

DIGITAL ELECTRONICS SYSTEM DESIGN

FALL 2019

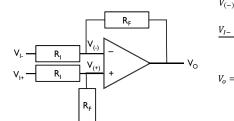
PROF. IRIS BAHAR (GIVEN BY JIWON CHOE)

NOVEMBER 6, 2019

LECTURE 17: BINARY ADDITION

SUMMING AMPLIFIER

• Output voltage follows the sum of two input voltages, one taken with the opposite sign

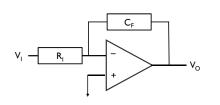


 $V_{(-)} \cong V_{(+)} = \frac{R_F}{R_I + R_F} V_{I+}$

 $V_o = ?$

INTEGRATOR

• Output voltage is the time integral of the input voltage, with the opposite sign, and with a scale factor



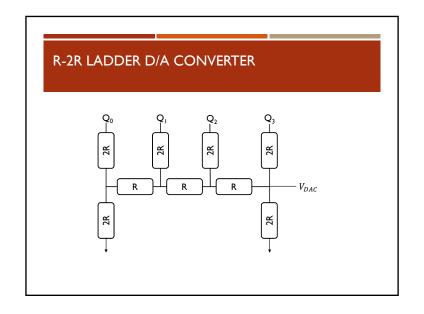
$$V_{(-)} \cong V_{(+)} = 0$$

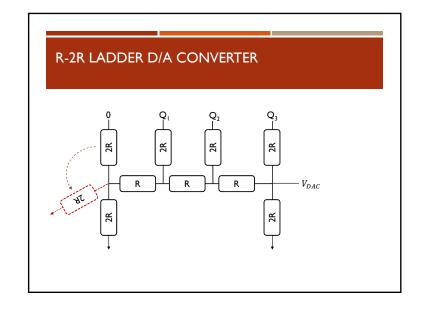
$$\frac{V_I}{R_I} = C_F \frac{d}{dt} (0 - V_o)$$

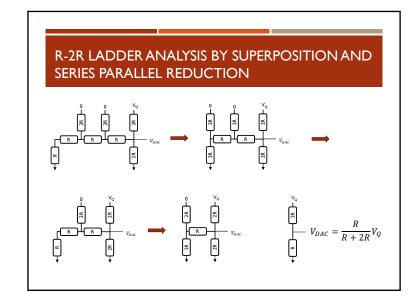
$$\frac{V_I}{R_I} = C_F \frac{d}{dt} (0 - V_o)$$

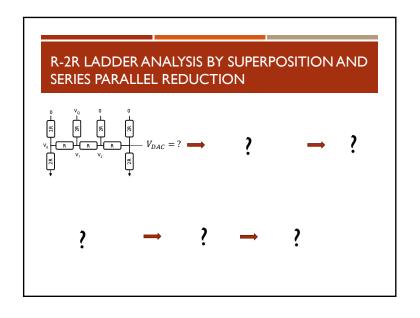
$$V_o = -\left(\frac{1}{R_I C_F}\right) \int V_I dt$$

DUAL-SLOPE A/D CONVERTER $-V_{REF}$ integrator GTZ ${\rm V}_{\rm integrator}$ control counter latch GTZ









BINARY ADDITION

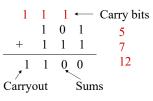
UNSIGNED BINARY NUMBERS

- For the binary number $b_{n-1}b_{n-2}...b_1b_0$. $b_{-1}b_{-2}...b_{-m}$ the decimal number is:
- Example: $D = \sum_{i=-m}^{n-1} b_i 2^i$ $101.001_2 = ?$

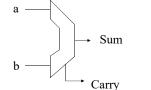
$$5 + 2^{-3} = 5.125$$

BINARY ADDITION

- Addition is an essential operation for all kinds of computing
- We need to understand how to do this for binary numbers
- We need to understand how to do this for positive and negative numbers
- We need to understand how to implement this efficiently in hardware

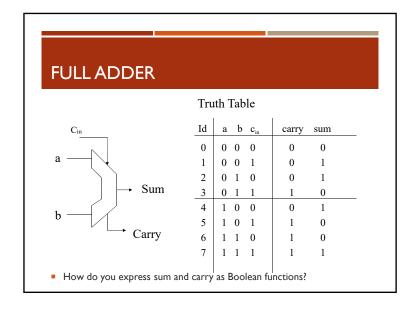


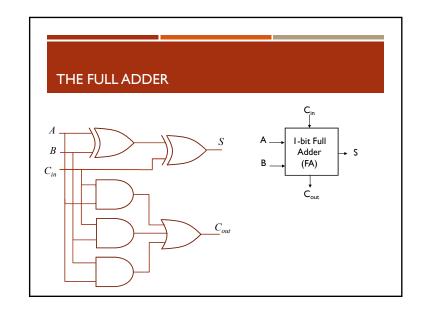
HALF ADDER

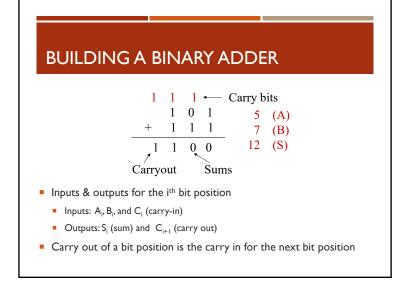


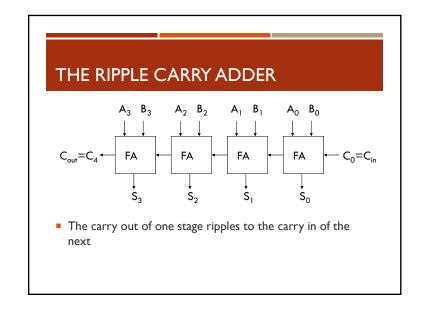
Truth Table

a b	carry	sum
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0









WHAT ABOUT NEGATIVE NUMBERS?

- So far we have just considered unsigned numbers when converting from base 10 to binary.
- What about negative numbers and how do we add two signed numbers in binary?
- 3 ways of representing signed numbers:
 - Signed magnitude
 - I's complement
 - 2's complement

SIGNED MAGNITUDE ADDITION

Need a comparator to supplement adder/subtractor

SIGNED MAGNITUDE

- The Most Significant Bit (MSB) is the <u>sign bit</u>: $0 \rightarrow$ positive, $1 \rightarrow$ negative
- The rest of the bits define the <u>magnitude</u>
- Need to know how many bits are available to represent a number!
- Example: $(2)_{10} = (0010)_2 = (0\ 010)_{S\&M}$ $(-2)_{10} = (1\ 010)_{S\&M}$
- Makes adding and subtracting a pain
 - Can't just add them regularly
- Also, two representations for zero (+0 and -0)

I'S COMPLEMENT

- To negate a number, complement (invert, flip) each bit
- Example: $(4)_{10} = (0100)_2 = (0100)_{1's \text{ comp}}$ $(-4)_{10} = (1011)_{1's \text{ comp}}$
- Like sign and magnitude, the high bit indicates the sign of the number
- What about adding and subtracting?

I'S COMPLEMENT ADD/SUBTRACT

$$(-2)_{10} \xrightarrow{} + 1011$$

$$(-6)_{10} \xrightarrow{} + 1011$$

$$(-6)_{10} \xrightarrow{} + 1000 \xrightarrow{} - \text{not right, } (-6)_{10} = (1001)_{1's comp}$$

$$+ 1 \xrightarrow{} \text{add } C_{\text{out}} \text{ back to LSB}$$

$$1001 \xrightarrow{} - \text{now it works}$$

$$(4)_{10} \xrightarrow{} \rightarrow 1100$$

$$+ (-3)_{10} \xrightarrow{} \rightarrow + 1100$$

$$(1)_{10} \xrightarrow{} 10000 \xrightarrow{} - \text{not right, add Cout back to LSB}$$

$$+ 1$$

$$0001 \xrightarrow{} - \text{now it works}$$

- Better than sign and magnitude (can subtract by adding the negative)
- \blacksquare But requires 2 addition operations (need to conditionally add $C_{\text{out}})$