

DIGITAL ELECTRONICS SYSTEM DESIGN

FALL 2019

PROF. IRIS BAHAR

OCTOBER 7, 2019

LECTURE 10: CMOS TRANSIENT BEHAVIOR

SCHEDULE THIS WEEK

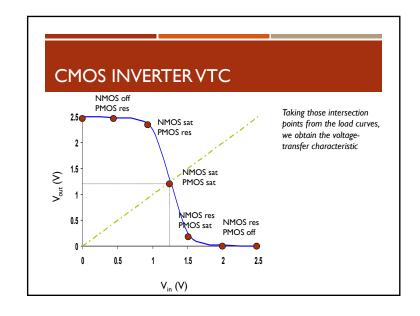
- Jiwon Choe will be covering my lecture this Wednesday
 - Introduction to sequential logic
- McKenna Cisler will be holding a Verilog tutorial this THURSDAY from 5-7pm in the fishbowl
 - He will be swapping his usual Wednesday hours with Andrew

NMOS I-V SUMMARY

Shockley Ist order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_{th} & \text{cutoff} \\ \beta \left(V_{gs} - V_{th} - \frac{V_{ds}}{2} \right) V_{ds} & V_{gs} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_{th} \right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

$$eta = \mu C_{ox} rac{W}{I}$$
 where $\mathsf{C}_{o\mathsf{x}}$ is the capacitance per unit area of SiO_2



SWITCHING THRESHOLD

- Define V_M to be the point where $V_{in} = V_{out}$ (both PMOS and NMOS in saturation since $V_{DS} = V_{GS}$
- If $V_M = V_{DD}/2$, then this implies symmetric rise/fall behavior for the CMOS gate
- Recall at saturation, $I_D = (k'/2)(W/L) (V_{GS} V_{th})^2$,
 - where $k'_n = \mu_n C_{ox} = \mu_n \varepsilon_{ox} / t_{ox}$
- Setting $I_{Dp} = -I_{Dn}$ $\frac{k'_n}{2} \frac{W_n}{L_n} (V_M V_{thn})^2 = \frac{k'_p}{2} \frac{W_p}{L_n} (V_M V_{thp})^2$
- Assuming $V_{thn}=-V_{thp}$ $\frac{W_p}{V_n}/L_p = \frac{k_n'}{k_p'} = \frac{\mu_n}{\mu_p}$, if $L_p=L_n$, $W_p=W_n\cdot\frac{\mu_n}{\mu_p}$

MOS STRUCTURE RESISTANCE

The simplest model assumes the transistor is a switch with an infinite "off" resistance and a finite "on" resistance Ron

$$V_{GS} \geq V_T$$

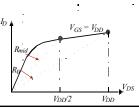
$$S \circ \underbrace{\hspace{1cm}}_{R_{on}} R_{on} \circ D$$

- However R_{on} is nonlinear, time-varying, and dependent on the operation point of the transistor
- How can we determine an equivalent (constant and linear) resistance to use instead?

MOS STRUCTURE RESISTANCE

- Approximate R_{on} as the resistance found during linear operation
 - Simple to calculate but limited accuracy
- Instead use the average value of the resistances, R_{eq}, at the end-points of the transition (i.e., V_{DD} and $V_{DD}/2$)





0.5

1.5

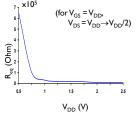
EQUIVALENT MOS STRUCTURE RESISTANCE

$$R_{eq} = \frac{3}{4} \frac{V_{DD}}{I_{DQ, qp}}$$

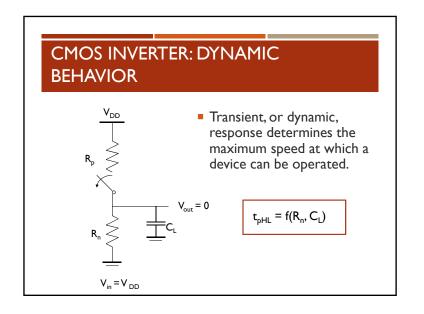
$$I_{DSAT} = \frac{\mu C_{ox}}{2} \frac{W}{L} \left((V_{DD} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right)$$

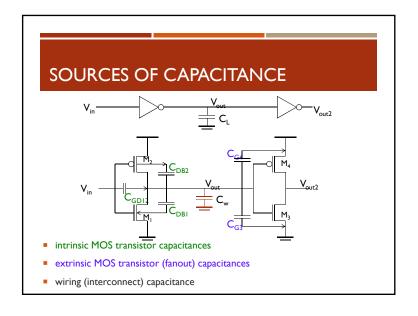
$$R_{eq} = \frac{3}{2\mu C_{ax}} \frac{L}{W} \frac{V_{DD}}{(V_{DD} - V_T)V_{DSAT} - \frac{V_{DSAT}^2}{2}}$$

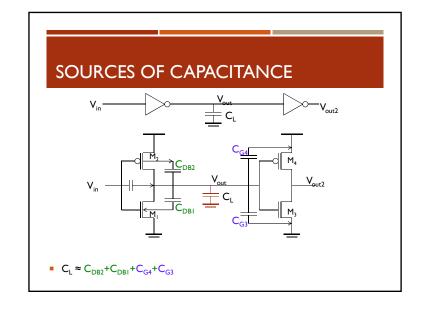
$$R_{eq_{NMOS}} \propto \frac{L}{\mu_n W},$$

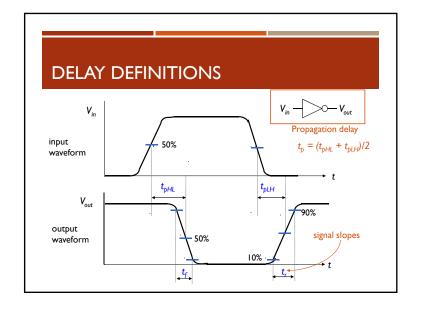


 R_{ed} is essentially independent of V_{DD} as long as $V_{DD} >> V_T + V_{DSAT}/2$



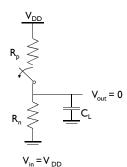






INVERTER PROPAGATION DELAY

 Propagation delay proportional to time-constant of network formed by ON resistor and the load capacitance.



$$t_{pHL} = f(R_n, C_L)$$

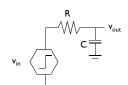
$$R_n = R_{eq} = \frac{3}{4} \frac{V_{DD}}{I_{DSAT}}$$

$$C_L = C_{int} + C_{ext}$$

Want to have equal rise/fall delays make R_n=R_o

MODELING PROPAGATION DELAY

■ Model circuit as first-order RC network



$$v_{out}(t) = (I - e^{-t/\tau})V_{in}$$

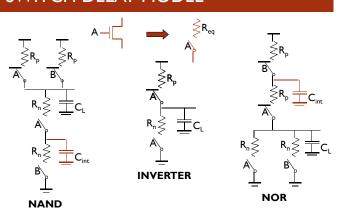
where
$$\tau = RC$$

Time to reach 50% point is $t = ln(2) \tau = 0.69 \tau$

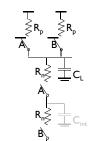
Time to reach 90% point is $t = ln(9) \tau = 2.2 \tau$

$$t_p = (t_{pHL} + t_{pLH})/2 = 0.69C_L(R_n + R_p)/2$$

SWITCH DELAY MODEL



INPUT PATTERN EFFECTS ON DELAY



- Delay is dependent on the pattern of
- Ist order approximation of delay:

$$t_p^{}\approx 0.69~R_{eff}^{}~C_L^{}$$

R_{eff} depends on the input pattern

