
10/23/2019

1

DIGITAL ELECTRONICS
SYSTEM DESIGN

FALL 2019

PROFS. IRIS BAHAR & ROD BERESFORD

OCTOBER 23, 2019

LECTURE 14: STATE MACHINE DESIGN

VERILOG TUTORIAL (PART 2)

 McKenna will again give a Verilog tutorial during his lab hours
this Wednesday from 4:30-6:30

 He will go over state machine design with Verilog as well as
procedures to set up a simulation with Verilog

MIDTERM STUDY SESSION

 Jiwon will give a help session on Monday, Oct. 28 from 7-9pm
in B&H190 to prepare for the midterm exam next week.

 Come with questions. She will also solve some problems
(from the problem sets) on the board.

 Solutions to practice problem set #1 will be available later
tonight

 She will hold office hours in B&H 196 this week and next:
 Saturday, Oct. 26 : 10am-noon

 Sunday, Oct. 27: 7-9pm

 Tuesday, Oct 29: 7-9pm

FINITE STATE MACHINE

Combinational
Logic

outputsinputs

State

Next
State

Current
State

clk

 A Finite State Machine (FSM) is an abstract representation of a
sequential circuit
 The state embodies the condition of the system at this particular time

 The combinational logic determines the output and next state values

 The output values may depend only on the current state value, or on the
current state and input values

10/23/2019

2

ELEMENTS OF AN FSM

Combinational
Logic

outputsinputs

State

Next
State

Current
State

clk

 4 properties of an FSM
1. A finite number of inputs

2. A finite number of outputs

3. A finite number of states

4. A specification of all state
transitions

 Can be described by a state diagram

BLOCK DIAGRAMS OF MEALY AND
MOORE STATE MACHINES

6

1. Given a circuit diagram for a sequential circuit

2. Derive expressions for FF inputs
(or state equations for each FF)

3. Derive an equation for each output as a function of the
present state (and the inputs - Mealy only)

4. Set up a state table
 Present state, inputs, next state, output

 Optional intermediate columns for FF inputs

5. Draw the state diagram

STATE MACHINE ANALYSIS
PROCEDURE

EXAMPLE OF SEQUENTIAL
CIRCUIT

8

FF input equations?
Output equation?

A(t+1)

B(t+1)

Is this a Moore or
Mealy machine?

10/23/2019

3

STATE TABLE FOR CIRCUIT

9

State equations
Output equation

ALTERNATIVE FORM FOR THE
STATE TABLE

10

State diagram?

STATE DIAGRAM

 A, B are encoded into 4 states

00

11 10

01

x=1
y=0

x=0
y=1

x=0
y=1

x=1
y=0

BOOLEAN EXPRESSION FOR FSM

 Express outputs from truth table

00 01 11 10
0 2 6 4

1 3 7 5

B = 1

x = 1

A = 1

0 0 0 0

0 1 1 1

x = 0

00 01 11 10
0 2 6 4

1 3 7 5

B = 1

x = 1

A = 1

0 0 0 0

1 1 0 0

x = 0
00 01 11 10

0 2 6 4

1 3 7 5

B = 1

x = 1

A = 1

0 1 1 1

0 0 0 0

x = 0

Anext = xB+xA
= x(B + A)

Bnext = A’x y = x’B+x’A
= x’(B + A)

10/23/2019

4

EXAMPLE OF SEQUENTIAL
CIRCUIT

13

FF input equations?
Output equation?

A(t+1)

B(t+1)

Is this a Moore or
Mealy machine?

1. Define the task in words (Mealy or Moore?)

2. Draw a state diagram

3. Assign state values to the states (number the states)

4. Minimize the number of states in the state table/diagram

5. Set up a state table

6. Select a flip-flop type and set up an excitation table

7. Use the excitation table to generate columns in the state table
for the FF inputs

8. Design the combinational circuits

9. Draw the logic diagram and build the circuit

STATE MACHINE DESIGN PROCEDURE

EXAMPLE 2: STATE DIAGRAM FOR
SEQUENCE DETECTOR

 Make a machine that sets an
output signal to 1 when the
input signal is 1 for 3 or more
times in a row

 State diagram to detect 3
ones in a row

 Is this a Mealy or Moore
machine?

STATE TABLE FOR SEQUENCE
DETECTOR: MOORE MACHINE

16

10/23/2019

5

K-MAPS FOR SEQUENCE
DETECTOR USING D-FFS

 Each output is represented with a separate Karnaugh map

LOGIC DIAGRAM OF A MOORE-
TYPE SEQUENCE DETECTOR

18

STATE ASSIGNMENT

 How many states do I need?

 How many bits do I need to represent each state?

 Two states are the same if:
1. They produce the same outputs for the same inputs

2. They go to the same (or equivalent) next states for all inputs

STATE REDUCTION

20

10/23/2019

6

EXAMPLE 3: STATE DIAGRAM

21

STATE TABLE DERIVED FROM
DIAGRAM

REDUCING THE STATE TABLE

g is gone

Where g was
gets replaced
by e

So now, d and f go to the same place
and have the same outputs

REDUCED STATE TABLE

24

So, wherever
f was, replace
it with d

10/23/2019

7

REDUCED STATE DIAGRAM

25

Now, you’re stuck. It still
takes 3 bits in binary to
get beyond four states

THREE POSSIBLE BINARY
STATE ASSIGNMENTS

3 bits 3 bits 5 bits

REDUCED STATE TABLE WITH
BINARY ASSIGNMENT 1 K-MAP FOR OUTPUTS (S2, S1, S0,Y)

00 01 11 10

00 0 0 - 0

01 0 0 - 0

11 0 0 - -

10 0 1 - -

x

S0

S1
S2

S2-NEXT = S1S0x’

3 state encodings are
not specified so we
can set them to don’t
care values
(we can never get to
these states)

10/23/2019

8

K-MAP FOR OUTPUTS (S2, S1, S0,Y)

00 01 11 10

00 0 0 - 0

01 0 1 - 1

11 1 1 - -

10 1 0 - -

x

S0

S1
S2

S1-NEXT = S1x + S0x + S2S1’x + S1’S0

K-MAP FOR OUTPUTS (S2, S1, S0,Y)

00 01 11 10

00 0 0 - 0

01 1 1 - 1

11 1 1 - -

10 0 0 - -

x

S0

S1
S2

S0-NEXT = x

K-MAP FOR OUTPUTS (S2, S1, S0,Y)

00 01 11 10

00 0 0 - 0

01 0 0 - 1

11 0 1 - -

10 0 0 - -

x

S0

S1
S2

Y = S2x + S1S0x

MEALY STATE MACHINE EXAMPLE

State machine outputs 1 for one clock cycle when three consecutive 0s
are received as input with no overlap between sequences

00 01 10

1/0

0/0

1/0

0/0

1/0
0/1

10/23/2019

9

VERILOG PROCEDURAL BLOCKS -
REVIEW

always @(A or B or C)
begin
Q = D; // Q must be of type reg

...
end

always @(posedge clock or negedge reset)

always @(posedge clock, negedge reset)

FSM IN VERILOG

 Suggested coding style for FSMs

<module statement>
<input and output declarations>
<reg declarations>
<parameter and typedef statement>
<always block for next state>
<always block for output>
<always block for state FFs>
endmodule

MEALY STATE MACHINE EXAMPLE

00 01 10

1/0

0/0

1/0

0/0

1/0

0/1

module example_state_machine(clock, reset, in, out);
output out;
input clock, reset, in;
reg [1:0] Scurr, Snext;
parameter S0=2’b00, S1=2’b01, S2=2’b10;

always @(in, reset, Scurr)
begin

if (reset == 1) Snext = S0;
else
case (Scurr)

S0: if (in == 1) Snext = S0; else S1;
S1: if (in == 1) Snext = S0; else S2;
default: Snext = S0;

endcase
end
always @(in, Scurr)

if ((Scurr == S2) && (in == 0)) out = 1; else out = 0;
always @(posedge clock)

Scurr <= Snext;
endmodule

MEALY STATE MACHINE EXAMPLE –
VERSION 2

00 01 10

1/0

0/0

1/0

0/0

1/0

0/1

module example_state_machine(clock, reset, in, out);
output out;
input clock, reset, in;
reg [1:0] Scurr, Snext;
parameter S0=2’b00, S1=2’b01, S2=2’b10;

always @(in, Scurr)
begin

case (Scurr)
S0: if (in == 1) Snext = S0; else S1;
S1: if (in == 1) Snext = S0; else S2;
default: Snext = S0;

endcase
end

always @(in, Scurr)
if ((Scurr == S2) && (in == 0)) out = 1; else out = 0;

always @(posedge clock)
if (reset == 1) Scurr <= S0;
else Scurr <= Snext;

endmodule

assumes FF has reset input

10/23/2019

10

MEALY STATE MACHINE EXAMPLE –
TESTBECH

module example_state_machine_testbench;
wire out;
reg clock, reset, in;

example_state_machine M0(clock, reset, in, out)
initial
begin

reset = 1’b0; // initialize inputs
clock = 1’b0;
in = 1’b0;
#4 reset = 1’b1;
#6 reset = 1’b0;
#19 in = 1’b1;
#100 $finish; // end simulation

end
always
begin

#10 clock = ~clock;
end

endmodule

