m [DIGITAL ELECTRONICS
BROWN SYSTEM DESIGN

School of Engineering

FALL 2019

PROFS. IRIS BAHAR & ROD BERESFORD
OCTOBER 23,2019

LECTURE 14: STATE MACHINE DESIGN

VERILOG TUTORIAL (PART 2)

= McKenna will again give a Verilog tutorial during his lab hours
this Wednesday from 4:30-6:30

= He will go over state machine design with Verilog as well as
procedures to set up a simulation with Verilog

MIDTERM STUDY SESSION

= Jiwon will give a help session on Monday, Oct. 28 from 7-9pm
in B&H 190 to prepare for the midterm exam next week.

= Come with questions. She will also solve some problems
(from the problem sets) on the board.

= Solutions to practice problem set #| will be available later
tonight

= She will hold office hours in B&H 196 this week and next:
= Saturday, Oct.26 : |10am-noon
= Sunday, Oct. 27: 7-9pm
= Tuesday, Oct 29: 7-9pm

FINITE STATE MACHINE

inputs Combinational™ ™ Kl
Logic
Current Next
State State

= A Finite State Machine (FSM) is an abstract representation of a
sequential circuit

= The state embodies the condition of the system at this particular time
= The combinational logic determines the output and next state values

= The output values may depend only on the current state value, or on the
current state and input values

10/23/2019

10/23/2019

BLOCK DIAGRAMS OF MEALY AND

ELEMENTS OF AN FSM MOORE STATE MACHINES

Mealy Machine

Inputs e——s—> Nex_l Slq/e State Ofup I_“ Outputs
. Combinational Resister C (Mealy-type)
= 4 properties of an FSM LS Combinational ™| fatats e T Lo
Clock

I. A finite number of inputs Logic

Current Next

2. Afinite number of outputs State State (@

3. Afinite number of states

P Moore Machi
4. A specification of all state 0ore Machine

transitions Inputs e———- Next State S Output Outputs
Combinational 2 Ce inati
Moore:ty
oo Register e (Moore-type)

= Can be described by a state diagram

(b)

STATE MACHINE ANALYSIS EXAMPLE OF SEQUENTIAL

CIRCUIT

PROCEDURE

I. Given a circuit diagram for a sequential circuit x ! -
2. Derive expressions for FF inputs — P c

(or state equations for each FF) D_T,v

Is this a Moore or
Mealy machine?

3. Derive an equation for each output as a function of the

present state (and the inputs - Mealy only) B(tt1)
) J » 5
4. Set up a state table — C b
= Present state, inputs, next state, output b » FF input equa_tions?
Clock Output equation?

= Optional intermediate columns for FF inputs

5. Draw the state diagram E ’:D '

STATE TABLE FOR CIRCUIT

ALTERNATIVE FORM FOR THE
STATE TABLE

Present Next
State Input State Output
State equations [> A B x A B y
Output equation 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 0 0
1 1 0 0 0 1
1 1 1 1 0 0

State diagram?

Next State Output

Present
State x=0 x=1 x=0 x=1

A B A B A B y y
0 0 0O 0 0 1 0 0
0 1 0O 0 1 1 1 0
1 0 0 0 1 0 1 0
il 1 0 0 1 0 1 0

STATE DIAGRAM

BOOLEAN EXPRESSION FOR FSM

= A, B are encoded into 4 states

B=1 B=1 Bl
00 01 11 10 00 01 11 10 00 01 11 10
01"o | o | o |0’ of"o [o | o [0 | x=0| o T [T |1
=if| o |0 [T RSN T o | o =1‘ "ol o | o |o
A1 A=1 A=l
Apexe = XB+XA Browe = AX y = xXB+x’A
=x(B +A) =X (@ +A)

= Express outputs from truth table

10/23/2019

EXAMPLE OF SEQUENTIAL

CIRCUIT

Is this a Moore or
Mealy machine?

FF input equations?
Output equation?

STATE MACHINE DESIGN PROCEDURE

I. Define the task in words (Mealy or Moore?)

2.
3.
4.
5.
6.
7.

Draw a state diagram

Assign state values to the states (number the states)
Minimize the number of states in the state table/diagram
Set up a state table

Select a flip-flop type and set up an excitation table

Use the excitation table to generate columns in the state table
for the FF inputs

©

Design the combinational circuits

9. Draw the logic diagram and build the circuit

EXAMPLE 2: STATE DIAGRAM FOR
SEQUENCE DETECTOR

= Make a machine that sets an
output signal to | when the
input signal is | for 3 or more
times in a row

= State diagram to detect 3
ones in a row

= |s this a Mealy or Moore
machine?

STATE TABLE FOR SEQUENCE

DETECTOR: MOORE MACHINE

Present Next
State Input State Output

A B X A B

0 0 0 0 0 0
0 0 1 0 il 0
0 il 0 0 0 0
0 1 1 1 0 0
i 0 0 0 0 0
1 0 1 1 1 0
il 1 0 0 0 1
1 1 1 1 il 1

10/23/2019

K-MAPS FOR SEQUENCE
DETECTOR USING D-FFS

Aql il 1 Aq1 1 1 Al 1
————— —— —
X X x
Dy = Ax + Bx Dy = Ax + B'x y=AB

Copioht 0201 eson Ekaton, pbling s e Hll

= Each output is represented with a separate Karnaugh map

LOGIC DIAGRAM OF A MOORE-
TYPE SEQUENCE DETECTOR

STATE ASSIGNMENT

= How many states do | need?

= How many bits do | need to represent each state?

STATE REDUCTION

= Two states are the same if:
I. They produce the same outputs for the same inputs

2. They go to the same (or equivalent) next states for all inputs

10/23/2019

10/23/2019

STATE TABLE DERIVED FROM

EXAMPLE 3: STATE DIAGRAM DIAGRAM
Next State Output
Present State x=0 x=1 x=0 x=1

a a b 0 0
b ¢ d 0 0
¢ a d 0 0
a e R 1

= a S 0 T T
! 8T e i

gl a i 0T 1

REDUCING THE STATE TABLE REDUCED STATE TABLE

So now, d and f go to the same place
and have the same outputs

Next State Output

Next State Output
Present State x=0 x=1 x=0 x=1
Present State x=0 x=1 x=0 x=1

a a b 0 0 b 0 0

b gisgone ¢ d 0 0 a4 a4
b So, wherever c d 0 0

¢ Where gwas____ [CZ _________ 0 0 fwa_vs, replace

ecd” gets replaced e f 0T 1 ¢ itwithd a d 0 0
TDYE T e T 0T 1 d e d 0 1
P e_ ______ f""“""-() _______ i € a d 0 !

Copyioht 2012 Pesson ducation publhing s Penice Ko

Copyright 02012 esson Eccation pubishing s Prentce Hall

REDUCED STATE DIAGRAM

0/0

Now, you're stuck. It still

0/0 0/0 takes 3 bits in binary to
1/0 get beyond four states
0/0
1/0
0/0 1/1 /
1/0

11

THREE POSSIBLE BINARY
STATE ASSIGNMENTS

Assignment 1, Assignment 2, Assignment 3,

State Binary Gray Code One-Hot
a 000 000 00001
b 001 001 00010
¢ 010 011 00100
d 011 010 01000
e 100 110 10000
3bits 3 bits 5 bits

REDUCED STATE TABLE WITH

BINARY ASSIGNMENT 1

Next State Output
Present State x=0 x=1 x=0 x=1
000 000 001 0 0
001 010 011 0 0
010 000 011 0 0
011 100 011 0 1
100 000 011 0 1

Copyright 92012 Pesson Edcaton, pbishing s revice ol

K-MAP FOR OUTPUTS (5,,5,, S,,Y)

3 state encodings are
not specified so we
can set them to don’t
care values

(we can never get to
these states)

Synext = $iSeX’

10/23/2019

K-MAP FOR OUTPUTS (S,,S,,S,Y)

| - BrEsYa
T

SiNexT = X+ Spx + 5,8 'x + §,'S,

K-MAP FOR OUTPUTS (S,,5,, S,,Y)

K-MAP FOR OUTPUTS (5,,5,,S,Y)

Y = S;x + §,5px

MEALY STATE MACHINE EXAMPLE

State machine outputs | for one clock cycle when three consecutive Os
are received as input with no overlap between sequences

10/23/2019

VERILOG PROCEDURAL BLOCKS -
REVIEW

always @(A or B or C)
begin
Q =D; // Q must be of type reg

end

always @ (posedge clock or negedge reset)

always @ (posedge clock, negedge reset)

FSM INVERILOG

= Suggested coding style for FSMs

<module statement>

<input and output declarations>
<reg declarations>

<parameter and typedef statement>
<always block for next state>
<always block for output>

<always block for state FFs>

endmodule

MEALY STATE MACHINE EXAMPLE

module example state_machine(clock, reset, in, out);
output out;
input clock, reset, in;
reg [1:0] Scurr, Snext;
parameter S0=2'b00, S1=2'b01, S2=2'Dbl0;

always @(in, reset, Scurr)

begin
if (reset == 1) Snext = S0;
else
case (Scurr)
S0: if (in == 1) Snext = S0; else S1;
S1: if (in == 1) Snext = S0; else S2;
default: Snext = SO;
endcase
end
always @(in, Scurr)
if ((Scurr == S2) && (in == 0)) out = 1; else out = 0;

always @(posedge clock)
Scurr <= Snext;
endmodule

MEALY STATE MACHINE EXAMPLE —

VERSION 2

module example_ state_machine (clock, reset, in, out);
output out;
input clock, reset, in;
reg [1:0] Scurr, Snext;
parameter S0=2'b00, S1=2'b01, S2=2'b1l0;

always @(in, Scurr)

begin
case (Scurr)
S0: if (in == 1) Snext = S0; else S1;
S1: if (in == 1) Snext = S0; else S2;
default: Snext = SO0;
endcase
end
always @(in, Scurr)
if ((Scurr == S2) && (in == 0)) out = 1; else out = 0;

always @(posedge clock)

if (reset == 1) Scurr <= S0; assumes FF has reset input
else Scurr <= Snext;
endmodule

10/23/2019

10/23/2019

MEALY STATE MACHINE EXAMPLE —

TESTBECH

module example state machine_testbench;
wire out;
reg clock, reset, in;

example_state_machine MO (clock, reset, in, out)
initial
begin
reset = 1'b0; // initialize inputs
clock = 1'b0;
in = 1'b0;
#4 reset 1'bl;
#6 reset 1'b0;
#19 in = 1'bl;
#100 $finish; // end simulation
end
always
begin
#10 clock = ~clock;
end
endmodule

10

