simulation. An example of an initial block is found in Figure 3.

Figure 3 – An Initial Block Example
 reg clk_50, rst_l;

 initial
 begin
 $display($time, " << Starting the Simulation >>");
 clk_50 = 1’b0; // at time 0
 rst_l = 0; // reset is active
 #20 rst_l = 1’b1; // at time 20 release reset
 end

Initial blocks start executing sequentially at simulation time 0. Starting with the first line
between the “begin end pair” each line executes from top to bottom until a delay is
reached. When a delay is reached, the execution of this block waits until the delay time
has passed and then picks up execution again. Each initial and always block executes
concurrently, so while this block is stalled between time 0 and 20, other blocks in the
design are executing. The initial block in Figure 3, starts by printing << Starting the
Simulation >> to the screen, and initializes the reg types clk_50 and rst_l to 0 at time 0.
The simulation time wheel then advances to time index 20, and the value on rst_l changes
to a 1. This simple block of code initializes the clk_50 and rst_l reg types at the
beginning of simulation and causes a reset pulse from low to high for 20 ns in a
simulation. An initial block very similar to Figure 3 is found in cnt16_tb of Appendix B.

An example of an always block is found in Figure 4.

4 A Verilog HDL Test Bench Primer

Figure 4 – An Always Block Example
 always
 #10 clk_50 = ~clk_50; // every ten nanoseconds invert

This always block executes every 10 ns starting at time index 0. Hence, the value of
clk_50 will invert from the initialized value in Figure 3 every 10ns. This causes a clock
pulse to be generated on clk_50 with a period of 20ns or a frequency of 50 Mhz.

The always block in Appendix A does not continuously execute like Figure 4, but instead
only executes on a change in the items in the sensitivity list (posedge clk or negedge
rst_l). This means that on a “low to high” on the clk signal or a “high to low” of rst_l the
always block will execute.

Initialization
When the simulation starts it’s important to initialize any reg types in the design to a
known value. Signals are undefined at startup, and initialize to the defaults of their data
type. Wire types initialize to a Z (high Z) value, and reg types initialize to an X
(unknown) value. This is why the initial block in Figure 3 initializes clk_50 to a 0.
Without it, the simulator would be inverting an X to another X every 10 ns with the
always block in Figure 4. In the same sense, a reset pulse is needed for Appendix A in
the count16 module. If the counter was not initialized to a known value before the count
was enabled, count = count + 1 would be X’s in the simulation.

Delays
At the top of Appendix A and B is a line with a compiler directive `timescale:

‘timescale 1 ns / 100 ps

This line is important in a Verilog simulation, because it sets up the time scale and
operating precision for a module. It causes the unit delays to be in nanoseconds (ns) and
the precision at which the simulator will round the events down to at 100 ps. This causes
a #5 or #1 in a Verilog assignment to be a 5 ns or 1 ns delay respectively. The rounding
of the events will be to .1ns or 100 pico seconds.

Clocks and Resets
Two important elements used in almost all simulations are clocks and resets. Using the
code segments from Figure 3 and Figure 4 a clock and reset circuit can be incorporated
into any test bench. In Appendix B, the test bench cnt16_tb utilizes these circuits to
provide a clock and reset to the count16 instance U1. The clock is running at 50 Mhz and
the reset pulse is 20 ns long.

Assign Statements
As mentioned in the wire and reg section, a wire can only have a value driven onto it by a
port, reg or assign statement. An assign statement, drives a wire type with input from
another wire or reg type. An example of a typical assign statement is found in Figure 5,
where a slice of a data bus is assigned to a wire called upper byte.

5 A Verilog HDL Test Bench Primer

Figure 5- An Assign Example
 reg [15:0] data_bus;
 wire [7:0] upper_byte;

 assign upper_byte = data_bus[15:8];

With an assign statement, a continuous assignment is made where the value of
data_bus[15:8] is constantly driven onto the upper_byte wire. A conditional assignment
statement can also be used as in Appendix A, where the value of count is only driving
count_tri when oe_l is low, otherwise the output will be high-Z or tri-stated. This is the
conventional method for implementing tri-state buffers in a design or test bench.

Printing during Simulations
As a simulation runs, it’s important to include a printout to the screen to inform the
designer on the status of the current simulation. The value a net or register holds at a
certain time in the simulation may be important in debugging a function, so signals can
also be printed. Two of the most common commands to print to the screen are described
below.

$display
$display is used to print to a line, and enter a carriage return at the end. Variables can
also be added to the display, and the format for the variables can be binary using %b, hex
using %h, or decimal using %d. Another common element used in $display is $time,
which prints the current simulation time. A typical example of how $display is used in a
test bench is found in Figure 6.

Figure 6- $display Example
 $display($time, "<< count = %d - Turning OFF count enable >>",cnt_out);

The characters found between the quotes will be printed to the screen followed by a
carriage return. The value of cnt_out will replace %d in decimal format, while the
current simulation time is printed at the front of the line. At time index 211 the output of
this $display is printed to the screen in Figure 9.

$monitor
To monitor specific variables or signals in a simulation every time one of the signals
changes value, a $monitor can be used. Only one $monitor can be active at a time in a
simulation, but it can prove to be a valuable debugging tool. An example of using
$monitor is found in Figure 7.

Figure 7- Using $monitor
 initial
 begin
 $monitor($time, " clk_50=%b, rst_l=%b, enable_l=%b, load_l=%b,
count_in=%h, cnt_out=%h, oe_l=%b, count_tri=%h", clk_50, rst_l,
enable_l, load_l, count_in, cnt_out, oe_l, count_tri);
 end

The $monitor system task has the same layout as the $display task. Figure 9 has the
output of this task during the cnt16_tb simulation.

6 A Verilog HDL Test Bench Primer

Tasks
Tasks are a used to group a set of repetitive or related commands that would normally be
contained in an initial or always block. A task can have inputs, outputs, and inouts, and
can contain timing or delay elements. An example of a task is found in Figure 8.

Figure 8- An Example of a Task – load_count
task load_count;
 input [3:0] load_value;
 begin

@(negedge clk_50);
$display($time, " << Loading the counter with %h >>", load_value);

 load_l = 1’b0;
count_in = load_value;
@(negedge clk_50);
load_l = 1’b1;

 end
 endtask //of load_count

This task takes one 4-bit input vector, and at the negative edge of the next clk_50, it starts
executing. It first prints to the screen, drives load_l low, and drives the count_in of the
counter with the load_value passed to the task. At the negative edge of clk_50, the load_l
signal is released. The task must be called from an initial or always block, as done in
Appendix B. If the simulation was extended and multiple loads were done to the counter,
this task could be called multiple times with different load values.

Count16 Simulation Example
The following example requires the use of a Verilog simulator and the Verilog HDL code
from Appendix A and B. The HDL code is compiled and the simulation is run. As the
simulation executes the $display and $monitor commands will print the results of the
simulation out to the screen. Figure 9 shows the results of the cnt16_tb simulation when
run on ModelSim 4.7. Signals may be added to a waveform viewer to monitor their
activity, and check for the desired results.

In the beginning of the simulation, the time index is set to 0, and all the initial blocks and
always blocks will start to execute. Each block will execute concurrently, including the
always block in the DUT. Table 1, walks through the steps the simulator takes while
executing the simulation.

Table 1- Simulation Steps
• The always block from Figure 4 is used in cnt16_tb to generate a clock for the

counter.
• One of the initial blocks in the test bench simply starts the $monitor task as described

in Figure 7.
• Another initial block initializes all the variables, and applies the stimulus to the

counter. It starts by printing to the screen using a $display. Then the signals clk_50,
rst_l, and oe_l are all initialized to 0 at time 0. The enable_l and load_l signals are
disabled by driving a 1 to the reg, and count_in is assigned a 0.

• Concurrently, the always block in the count16 module of Appendix A will get a
positive edge of the clock, while reset is low, and initialize the counter to 0.

7 A Verilog HDL Test Bench Primer

• The next line in the initial block of the test bench has a #20 in front of it. This causes
the simulation to wait 20 ns before continuing.

• After 20 ns, the rst_l is released by driving a 1 to the reg.
• Next, the @(negedge clk_50); instructs this initial block to wait until the negative

edge of clk_50 before continuing.
• The counter is next loaded with the hex value “A” by using the load_count task of

Figure 8.
• At the next negative edge of clk_50 the reg enable_l is asserted by driving a 0.
• At the next positive edge of clk_50, the counter starts incrementing the count.
• The initial block waits for the counter to roll, and the count to increase to 1 by using

the “wait” command.
• After the count equals 1 the count is disabled by driving enable_l to 1. This causes

the counter to stop counting.
• Next, #40 is used to wait 40 ns before disabling the output enable of the counter by

driving oe_l to a 1. This causes count_tri to go to the high impedance state.
• The simulation waits 20 ns before stopping using the $stop system task.

Looking at the Transcript Window results of Figure 9 and the signals in the Waveform
Window of Figure 10, the proper function of the counter can be confirmed. The counter
resets correctly, can be loaded using load_l, and only counts when enable_l is active. The
outputs of the counter are only driven onto count_tri when the output enable oe_l is
active.

Using cnt16_tb, the basic functionality of count16 has been simulated. The design can
now be synthesized and fit into a Lattice/Vantis CPLD.

8 A Verilog HDL Test Bench Primer

Figure 9 – The Transcript Window for the Count16 Simulation

Figure 10 – The Simulation Waveform Window for the Count16 Simulation

9 A Verilog HDL Test Bench Primer

Gate Level Simulations
Gate Level Simulations are performed after a design has fit into a Lattice/Vantis CPLD.
Design Direct and ispEXPERT both export Structural Verilog and VHDL. They also
export an SDF (Standard Delay File) which contains the particular delays for each gate in
the design. To perform a gate level simulation, compile the gate level netlist in the
simulation instead of the RTL code. Follow the instructions on your particular simulator
to back annotate the SDF (Standard Delay File) to obtain gate level delays in the
simulation. This will involve using the $sdf_annotate command. For ModelSim fill in
the SDF options under VSIM. Then run the simulation as normal.

Appendix A- The count16.v Verilog Source File
//---
// File: count16.v
// Purpose: Verilog Simulation Example
//---
‘timescale 1 ns / 100 ps

module count16 (count, count_tri, clk, rst_l, load_l, enable_l, cnt_in,
oe_l);
 output [3:0] count;
 output [3:0] count_tri;
 input clk;
 input rst_l;
 input load_l;
 input enable_l;
 input [3:0] cnt_in;
 input oe_l;

 reg [3:0] count;

 // tri-state buffers
 assign count_tri = (!oe_l) ? count : 4’bZZZZ;

 // synchronous 4 bit counter
 always @ (posedge clk or negedge rst_l)
 begin
 if (!rst_l) begin

 count <= #1 4’b0000;
end

 else if (!load_l) begin
 count <= #1 cnt_in;
end

 else if (!enable_l) begin
 count <= #1 count + 1;
 end
 end

endmodule //of count16

10 A Verilog HDL Test Bench Primer

Appendix B- The cnt16_tb.v Verilog Test Bench Source File
//---
// File: cnt16_tb.v
// Purpose: Verilog Simulation Example
// Test Bench
//---

‘timescale 1 ns / 100 ps

module cnt16_tb ();

 //---
 // inputs to the DUT are reg type
 reg clk_50;
 reg rst_l, load_l, enable_l;
 reg [3:0] count_in;
 reg oe_l;

 //--
 // outputs from the DUT are wire type
 wire [3:0] cnt_out;
 wire [3:0] count_tri;

 //---
 // instantiate the Device Under Test (DUT)
 // using named instantiation
 count16 U1 (.count(cnt_out),
 .count_tri(count_tri),
 .clk(clk_50),

 .rst_l(rst_l),
 .load_l(load_l),
 .cnt_in(count_in),
 .enable_l(enable_l),
 .oe_l(oe_l)
);

 //--
 // create a 50Mhz clock
 always
 #10 clk_50 = ~clk_50; // every ten nanoseconds invert

 //---
 // initial blocks are sequential and start at time 0

 initial
 begin
 $display($time, " << Starting the Simulation >>");
 clk_50 = 1’b0;

// at time 0
 rst_l = 0;

// reset is active
 enable_l = 1’b1;

// disabled
 load_l = 1’b1;

// disabled
 count_in = 4’h0;
 oe_l = 4’b0;

// enabled
 #20 rst_l = 1’b1;

// at time 20 release reset
 $display($time, " << Coming out of reset >>");
 @(negedge clk_50); // wait till the negedge of

// clk_50 then continue
 load_count(4’hA);

// call the load_count task

11 A Verilog HDL Test Bench Primer

// and pass 4’hA
 @(negedge clk_50);
 $display($time, " << Turning ON the count enable >>");
 enable_l = 1’b0;

// turn ON enable
// let the simulation run,
// the counter should roll

 wait (cnt_out == 4’b0001); // wait until the count
// equals 1 then continue

 $display($time, " << count = %d - Turning OFF the count enable >>",
cnt_out);
 enable_l = 1’b1;
 #40;

// let the simulation run for 40ns
// the counter shouldn’t count

 $display($time, " << Turning OFF the OE >>");
 oe_l = 1’b1;

// disable OE, the outputs of
// count_tri should go high Z.

 #20;
 $display($time, " << Simulation Complete >>");
 $stop;

// stop the simulation
 end

 //--
 // This initial block runs concurrently with the other
 // blocks in the design and starts at time 0
 initial begin
 // $monitor will print whenever a signal changes
 // in the design
 $monitor($time, " clk_50=%b, rst_l=%b, enable_l=%b, load_l=%b,
count_in=%h, cnt_out=%h, oe_l=%b, count_tri=%h", clk_50, rst_l,
enable_l, load_l, count_in, cnt_out, oe_l, count_tri);
 end

 //--
 // The load_count task loads the counter with the value passed

 task load_count;
 input [3:0] load_value;
 begin

@(negedge clk_50);
$display($time, " << Loading the counter with %h >>", load_value);

 load_l = 1’b0;
count_in = load_value;
@(negedge clk_50);
load_l = 1’b1;

 end
 endtask //of load_count

endmodule //of cnt16_tb

12 A Verilog HDL Test Bench Primer

Reference Materials
• Simulating MACH Designs Using MTI ModelSim and DesignDirect-CPLD
 Lattice/Vantis – Applications Group
• The Verilog IEEE 1364-1995 Standard Language Reference Manual
• Verilog HDL – A Guide to Digital Design and Synthesis

Samir Palnitkar ISBN: 0-13-451675-3
• The Verilog Hardware Description Language

Thomas & Moorby ISBN: 0-7923-9723-1
• HDL Chip Design

Smith ISBN: 0-9651934-3-8

Trademarks
Copyright ©1999 Lattice Semiconductor Corporation. All rights reserved.
Vantis, the Vantis logo, and combinations thereof, DesignDirect, and Performance Analyst are trademarks, and MACH is a registered
trademark of Lattice Semiconductor Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

