

MIDTERM EXAM

- Please mark your calendars:
- The midterm exam will be held on Wednesday, October 30
 - In class, 90 minutes
 - I 5% of your total grade

REVIEW: PRIME IMPLICANTS

- An implicant is a product/sum term obtained by combining adjacent squares
- A **prime implicant** is a product/sum term obtained by combining the <u>maximum</u> number of adjacent squares
- An essential prime implicant is
 - A prime implicant
 - ... that must be included in order to cover a "one" in the function
 - This works with zeros to make Maxterms too
- To find a simplified expression that covers all "I" in the function:
 - First find the essential prime implicants
 - Then add prime implicants to cover the minterms that are not yet covered

PRIME IMPLICANTS EXAMPLE

is essential

PROCEDURE FOR DESIGNING A COMBINATIONAL CIRCUIT

- I. Write the truth table
- 2. Derive a simplified Boolean expression for each output variable via
 - Karnaugh-maps OR
 - Derive a standard SOP/POS and simplify via Boolean algebra
- 3. Draw the logic diagram
- 4. Wire gates together OR implement in Verilog

PROBLEMS WITH GLITCHES

Why are glitches bad?

i

- Depending on how the circuit's output is used, a system's operation may or may not be adversely affected
- May cause accidental update of data in memory units
- Logic switching translates to voltage changes and circuit capacitances being charged and discharged
- \rightarrow consequences in wasted energy consumption

$$= C \frac{dV}{dt} \qquad P = iV$$

$$P = iV = CV \frac{dV}{dt} \approx CV^2$$

MULTI-LEVEL LOGIC

- So far we have primarily focused on 2-level representations for combinational logic (SOP or POS)
- Multilevel logic is typically more compact (i.e., more costefficient) in practice

COMBINATIONAL BUILDING BLOCKS

- More complex functions built from basic gates
 - Comparators
 - Multiplexors
 - Decoders
 - Encoders
- Typically tens to hundreds of transistors
- Common building blocks for digital systems

- Any function of *n* variables can be implemented with a 2^{*n*}:1
 - Data inputs tied to 0 or 1 according to truth table

