m [DIGITAL ELECTRONICS
BROWN SYSTEM DESIGN

School of Engineering

FALL 2019

PROF. IRIS BAHAR

OCTOBER 2,2019

LECTURE 9: MOREVERILOG & CMOS TRANSIENT BEHAVIOR

MORE TUTORIALS FORVERILOG

= On the course website you can find some useful links to
additional Verilog examples

= Example of a 3 bit counter
= Blocking vs. non-blocking assignments within always blocks

= State machine design for a Coke dispenser

DATASHEETS FOR PARTS

= All parts provided for you in our kits come with datasheets
= Pin layout in package
= Schematic design
= Specify operating conditions

= Provide description of how to operate chip correctly to get desired
output

= The datasheets can be downloaded from the course
webpage (FullDataSheets-ENGN | 630.zip)

= Please feel free to refer to these datasheets to help answer some
questions you have for the lab assignments.

2:4 DECODER WITH ENABLE

Complemented enable input

)c Do * 0-hot output encoding
I E A B Dy Dy D, Ds
Dy

1 X X 1 1 1 1

A —T—[><>— 0 0 0 0o 1 1 1
0 0 1 1 0 1 1

D D, 0 1 0 1 1 0 1

B 0 1 1 1 1 1 0

E *{>c
(a) Logic diagram (b) Truth table

Copyioh 2013 Pesson Edcaton, publising s Prenice ol

10/3/2019

2:4 DECODER: STRUCTURAL

// Gate-level (structural) description of 2-to-4 decoder
module decoder 2x4_gates (D, A, B, enable);

output [3:0] D;

input A, B, enable_;

wire A not, B_not, enable not; multi-bit output
not Gl (A_not, A);

not G2 (B_not, B);

not G3(enable not, enable_);

nand G4 (D[0], A _not, B_not, enable_not);

nand G5(D[1], A _not, B, enable not);

nand G6(D[2], A, B_not, enable not);

nand G7(D[3], A, B, enable_not);
endmodule

2:4 DECODER: BEHAVIORAL
(DATAFLOW)

// Behavioral (dataflow) description of 2-to-4 decoder
module decoder 2x4_df (D, A, B, enable);

output [3:0] D;

input A, B, enable_;

assign D[0] = ~((~A) & (~B) & (~enable));

assign D[1] = ~((~A) & B & (~enable_));

assign D[2] = ~(A & (~B) & (~enable_));

assign D[3] = ~(A & B & (~enable_));
endmodule

left hand side must be a wire (or output)

2:4 DECODER: BEHAVIORAL 2

(DATAFLOW)

// Behavioral description of 2-to-4 decoder
// inputs A and B replaced with I[1:0]
module decoder 2x4_beh2 (D, I, enable);

output [3:0] D;
input [1:0] I;
input enable ;
wire [3:0] Di; conditional continuous
assignment statement

assign Di = (I == 2'bll) ? 4'b0111:

(I == 2’b10) ? 4’b1011:

(I == 2'b01) ? 4'b1101: 4’'b1110;
assign D = (enable == 1'b0) ? Di : 4'bl1111;

endmodule

VERILOG: CONTINUOUS

ASSIGNMENTS

= Drive values onto a net
= |eft hand side must be a wire, (or output)
= Continuous assignments are always active

= The assignment expression is evaluated as soon as one of the
right-hand side operands changes

= Operands on the right-hand side can be registers or wires

10/3/2019

VERILOG: PROCEDURAL
ASSIGNMENTS

= Updates values of reg variables

= Value placed on a variable remains unchanged until another
procedural assignment

= Not to be confused with continuous assignment (!) where the
left-hand side is continuously driven

VERILOG: INITIAL BLOCKS

= An initial block:
= starts at time 0
= executes exactly once during a simulation
= executes independently of other blocks

= initial is not synthesizable so should not be used except for
testbenches or algorithm development

= Everything within the block concurrently active

= When all processes are done, the block expires

VERILOG: INITIAL BLOCKS

module stimulus // testbench

reg a, b, m;

initial

m = 1'b0; // single statement; does not need begin/end

initial
begin
#5 a = 1'bl;
#25 b = 1'b0;
end

initial
#50 $finish;

endmodule

VERILOG: ALWAYS

= An always block:
= starts at time 0
= executes statements continuously in a looping fashion, sequentially
= executes independently of other blocks

= Keyword always @(sensitivity list)

= Sensitivity list includes variables on right side of assignment statements
inside block

10/3/2019

VERILOG: ALWAYS

module clock_gen // testbench
reg clock;

initial

clock = 1'b0; // initialize clock at time zero

// Toggle clock every half-cycle (time period = 20)
always
#10 clock = ~clock;

initial
#1000 $finish;

endmodule

VERILOG: ALWAYS

module pass_input(clock, in, out);
input clock, in;

output reg out;

// Toggle clock every half-cycle
always @ (clock)

begin

out = in;
end
endmodule

BLOCKING AND NON-BLOCKING

ASSIGNMENTS

= Blocking assignments (X=A)

= executed in the order they appear in a procedural block

= completes the assignment before continuing on to next statement
= Non-blocking assignments (X<=A)

= allow simultaneous scheduling

= completes in zero time and doesn’t change the value of the target
until “end” is reached

BLOCKING AND NON-BLOCKING

ASSIGNMENTS

= Example: swap

always @(posedge CLK) always @(posedge CLK)
begin begin
temp = B; A <=B;
B=A; B<=A;
A = temp; end
end

10/3/2019

2:4 DECODER: BEHAVIORAL 3

2:4 DECODER: TESTBENCH

module decoder 2x4_beh3 (D, I, enable_);

output [3:0] D;
input [1:0] I;
input enable ;
3:0] Dij; .

red : I pi assigned in a procedural block
always @(I) sensitivity list
begin

case (I)

. procedural block
2’pbl1l: Di<=4'b0111;

2'b10: Di<=4'b1011;
2'b01: Di<=4'b1101;
default: Di<=4'b1110;
endcase
end
assign D = (enable_ == 1'b0) ? Di : 4’'b1l111;
endmodule

non-blocking assignments

‘timescale 1 ns / 100 ps

module decoder_2x4_testbench;
wire [3:0] D; // for instance outputs
reg enable_, [1:0] I; // for instance inputs

decoder_2x4_beh3 M1(D, I, enable_); // instance to be tested
initial
begin
enable_ = 1'bl;
I = 2'b0;
#4 enable_ = 1'Db0;
#10 $finish; // end simulation
end

// initialize inputs

always
begin
#1 I = I + 1'bl;
end
endmodule

NMOS |-V SUMMARY

= Shockley 1t order transistor models

0 Vgs < Vin cutoff
V. .
Iy = B (Vgs —Vin — ds/z) Vas Vgs < Vasqr linear
g : |
2 (Vgs - Vth) Vas > Vysqr saturation
ﬁ = 'uCox T where C_, is the capacitance per unit area of SiO,

LONG CHANNEL |-V PLOT (NMOY)

NMOS transistor: Vs =Ves -Vy Vs = 2.5V

0.25um technology, 5+ s~ VGs - N\
Ly = 10um, R i}
WIL = 1.5, 4t) Y
Vpp = 2.5V, 5
Vi = 0.4V 3l :
< ear > _qg-
0D 94 P N
‘ e
. M o
B g
- Ve = 1OV o

...... ; } } } }
cutoff 0 05 1 15 2 25
Vos (V)

10/3/2019

VOLTAGE TRANSFER CHARACTERISTICS

= What happens when input voltage is not “at rail”
= Vin <Vdd, orVin > Gnd?

= |f the transistor is ON, then voltage at output will change,
but will not go to rail.

TRANSFORMING PMOS I-V LINES

e Want common coordinate setV,,V, ., and Iy,

in*

Ios, = -Ipsn
Vasn=Vin Vasp =Vin—Vop

VDSn = Vout ;VDSp =Vout _VDD

Ion

Mirror around x-axis
Vin =Vop *Vas, \Z

out

Ion = -lpp

Horiz. shift over Vg
=Vop *Vos,

CMOS INVERTER -V CURVES

PMOS X 104 NMOS
257
Vi =0V Vv, =25V
2 4
V., =05V g £ V, = 2.0V
<
& Vv, =10Vt Vv, = 1.5V
Vv, =2 =05V
v, = |.5v0'§\7 vV, = 1.0V
V, = 2.0V V, =05V
V=25V 0 05 1 Vou V)5 2 25 Vo= OV

0.25umWIL, = L5,WIL, = 4.5,Vpp, = 2.5V.Vy, = 04V, = 04V

CMOS INVERTERVTC

NMOS off
PMOS res

NMOS sat
PMOS res

NMOS sat
PMOS sat

Vour (V)

Taking those intersection
points from the load curves,
we obtain the voltage-
transfer characteristic

10/3/2019

CMOS INVERTER:

SWITCH MODEL OF DYNAMIC BEHAVIOR

i T
VOLIC
TG

c
L~ R

V=V
= Gate response time is determined by the time to
charge C, through R (discharge C through R,)

SWITCHING THRESHOLD

= DefineV\, to be the point whereV, =
NMOS in saturation since Vg = V)

out

(both PMOS and

= IfVy =Vpp/2, then this implies symmetric rise/fall behavior for the

CMOS gate

= Recall at saturation, I5=(k'’/2)(WI/L) (Vgs-Va)%
= where K= 1,C_,= 1,€.,/t

ox' “ox

= Setting |p,= -Ip, KW, K

21 T,

N ‘ﬁ

= Assuming VN = Ve ==

(Vo =V

RELATIVE TRANSISTOR SIZING

= When designing static CMOS circuits, balance the driving
strengths of the transistors by making the PMOS section
wider than the NMOS section to

= maximize the noise margins and

= obtain symmetrical characteristics

IMPACT OF UNMATCHED DRIVE

STRENGTHS

p=s

Nominal: B=2

VOLI[(V)

et 2\

Vin (V)
®Skewing the [ratio will shift the SW|tch|ng threshold

B=W, /W,

10/3/2019

