
9/18/2019

1

DIGITAL ELECTRONICS
SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR

SEPTEMBER 18, 2019

LECTURE 5: TIMING HAZARDS & COMBINATIONAL BLOCKS

MIDTERM EXAM

 Please mark your calendars:

 The midterm exam will be held on Wednesday, October 30
 In class, 90 minutes

 15% of your total grade

REVIEW: PRIME IMPLICANTS
 An implicant is a product/sum term obtained by combining adjacent

squares
 A prime implicant is a product/sum term obtained by combining

the maximum number of adjacent squares
 An essential prime implicant is

 A prime implicant

 … that must be included in order to cover a “one” in the function
 This works with zeros to make Maxterms too

 To find a simplified expression that covers all “1” in the function:
 First find the essential prime implicants

 Then add prime implicants to cover the minterms that are not yet covered
4

PRIME IMPLICANTS EXAMPLE

1 0 0 0

1 1 1 0

0 1 1 1

0 1 0 0

is not essential (removing it
does not uncover a “1”)

is essential

9/18/2019

2

PROCEDURE FOR DESIGNING A
COMBINATIONAL CIRCUIT

1. Write the truth table

2. Derive a simplified Boolean expression for each output
variable via
 Karnaugh-maps OR

 Derive a standard SOP/POS and simplify via Boolean algebra

3. Draw the logic diagram

4. Wire gates together OR
implement in Verilog

6

3 WAYS TO IMPLEMENT F = AB + CD

7

IMPLEMENTING F = A(CD + B) + BC’

8

STATIC VS. TRANSIENT BEHAVIOR

 So far we have only considered stead-state behavior of the
logic circuits

 Signals at the output of gates do not change instantaneously

 How may this impact our circuit designs?

x y

delay

x
y

9/18/2019

3

STATIC HAZARDS

 Glitch/hazard: A short pulse at the output of a circuit, when
steady-state analysis predicts output does not change.
 Result of differences in propagation delay between paths

 Example: f(a,b,c) = m3 + m4 + m6 + m7
= a’bc + ab’c’ + abc’ + abc

 What does the K-map look like and what is the minimized
Boolean expression for the function?

CORRESPONDING K-MAP

 What does the circuit implementation look like?

0 2 6 4

1 3 7 5

b = 1

c = 1

a = 1

0 0 1 1

0 1 1 0

(0,0) (0,1) (1,1) (1,0)

c = 0

f(a,b,c) = ac’ + bc

TIMING HAZARDS IN CIRCUITS

 Hazard can occur when input change spans prime implicants
that are disconnected groups

 Glitch corresponds to the transition abc=111110

a
c

b

f
c

x
x y

z y
z
f

a=1
b=1

REMOVING GLITCHES

 By adding the term ab we cover the transition
abc=111110 with a single prime implicant
 No glitch!

0 2 6 4

1 3 7 5

b = 1

c = 1

a = 1

0 0 1 1

0 1 1 0

(0,0) (0,1) (1,1) (1,0)

c = 0

f(a,b,c) = ac’ + bc + ab

9/18/2019

4

PROBLEMS WITH GLITCHES

 Why are glitches bad?
 Depending on how the circuit’s output is used, a system’s operation

may or may not be adversely affected

 May cause accidental update of data in memory units

 Logic switching translates to voltage changes and circuit capacitances
being charged and discharged

 consequences in wasted energy consumption

𝑖 ൌ 𝐶
𝑑𝑉
𝑑𝑡

𝑃 ൌ 𝑖𝑉 ൌ 𝐶𝑉
𝑑𝑉
𝑑𝑡 ൎ 𝐶𝑉ଶ

COMBINATIONAL BUILDING BLOCKS

MULTI-LEVEL LOGIC

 So far we have primarily focused on 2-level representations
for combinational logic (SOP or POS)

 Multilevel logic is typically more compact (i.e., more cost-
efficient) in practice

COMBINATIONAL BUILDING BLOCKS

 More complex functions built from basic gates
 Comparators

 Multiplexors

 Decoders

 Encoders

 Typically tens to hundreds of transistors

 Common building blocks for digital systems

9/18/2019

5

EQUALITY COMPARATORS WITH XORS

 1-bit comparator

 4-bit comparator

x

y
different

x0
y0

different
x1
y1
x2
y2

x3
y3

MULTIPLEXOR (“MUX”)

 Connects one of n inputs to the
output
 “Select” control signals pick 1 of the n

sources

 log2n select bits

 Useful when multiple data sources
need to be routed to a single
destination
 Often arises from resource sharing

 Example: select 1-of- n data inputs to an
adder

Y
0 0
0 1
1 0
1 1

0
1
0
1

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

0
0
1
1

0

1

S

D0
Y

D1

D1 D0S Y
0
1 D1

D0

S

USE OF MULTIPLEXORS/SELECTORS

Multi-point connections

MUX MUX

DEMUX

A B

Sum

A0 A1 B0 B1

Sa Sb

Ss

S0 S1

Multiple input sources

Multiple output destinations

USE OF MULTIPLEXERS/SELECTORS

2:1
mux

I 0
I 1

A

Z

I 0

A

I 1
I 2
I 3

B

Z 4:1
mux

I 0

A

I 1
I 2 I 3

B

Z 8:1
mux

C

I 4
I 5
I 6
I 7

In general, 𝑍 ൌ 𝑚𝐼 for a 2: 1 mux
ଶିଵ

ୀ

𝑍 ൌ 𝐴ᇱ𝐼 𝐴𝐼ଵ

𝑍 ൌ 𝐴ᇱ𝐵′𝐼 𝐴′𝐵𝐼ଵ 𝐴𝐵ᇱ𝐼ଶ 𝐴𝐵𝐼ଷ

Zൌ 𝐴ᇱ𝐵ᇱ𝐶′𝐼 𝐴′𝐵ᇱ𝐶𝐼ଵ 𝐴ᇱ𝐵𝐶′𝐼ଶ 𝐴′𝐵𝐶𝐼ଷ
 𝐴𝐵ᇱ𝐶′𝐼ସ𝐼 𝐴𝐵ᇱ𝐶𝐼ହ 𝐴𝐵𝐶′𝐼 𝐴𝐵𝐶𝐼

9/18/2019

6

CASCADING MULTIPLEXORS

 Large multiplexors can be implemented by cascading smaller
ones

LOGIC FUNCTIONS USING MUXES

 Any function of n variables can be implemented with a 2n:1
multiplexor
 Input variables connected to select inputs

 Data inputs tied to 0 or 1 according to truth table

LOGIC FUNCTIONS USING MUXES

 Any function of n variables can be implemented with a 2n:1
multiplexor
 How do we implement Cout with a single 4:1 MUX?

4:1
MUX

0
1
2
3

0
Cin
Cin

1

Cout

A B

• N inputs, 2N outputs
• One-hot outputs: only one output HIGH at once

DECODER: DEFINITION

2:4
Decoder

A 1
A 0

Y 3
Y 2
Y 1
Y 000

01
10
11

0 0
0 1
1 0
1 1

0
0
0
1

Y 3 Y 2 Y 1 Y 0A 0A 1
0
0
1
0

0
1
0
0

1
0
0
0

9/18/2019

7

ALTERNATIVE IMPLEMENTATIONS

1:2 Decoder, Active High Enable 1:2 Decoder, Active Low Enable

2:4 Decoder, Active High Enable 2:4 Decoder, Active Low Enable

Output0G
Select

Output1

Output0/G
Select

Output1

Select0 Select1

Output2

Output3

Output0
G

Output1

Select0 Select1

Output2

Output3

Output0
/G

Output1

