IAR Embedded Workbench®

IDE
User Guide

for Advanced RISC Machines Ltd’s
ARM® Cores

COPYRIGHT NOTICE
Copyright © 1999-2008 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

ARM and Thumb are registered trademarks of Advanced RISC Machines Ltd.
EmbeddedICE is a trademark of Advanced RISC Machines Ltd. OCDemon is a
trademark of Macraigor Systems LLC. nC/OS-II is a trademark of Micripm, Inc.
CMX-RTX is a trademark of CMX Systems, Inc. ThreadX is a trademark of Express
Logic. RTXC is a trademark of Quadros Systems. Fusion is a trademark of Unicoi
Systems.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.
CodeWright is a registered trademark of Starbase Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Fourteenth edition: June 2008

Part number: UARM-14

This guide describes version 5.2x of the IAR Embedded Workbench® IDE for
Advanced RISC Machines Ltd’s ARM core family.

Internal reference: 5.3.0. ISUD.

Brief contents

TABIES ... XXV
FIGUIES .o XXix
Preface ... XXxvii
Part |. Product overview ... 1
Product introduction ... nsesseseeees 3
Installed files ... 19
Part 2. Tutorials ... 27
Creating an application Project ... 29
Debugging using the IAR C-SPY® Debugger ..o, 41
Mixing C and assembler modules ... 51
USING CHr et 55
Simulating an iNTerrUPE ... 59
Creating and using libraries ..., 69
Part 3. Project management and building ... 73
The development environmMent ... 75
MaNAZING PrOJECLS ...t 81
BUITAING ..o 91
EAItiNg ...ooo s 99
Part 4. Debugging ... 109
The IAR C-SPY® Debugger ..., 111

iv

IAR Embedded Workbench® IDE
User Guide

Executing your application ... 121

Working with variables and expressions ... 127
UsINg breakPoints ... eseseenns 135
Monitoring memory and registers ... 143
Using the C-SPY® mMacro SyStemMcccccccooovomomissssssssssssssssssssssssses 149
Analyzing your application ..., 157
Part 5. The C-SPY® Simulator ... 163
Simulator-specific debugging ... 165
SIMUlating INEEITUPLScoooooiiieeie e 185
Part 6. C-SPY hardware debugger systems197
Introduction to C-SPY® hardware debugger systems 199
Hardware-specific debugging ..., 213
Using flash loaders ... 255
Part 7. Reference information ... 261
IAR Embedded Workbench® IDE referenceccccccoooceeeeeeuene. 263
C-SPY® referenceccccccvvirmrrrririsssmcicseessnseseesssssssssss s 343
GeNEral OPLIONSoooiivviiicrreiii et 379
ComPIiler OPLIONS ... seeneons 387
AssembIer OPLIONS ... 401
CONVEIrLEr OPLIONSccoouvrirrirerrereeeessisssesseesssssssesssss s 409
Custom build OPLiONS ... 411
Build actions OPLioNS ... 413

Brief contents °

Linker OPLIONS ...t 415
Library builder options ... 427
Debugger OPLIONS ... ssssse s 429
The C-SPY Command Line Utility—cspybat ..., 433
C-SPY® macros reference ... 459
INAEX e 493

vi

IAR Embedded Workbench® IDE
User Guide

Contents

TABIES ..o XXV
FIGUIES .o XXix
PrEface ..o XXXVii
Who should read this guide ..., XXXVii
How to use this guide ... XXXVii
What this guide contains ... XXXViii
Other documentation ... xli
Document conNVeNntions ... xlii
Typographic CONVENTIONScccvevuieriierierieirierieeienee et se et eieenieenee xlii
Naming CONVENTIONSceveuieuieiiieienienienenienieeieeieeeeseeseeseesseseeseeneens xliii
Part |. Product overview ... 1
Product introduction ... 3
The IAR Embedded Workbench IDEc.ccccooveeiirnnnnnn. 3
An extensible and modular environmentccceeererenenenenienens 3
FRATUIES ..vveieiiiirierieeitetet ettt 4
DOCUMENTALION ...eevvitiiiriieiieiieiieiieteeteteeet ettt 5
IAR C-SPY DebuUggEr ..ottt 5
General C-SPY debugger featuresccccoceeveeievevienencncncncncnnne. 6
C-SPY plugin modulesc.ccoeverirenerenininieieteeesesiesieeieeeceees 8
RTOS aWar€nesscccceceeeeieieieniinienienrineeeeiiererere e 9
Documentation
IAR C-SPY Debugger systemsccococooooiiinncencecncnnes 9
TAR C-SPY Simulatorcccecoeviririeiiiiiieienienenenenieeeceeeeeeeae 10
IAR C-SPY J-Link driverccccocmeminieniinienieeieieneneneneneeeeeene 10
TAR C-SPY LMI FTDI dAriverccccoocevvierienieieieeeeeee e 11
TAR C-SPY RDIAIIVET ...ccoooviiiiiiiiiiiiiicicieicieniesreseevceeeeeeeee
IAR C-SPY Macraigor driver ...
TAR C-SPY ROM-mONitor driVercccceceeeeeeierenienenieneneeneeneenees 13

vii

viii

IAR C-SPY ANGEL debug monitor driver ...

IAR C/CH++ Compiler ...
FEAtUIES ...c.ooviiiiiiiiie
Runtime environmentcocceeeeeieieienienieneneneneneeeeeeeeeeeeenees 15
Documentationccccoceeeeiririnieieiiiereieneese s 15
IAR Assembler ... 16
Features
Documentationcccoeeueeeeenineniiieieieieecrese s 16
IAR ILINK Linker and accompanying toolsc.....cccc.... 16
FEAUIES ..ot 17
Documentationcccceceeeeiririnieieiiieieienene e 17
Installed fileS ... 19
Directory StruCtUre ... 19
ROOE AIT€CLOTY ...ttt 19
The ARM ir€CtOTYovueiiniieiiniieiieiieiieteitete e 20
The commON dir€CLOTYoooverierieiierieeiieiteeeieee et 21
File CYPES ... 22
files with non-default filename eXtensionsc.cceceveeverererenneencne 24
Documentation
The user and reference GUIdEsccceeeeeieirienieneneneneneneeeeeeenes 24
ONLNE NEIP ..oviiieieieeee e 25
TAR 0N the WEb ...cooiiiiiiiiiiiiiiciccc e 26
Part 2. Tutorials ... 27
Creating an application Project ... 29
Setting UP @ NEW ProjJECt ..o 29
Creating a Workspace WindOwc.cccceveeeeeeeeieienienienienenenenenne 29
Creating the NEW PrOJECtcceverireririieieieieieiee et

Adding files to the project ...

Setting Project OPLIONSccccverererereerierieieiententenesreniesieeieeseeseeneens
Compiling and linking the application ... 35
Compiling the source filescoccocevievieieiieiiinininennneneeeceeene 35

IAR Embedded Workbench® IDE
User Guide

Contents °

Viewing the list file

Linking the applicationcccceevueriireinienieneeieeie et 38

Viewing the map fileccccooviririiiiiiiiiiiiiecccce 39

Debugging using the IAR C-SPY® Debugger ..., 41
Debugging the application ... 41
Starting the debUZZErccoceeiiiiiiiiiiiieeeeeeeeeeeeene 41

Organizing the WINAOWSccccueviiviiniiniiniiniinenenenenescncereeeeeene 41
Inspecting SOUICe STALEIMENLScceevuerrerrenrerrerereererenrenienienreseereeneene 42
Inspecting variablesccccoeeviririnirieieieee e 44
Setting and monitoring breakpointsccoeceeveerervierienieneenieennn. 45
Debugging in disassembly modeccccoeverenenenieniencnieeeenes 46

Monitoring memory

Viewing terminal I/O

Reaching program eXitcccceceeeeeeerereeieieieenesenese e 49
Mixing C and assembler modules ..., 51
Examining the calling convention ..., 51
Adding an assembler module to the project 52
Setting up the PrOJECTccccverireririiieieieeetenteese et 53
USING CH e 55
Creating a C++ application
Compiling and linking the C++ applicationccccecevevenenenenene 55
Setting a breakpoint and eXecuting to itcc.cceveererveerieneeneenieennen. 56
Printing the Fibonacci NUMDbETScccovevveveneniinicnicninincceeieeeene 58
Simulating an iNTErTUPT ..o 59
Adding an interrupt handler ...,
The application—a brief description
Writing an interrupt handlercocoveeriiiiininnincieeeeeee
Setting up the PrOJECTcoceverirerereeieieieietereese e
Setting up the simulation environment ... 60
Defining a C-SPY setup macro filecocceeveeveniiniiiniieniinieniee, 61
Setting C-SPY OPHONS ...ceevieriiriririerieiieeeteietetese et 62

Building the project

Starting the SIMUlAtorcccceviiriiiiiierieceeee e 63

Specifying a simulated iNteITuPtcoceeveeeeierieriereneneneneeeeeeene 63

Setting an immediate breakpointc.ceceeveevverenenenienienieneneeeeeene 64
Simulating the interrupt ...

Executing the appliCationc.cecceeeevieieniinienenenenieneneneceeeeeenene

Using macros for interrupts and breakpoints

Creating and using libraries ... 69
Using libraries ... 69
Creating @ NEW PrOJECT ...cc.evverieriereenieenieerieereetesieesieenieesseeseeeesanens 70
Creating a library projectcoccoceverererreeeeierienieienreneneseeneseseene 70
Using the library in your application projectc.cceceeveveeveeeeneeneen 70
Part 3. Project management and building ... 73
The development environNMent ... 75
The IAR Embedded Workbench IDEccocenvnnnnee 75
The too] Chain ...
Running the IDE
EXIEINE ettt sttt
Customizing the environment ..., 77
Organizing the windows on the SCIeencccoceververereneeeneneennene 77
Customizing the IDEc.ccocoiiiiiiiiiiiieeceeeeseeeeeeeeeene 78
Invoking external toolScccevevvereriiieieierieneenenesee e 79
MaNAGING PrOJECESooooiieieiieeeeiieie e 81
The project model ..o
How projects are organized
Creating and managing WOrKSPaCEScccevvereereerieeneeneenieenieenens 83
Navigating project files ...

Viewing the WOTKSPACEcccceevuiruiririiiieieieiee e
Displaying browse information

Source code coNtrol ...

Interacting with source code control SyStemsc.ccocevererereeeneenees 88

IAR Embedded Workbench® IDE
User Guide

Contents °

BUITAING ..o 91
Building your application ... 91

SEttNG OPLIONS ...eeueiiniieiieieeiie ettt sttt et st seae e naeen 91

Building @ PrOJECTccvevvevueruieiieieieienienreeie ettt 93

Building multiple configurations in a batchcccccevenininincnennen. 93
Using pre- and post-build aCtionsccccceveereevenieriieneenieeneeneenees 94
Correcting errors found during buildc.ccceeeveninenninininninnene 94
Building from the command linecccceceeirieiienenincnenenenceeneee 95
Extending the tool chain ..., 95
Tools that can be added to the tool chainccccocevevenencncneeneneee 96

Adding an external tool

EAItiNg ..o 99
Using the IAR Embedded Workbench editor 99
Editing a fileoovueeiieieeieeieec e 99

Using and adding code templatescc.ccoeevevenenreneneneneenennennenne 103

Navigating in and between filesccooceverienienienieniieneneneneneee 105

Searchingccoccevvevienieneenicceeeeee ... 105
Customizing the editor environment 105
Using an external €ditoroceeeeieieieieieieniese e 106

Part 4. Debugging ... 109
The IAR C-SPY® Debugger ..., 111

Debugger CONCEPLS ...
C-SPY and target SYSLEMSccceoueuveruervenuenrinrenreerieieeerenenrenseneeneenne
DEDUZEZET ..ottt
Target SYSIEM ..c.eevuiiriiiieeiieieete ettt ettt sttt enae e
User appliCationc..coeverieriiieieieiinieientcereeie ettt
C-SPY Debugger systems ...
ROM-MONItOr PrOZIAMcovevieiiierierieiieiieiieteiesiestesiesiesveeeeseeneens
Third-party debUZZETSccccovevviruirrinirrieiiieiercesesese et

The C-SPY environment ...

An integrated enVIrONMENTc.ceeeueeuieieierienienienieneeneeeeseeseeeeneens

xi

Xii

Setting UP C-SPY ..o 114

Choosing a debug driVerc..ccocceevierienienienieiieeieetesee e 114
Executing from IeSEtc.ccoceveeeeieiinieniiniinrineeeeeee e 114
Using a setup macro filecoceeeeeeieieniinienineneneneeececeecene 115
Selecting a device description filec..coceoirviniiiniiniinieneeneene 115
Loading plugin modulesccccecevuerieniinininininenineneereeeeeeenne 116
Starting C-SPY
Executable files built outside of the IDEc..ccccocevvveiiiiininennens 117
Redirecting debugger output to a fileccceeeeeeieeneneninciiicnne. 117
Adapting C-SPY to target hardware ..., 117
Device description fileccoceevierienieniiniinieeeieeeeteseeeene 118
Remapping MemOTYc..cocceereeieieniiniinieniinreneereeeee e naeee 119
Executing your application ..., 121
Source and disassembly mode debugging 121
EXECULING ..o s 121
SEEP ettt et ettt st nae e 122
GO ettt ettt 123
RUN t0 CUSOT .eetiiiiiiiieiiieieterteteee ettt 124
Highlightingcooiiiiiiiiiii e 124
Using breakpoints t0 STOP ..ceeeveeeierienierenenienenienieeteeeeeseeseeseennens 124
Using the Break button to StOPceeeeeeeierienenieneneneeeeiesienieene 125
StOP At PrOZram EXIt ..ccveeeeerieriieriieniieieeieerte ettt et e eane 125
Call stack information ... 125
Terminal input and output ... 126
Working with variables and expressions ... 127
C-SPY eXPressions ..o
C SYMDOIS .ottt st
AsSemDbIEr SYMDOIScoveruieieiiiieieicieneeeeeceee e
MaACTO fUNCLIONS .uveuviiiieieieiieiieiiet ettt et et s
MaCIO Variablescoccoerereiieieieiiiieereereee ettt

Limitations on variable information

Effects of OPtiMIZationsceceeeeuieieieienienienene et

IAR Embedded Workbench® IDE
User Guide

Contents °

Viewing variables and expressions ... 130
Working with the WindOWSccccevviiriiiniiniinieeeieeesee e 130
Using the trace SYStEMccceevvereerierviruinrenriereeieeierereresnesresaeseeneenne 131
Viewing assembler variablescccccoeverienieninenieniienieneneneneens 132
Using breakpoints ... seeessseesseenenns 135
The breakpoint system ... 135
Defining breakpoints ... 135
Toggling a simple code breakpointcoccecevereeeenieneeniencncnennens 136
Setting a breakpoint in the Memory Windowc.ccccceevevevenenenne 137
Defining breakpoints using the dialog boXc..ccceceveniiiiiiieiennns 137
Defining breakpoints using SyStem mMacrosc...c.ceceeeeereervereeruennens 138
Viewing all breakpoints ...

Using the Breakpoint Usage dialog box

Monitoring memory and registers ... 143
Memory addressing ... 143
Windows for monitoring memory and registers 144

Using the Memory Windowcccccevereneneneneneeieeeeeneeseeneeneens 145
Using the Stack WINdOWc..cccoeviiniiniininininieieeeeciereesenenee 145
Working with registers
Using the C-SPY® mMacro SyStemccccoooooovoeemiessssssssssssssssssssssss 149
The Macro SYSteM ... 149
The Macro 1angUAZEcoceeveerieeierienierieeeeteeee et 150
The macro file ... 150
Setup MAaCro fUNCHONSeoverveeiiieiiiirieienteereeeeee ettt 151
Using C-SPY MACKOS ..o s 152
Using the Macro Configuration dialog boXccccceeevecienencncnene 152
Registering and executing using setup macros and setup files 153
Executing macros using Quick Watchcocceeveviiniiniiniiencenen. 154
Executing a macro by connecting it to a breakpointc.ccecceuene 155

xiii

Xiv

Analyzing your appliCation ... 157

Function-level profiling

Using the profilerccoceiieriiniinieeeeeeeee et
COdE COVEIAGE ...t
Using Code Coverage
Part 5. The C-SPY® Simulator ... 163
Simulator-specific debugging ... 165
The C-SPY Simulator introduction ..., 165
Features
Selecting the simulator driVerc..cccceceveirieneniinenrenineneereeeenne 165
Simulator-specific menus ... 166
SIMUlAtor MENU ..c..coueviiiiiiiiiiiieieicce e 166
Pipeline Trace WindOwc..ccccoevieriirinininenieeeicrereresenenenene 167
Memory Access Configurationceceeeeeeeevienienienenienenieneeeens 168
Memory access costs dialog BOXcoceevieriirnieriiiniieniienieneeeeene 169
Using the trace system in the simulator 170
Trace WINAOW ...ocveveiriieiieiieiieieieiee ettt ettt 170
Trace toolbar ..o 171
Function Trace Windowc..ccccecerveerieniiniineninineneneeeeeeeeeeeenne 172
Trace EXpressions WindoWccccceverereneneneneenienieniesieneeneennens 173
Find In Trace WIndOWccccueviiiiinininininiiinccicieieecrenicsiene 174
Find in Trace dialog DOXcccccceeviemiiniininininieieieeciccrcreneniee 174
Memory access checking ... 176
Memory Access setup dialog DOXcccceveeveenernieniieniienieniencenens 176
Edit Memory Access dialog DOXccccoevererireneenienieieienenenenene 179
Using breakpoints in the simulator ... 179
Data breakpointscoc.eeeeeiereenieiieiieeiesteeeeecee et 180
Immediate breakpointsccceeeverereneneneneneeeeteeeeeseseneeeeens 182
Breakpoint Usage dialog DOXcccceevereneneninineeieieieseseniene 184

IAR Embedded Workbench® IDE
User Guide

Contents °

SIMUIating INTEITUPLSooovirrriec e 185
The C-SPY interrupt simulation system ... 185
Interrupt CharacCteriStiCseviereereenieriieeierieeee st eane 186

Interrupt Simulation SLatesccceecvevverrerererieneneneeeeeeeeeerennenes 187

Using the interrupt simulation system ... 188
Target-adapting the interrupt simulation systemc.cccceevevuenene 189

Interrupt Setup dialog BOXcoevvevrirerireneiiiiririeccecceeenen 189

Edit Interrupt dialog box

Forced interrupt window

C-SPY system macros fOr interruptsccoceeeevvevvervenenenenereeeenn 192
Interrupt LOg WindOWccecvuiviiriiniiniiniininiieieeceeetetetete e 194
Simulating a simple interrupt ... 195
Part 6. C-SPY hardware debugger systems ...197
Introduction to C-SPY® hardware debugger systems 199
The IAR C-SPY hardware debugger systems 199
Differences between the C-SPY drivers
Getting started ...
The IAR C-SPY Angel debug monitor driver 201
The IAR C-SPY GDB Server driver ..., 203
Configuring the OpenOCD Servercoceoeeveevieneneneneneneeeeeenns 204
The IAR C-SPY ROM-monitor drivercccooovrenennn. 204
The IAR C-SPY)-Link/J-Trace driversccccovvvnnnnnnnnn. 205
Installing the J-Link USB driverc..ccccecuevierenenenenenicieneniene 206
The IAR C-SPY LMI FTDI driver ... 207
Installing the FTDI USB driverc.ccocevevenenininieneninieieeenee 208
The IAR C-SPY Macraigor driver ..., 208
The IAR C-SPY RDI driver ... 209
An overview of the debugger startup ... 211

Debugging code in flash
Debugging code in RAM

XV

xvi

IAR Embedded Workbench® IDE
User Guide

Hardware-specific debugging ..., 213

C-SPY options for debugging using hardware systems 213
Download ... 215
Debugging using the Angel debug monitor driver 216
ANZEL o 216
Debugging using the IAR C-SPY GDB Server driver 217
GDB SEIVETooiiiiiiiiiiiiiicicetec e 218
The GDB Server Menucccooceeruiieincenenecneeeeeeeeeee e 218
Debugging using the IAR C-SPY ROM-monitor driver 219
TAR ROM-MONItOLo.oouiiiiiiiiiiiiiiiciecicccceecceee e 219
Debugging using the IAR C-SPY J-Link/}-Trace driver 220
SEUUP ettt sttt ettt 221
CONNECHIONoviiiiiiiiiiiici e 224
The J-Link MeNUccccoviiiiiiiiiiiiciceeeeee e 225
SWO Setup dialog DOX ..cccveevierviirierienieenierieee ettt eaee 226
Live watch and use of DCCcccocoiiiniiiniiiiiicccce 228

Debugging using the IAR C-SPY Macraigor driver 230
Macraigor

RDI Lo
RDI menu
Debugging using third-party drivers ... 236
Third-Party DITVETcocueviiniiniiiiiceiececeeeeeeete e 236
Using the trace system in hardware debugger systems 237

Trace Setup dialog box

Trace Save dialog box
Trace window

Trace toolbar

Contents °

Using breakpoints in the hardware debugger systems 243
Available number of breakpointscccceeveevieneenieniieniienieneenene 243
Breakpoints OPLIONScceevverierierierenenenenteeeiteeeteeeeesresresnesreenes 243
Code breakpoints dialog DOXccceveeeeerinrenenieieieieieserenenenee 245
Data breakpoints dialog DOXccceeverviirieriienienienienenee e 246
Data Log breakpoints dialog BoXc..ccccocevereriinienienenicnencnenncne. 248
Breakpoint Usage dialog box
Breakpoints 0N VECLOTScoeeriierieerierieniienienieeieenieeeesee e sieenieens 250
Setting breakpoints in __ramfunc declared functionsc..c..c...... 251

Using JTAG watchpoints ... 251
The Watchpoint mechanisSmccccoeceeviereeninnenienieseeneeneenene 252
JTAG watchpoints dialog bOXccecvevierienininienienenineceeeeieens 252

Using flash loaders ... 255

The flash loader ...
Setting up the flash 10ader(s)c..cocevevierinenininieeeeee e
The flash loading mechaniSmcccceeveeviniieniinienieneeeeeeene
Build considerationscccoeoeruioerinieeniieeenee e
Flash Loader Overview dialog DOXccccoceverieiiiiniienienienienienienene

Flash Loader Configuration dialog box ...

Part 7. Reference information ... 261
IAR Embedded Workbench® IDE referencecco......... 263
WINAOWS ..ot 263

IAR Embedded Workbench IDE windowc..cccceceverenenneenecnnene 264

WOrKSpace WidOWcceceeierienienieniinienieniesieeeeieee ettt 266

Editor WINAOWco.eiiiiiiiiiiiiiiitcietcereercerceeeeeeeeetene e 274

Source Browser WindoWc..coeeererineninininieieietetesieseneenienee 280

Breakpoints Windowcocecevieiinininieninneeeeeteee e 282

Build window ... 288

Find in Files WIndOWcccccceviivinininininineneneeecteeeecseeseeieeene 288

Tool Output WindOWc.covevrierieiirieieieeeiriceeeeeeeeee e 289

Debug Log WINAOWccocveviiniiniininininineicecceecteeeeeeere e 290

xvii

Project MenUccccoeciiviiniiniinieeieeieeteeee et

TOOIS MENU ...ttt
Common fonts options

Key Bindings options

Language OPLONScccceeeeeuerienuenieniinriereereereeieeeerereerenesressesaesaenne
Editor OPHONS ..c..eiiiiiiiiiniieiieieeieeeeeeteteee et
Configure Auto Indent dialog bOXccoceeveevieriieriieniienieniereeeee 319
External Editor OPtioNScocceceeieierienieniiniininieieeeieeerereneenaenne 320
Editor Setup Files Optionsc.ceceeveeievierienienenenienineeeeeeneeieeene 322
Editor Colors and FOnts Optionsceceeeeerierieneeneenenniennieninenne 323
MESSAZES OPLIONS ..cevervirrerieriiriieieenienteterenreereere et eeereenesaesnessesaeseenae 324
Project OPLIONSccevviruieiriieieieieicetenenene ettt 326
Source Code Control OPtIONScceevveerveerierierierienieneeneereeenieenne 327
Debugger options

StaCK OPLIONS ...ouviiiiiiiiiiieieetetetee ettt s
Register Filter OPtionsScccccecerierienienienieeiceeete et
Terminal I/O OPtioNScccovevueeirieiiieiiiiieenene ettt
Configure Tools dialog BOXccccevereririiinieiinieireseeeeeeeeeenee
Filename Extensions dialog boXccccoveervienieneenenienieenieneenene

Filename Extension Overrides dialog box
Edit Filename Extensions dialog bOXc.ccocevverererieneninnienienienene
Configure Viewers dialog DOXccceveviveririienieieeseeeeeeeeeenns
Edit Viewer Extensions dialog boXccceceveeeevinieniiecienicncnicnenne

Window menu

C-SPY® FEfEIr@NCE ..o eee e 343
C-SPY WINAOWS ...ttt 343
Editing in C-SPY WINAOWScccoeiieiieiiniinieniineneneeteteteie e 344

IAR Embedded Workbench® IDE
xviii User Guide

Contents °

C-SPY Debugger main window

Disassembly WINAOWc.cooceirieriiiiiiniinienceeeieceeesee e
MemoOry WINAOWccceeeeieiiniiniiniiniinrierinriereeieeeeeererenesressesaesaenee
Fill dialog DOX ..eveevieiieiieiieiieiceeceesenee ettt
Memory Save dialog BOXccccevieeviiriiriiinienieeeeeieeete e
Memory Restore dialog BOXccceevveieriiniiniinininieieieieicenenenne
Symbolic Memory window
RegiSter WINAOWcc.eiviiiniiiiiiieeieeieeteescese et
Watch WINAOWooveeviiiiiiiiiiiiicicrnee et
Locals WINAOWocuevuieieiiieieieicicniceneee ettt
AULO WINAOW .ottt
Live Watch WindOWc..cccouiviininiininininieieeeeeeecreresresese e
Quick Watch WindOWcoouiieiiiiiiiiieiieeee e
Statics WINAOW ...cc.ovuiiiiiiiiiiiiiiiiiiiciececeec e e
Select Statics dialog DOXc.covveveriiniiniinininieieiccceeenenenee
Call Stack WINAOW ...cc.eeuieiiiiiiiiiiniieieeetteeeeete ettt
Terminal I/O WINAOWcccoceviiiiiiiiiiiniiiiniiiccccicccese
Code Coverage window ...
Profiling Windowccoceieiiiiiiieiniseeeeeeeeeetee e
Stack WINAOW ..c.ooviiiiiiiiiiiiiiiiiiiicc e e
Symbols WINAOWc.cccueuiiiiiiiiiiiiniiniieriertereeeeeeeeeerere e
C-SPY MENUS ... s
DebUg MENUoouviiiiiiiiiieiieeeeee ettt

Disassembly menu

General OPLIONS ... 379
TAPZEL ..ot 379
Processor Variantccceeeceeieiesienienieneneseseee ettt 379

Endian modecccccieiiiiiniiiiiiiicice e 380

FPU ottt ettt 380

OULPUL ..o 381

OULPUL Il .ot 381

OULPUL AITECLOTIES ..vvenvinveierierienieriieeeteee ettt sbe et eene 381

Xix

XX

Library Configuration ... 382

LIDTATY oottt st st 382

Configuration fileccccoceveririniniiiiieiccceee e 382

Library low-level interface implementationc..c.cceceeveeeeneeeennene 383
Library OPtions ...t

Printf fOrmMattercccveiiiiieiiie e

Scanf formatter ...

Buffered terminal OUtputccccoveeviieiiiiiiiiirieeeeeeseeeeeee 384

MISRA C ettt 385

COoMPIlEr OPLIONS ... 387

Multi-file compilation ... 387
LangUAZE ..o s

Language

REqUITE PrOtOLYPES .uveuveveeiriieiieiieiieiieieietete ettt

Language conformance

Plain 'Char' 1S ..ooceieciiiiiiiecieeeeece e e

Generate interwork code
Processor MOAEc.ooocuvieiiiieiiecie et e
OPtiMIZAtioNs ..o

OPUMIZALIONS ..eeentieniieieeie ittt ettt ee ettt e st e saeesbeesseenaeenee

OUtpUt LSt fIle .vveieieiiieneieeecee e
Output assembler filecoccoevirieriiiniinieeceeeeee
PreprocCessOr ...
Ignore standard include directories ...
Additional include dir€CtOriesccceeirieievecienienenieneneneeieeens

Preinclude filecooooviiiiiieiiece e

Defined SYMDOLScueiveriiriiiieiieieieeieeee ettt

IAR Embedded Workbench® IDE
User Guide

Contents °

Preprocessor output to file ...396
Diagnostics ... 396
Enable remarksc..cocevireiiiiiiiiiii e 397
Suppress these diagnoStiCscouevvereereererirenieieieteiee e 397

Treat these as 1emMarkscccceevevenininininiiinccieccccee 397

Treat these as Warningscccceceeceeveevierienenienienieneeeeteeeneenreneensennens 398

Treat these as errors ...398

Treat all Warnings as €ITOrScccuervereerieereerierseenrenreseeseeseenieens 398
MISRA € ettt 398
Extra OPtions ..o s 399
Use command lin€ OPtiONScccueveeriereenieeneenieenieerenieseenieeneenieens 399
Assembler OPLiONS ... 401
Lang@uUage ... 401
User symbols are case SENSitiveccceeeverererereeiieneenenenenennens 401
Enable multibyte SUPPOIT ...c.cceeueeuieieieieieienienie et 401

Macro qUOte CharaCterscceceeverierienieeneerieeieete et 402

Allow alternative register names, mnemonics and operands 402
OULPUL ..o 403
Generate debug information403

LSt s 404
Include headerccooiiiiiiiiiiieeeeeeeeet e 404
INCIude LISHNE ..ovveiieiieiiiieeeee et 404
Include Cross-Teferenceoceeeeeeieieieienienieneneneeeeeeeeeeens 405
Lines/page ...405

Tab SPACINGvevuiiiiiiiiiieeeee ettt st 405
PreprocCesSOr ... s 405
Ignore standard include dir€Ctoriescoceeververeenienieneenienienieniennens 406
Additional include dir€Ctoriesccceveevvevievieriereninienenieieienens 406
Defined SYMDOIScovevueriiririeiieiieieiceeeeseneeeeteeee e 406
DiIagnostiCs ..o s 407
Max number Of €ITOTSccceoviviririiieiiicieeee e 407

Extra OPtioNs ..o s 408
Use command ling Optionsceccevuevuerienenenenenenieeeneenieseeneenaens 408

XXi

xXii

OULPUL ..o 409

Promable output fOrmatcocceeveriinieniiniieeeee e 409

OULPUL FIIE oottt 409

Custom build OPLiONS ... 411

Custom Tool Configuration ... 411

Build actions OPLioNs ... 413

Build Actions Configuration ... 413

Pre-build command lNeccceceeieieieniinieiinineneneeeeeeeene 413

Post-build command lineccccooiiiiiiiinii 413

LIiNKEr OPLIONS ... 415
CONFIG ...

Linker configuration file

Configuration file symbol definitionscc.cccevereneneneneneennene. 416

Generate linker map filecoccoceeieniinininininineceneee 420

GENETALE 10T .ooviiiiiriirieeeeieeteteet ettt
HAEfiNe ..o

Defined symbols
DiIagnostiCs ...

Enable remarksc.ccoovviiiiiiiiiiiiiiece e

IAR Embedded Workbench® IDE
User Guide

Contents °

Suppress these diagnostics

Treat these as remarksccccooiiiiiiiiiiii
Treat these as Warningscocceceeeeeveevuerienenienenieneeeeeeeeneenseseensennens
Treat these as EITOIS c.c.eveueueueueueieieieieiereteeeeeteteeee et
Treat all Warnings as €ITOrScccuevvereerieerieerierreeerenreseesieesieenaeens 423
CheckSUM ...
Fill unused code memory ...
EXxtra OPLtioNns ..ot
Use command line OPLONSceeeveveruenuenrinriniereeieeerenerereneeneenne
Library builder options ... 427
OULPUL ..o 427
Debugger OPLIONS ... 429
SEEUP oottt 429
DIIIVET ettt et 429
RUN O oo 430
SELUP MACTOS eevveiiriieiieiieeeiientetetestesteere bttt ettt et eare st saesaeseeseenee 430
Device description filecccecevieiereninieneneecceeeee e 430
Download ... 431
Extra OPLtionsc..cocoiiiiiiiiiiecc e 431
Use command ling Optionseccecuevverierenenenenenieieeeieneenienaens 431
PIUSINS ..ot 431
The C-SPY Command Line Utility—cspybat ..., 433
Using C-SPY in batch mode ..., 433
INVOCAtION SYNEAX ...cooiuiiiiiiiiiiciecrcee s 433
OULPUL ..o 434
Using an automatically generated batch fileccccoceeevcncninenne 434
C-SPY command line options ... 434
Descriptions of C-SPY command line options 438
C-SPY® macros reference ... 459
The macro language ... 459
MacCro fUNCHONSouiiiiiiiiiciieieeece e 459

xxXiii

MaACTO STALEMENLS ...uveenvieiiieiiiiiieeiiet et enne
Formatted OULPULcc.ooveriereiiieieiieicicieecenereeeete et
Setup macro functions sUMMAry ...
C-SPY system macros SUMMANYccccoceviirienrineenenrnnenns

Description of C-SPY system macros

IAR Embedded Workbench® IDE
xxiv User Guide

Tables

1: Typographic conventions used in this gUIdec.ccoeverireneneneneninneeieneee xlii
2: Naming conventions used in this gUIdec..ccceevieiierieiienininineeeeeeee xliii
35 FIIE LYPES ettt ettt s 22
4: General settings fOr PrOJECt]coviviririeieieieienesereneeeee ettt 33
5: Compiler options fOr ProjECt]lccceoverereririinieieienienene ettt 34
6: Compiler options fOr PrOJEC2coceviriireririiieieienieeeeeee et 52
7: Project options for Embedded C++ tutorialccccoceevvevenienenenencninieecnieneneene 56
8: INterrupts dialog DOX ...c.ecverieriereriiniieteitetetete ettt sttt s 63
9: Breakpoints dialog DOXccocveviiiiiiiiiniiniincnenneneectceee e 65
10: General options for a library project 70
11: Command Shells ... 80
12: iarbuild.exe command lin€ OPLiONScccouevueriiriirenininieieieieererere e 95
13: C-SPY assembler Symbols €Xpressionsc..ceceverererrereeeeneeneenienseneneneeeenns 128
14: Handling name conflicts between hardware registers and assembler labels 128
15: Project options for enabling profilingcccccceeveninnininnenencnincncnenee

16: Project options for enabling code coverage

17: Description of Simulator menu commandsc..ccocvereereeneeneeneeneenieeneeennens 166
18: Pipeline window informationc..c..ceccecevervienienienienenineneneeeeeeeeeeeeenenne 168
19: Trace Window COIUMNSccoouiiiiiiiiiiiiiiiicc e 170
20: Trace toolbar cOMMANASccooviiiiiiiiiiiiiiiii s 171
21: Toolbar buttons in the Trace Expressions Windowccccecevevvercnireneenenes 173
22: Function buttons in the Memory Access Setup dialog boxcc.ccceeveerennennnne. 178
23: MEMOTY ACCESS LYPES ..eeuverurirteriieriterieenieenieenteenteeteesesarestesisesseesesesseenseenseensens

24: Breakpoint CONAItIONSc.ccovererierieniintininiirteteeeeeteretesresre e sre e eie e e

25: MEMOTY ACCESS LYPES -veuververueruerrieneeriertentertertessesseeseemtetestensessessessessessesseessensenee

26: INLEITUPE SLALUSES ..eevveruvieurerireniieriienttenieeteeteeteetesaaesatesaeenbeesteenbe e seesesnsesanesneens

27: Characteristics of a forced interrupt

28: Description of the Interrupt Log WindOwccoceevvevievieniinenencncnenieeeeeene 194
29: TIimer iNteITUPL SELHNZS uverveereerireriteriienieenieerteerteeteete st et e st esteesbeesseeeeenbeensens 196
30: Differences between available C-SPY driversc..ccccoceeeeveninineninenceccienenne 200
31: Available quickstart reference informationcocevcevererreeveenenencnenenenne. 200

XXV

XXVi

IAR Embedded Workbench® IDE
User Guide

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

Commands on the GDB Server menuc..cocvcevevereneeienienieneneneneneeenes 219
Commands on the J-Link Menuccccocveniniiiiiiiiiiniiiiiiicceeeeeeen 225
Commands on the RDIMENUcc.cceeenininininininiiiicicccseeeeeee e 230
Commands on the JTAG MENUcccoererenerireneeieeeeeeeee e 233
CatChing EXCEPLIONSevvveruieriieiierieenteesieeie ettt ettt et e bt e see e esbesnestesaee e 235
Commands on the RDIMENUccceoininininininiiiiieciccceeeeeeee e 236

Trace window columns

Trace window columns when using SWOc.ccooiviiiriiiiieniinieneceeceeeeee 241
Trace toolbar COMMANASccceoueuiriiriiniinrieierietee ettt eeneene 242
Breakpoint CONAItIONScc.covererereriererereeteteteteeeteeeee e 246
MEMOTY ACCESS LYPES +euvvevreireuienieenieenieeieetestestesitesatesstesseesseenseesessesssessenas 247
Daata ACCESS LYPES .verveverrerueeiieietetententestesteeteeie ettt et etesaesaesaesae et ebe bt et eneennes 253
CPU IMOAES ...ttt sttt ettt st 254
Break cOnditionscc.cceeienenieniiiininiiictetcteeee e 254

Function buttons in the Flash Loader Overview dialog box

IDE MENU DAT ..ot
Workspace window context menu commandscoceerveereeenieneenienieenieenieenne
Description of source code control commandscecceveeeeeeeieneneneneneenens
Description of source code CONtrol SLAESccererererereerierienienieneneseeeenes
Description of commands on the editor window context menuc..c.cccce..... 276
Editor keyboard commands for insertion point navigationc.cecceeeecveunenne. 278
Editor keyboard commands for SCrollingc.cccceveeveenieineinineiencinenenens 279
Editor keyboard commands for Selecting teXtcccevvverierieneeneenernieniienaene 279

Information in Source Browser window

Source Browser window context menu commandsc.cceceeerereeeeeeeeneenne 281
Breakpoints window context menu commandsc.cceecverierieneenienneenieninenns 283
Breakpoint CONAItIONScceeveeieiriniiririnieiictcteteseste et 285
Log breakpoint CONAItIONSccereriererirerieieieteniesteseeieeteeie ettt 286
LLOCALION LYPES .vvviriieiiiiientieieeie ettt sttt et sttt et e s e st et eabeeatesarenaee

File menu commandsccccoeevuiiiiiieiiieeie et
Edit menu commandsooouiiiiiiiiiiiiie et

Find dialog box options

Replace dialog DOX OPLIONScccuevverieriererieneniirtieeteteeeterereere e 298

Incremental Search function bUttonscccceeeiiieeiiieeiieecieeeeeeee e 301

Tables 4

68: Argument Variablescccoocviiiinininini e 306
69: Configurations for project dialog boX OPHONScccecvevvevverenenenenenireeeeene 307
70: New Configuration dialog boX OPONScccerrvirieriieniinieneereeeeeeee e 308
71: Description of Create New Project dialog bOXcccceeveeviverieciencnencnicnencns 309
72: Project option categories

73: Description of the Batch Build dialog boXcccccoceviiniininniiiiniccienceeeene 311
74: Description of the Edit Batch Build dialog boXcccceccoeveninininncninccnnns 312
75: Tools menu commANdScccouceeireeirieiiiicieeree e 313
76: Project IDE OPHONS ...ocveriiiiiiriieieeieeierteeitesit ettt ettt e 326
T7: Register FIIer OPtIONSccevuiviiriiririiieiiiciieeteeeeie ettt 332
78: Configure Tools dialog bOX OPHIONScc.ccveererirrerrerinirieiieieieesese e 334
79: Command ShellSc.coiviiiiiiiiiiiiiiiiiceee e

80: Window menu COMMANASccceeceeieieninineninineeieteteesresrese e

81: Editing in C-SPY WINAOWSccueriiririiriiniinirieieteteteteteeeer e

821 C-SPY IMEIU ..ouiiiiiiiiiiiiicitcctest ettt s

83: Disassembly window toolbar

84: Disassembly context menu cOmMmMAandsccccevererereeeerienienenesenreeeeeeeenes 347
85: Memory WindOW OPETAtIONScecververiierienieenieenieenieerieeteetesiresieeseeesieesseenseens 349
86: Commands on the memory window CONtEXt MENUcceevverrerrererererernenens 350
87: Fill dialog DOX OPHONSeeuiriieieieieieriesieste ettt ettt 351
88: MemoOry fill OPEIatioNSccecceevivuerieieieieienierierie sttt ettt ettt b enes 352

89: Symbolic Memory window toolbar

90: Symbolic memory window columns

91: Commands on the Symbolic Memory window context menuc..c.cceeeueee 355
92: Watch window context menu commandscccccceevveinieiniiniiininiieieeeenans 357
93: Effects of display format setting on different types of expressions 358
94: Symbolic memory window columns

95: Statics window context menu commandsccoceeeiniiiiiiiiniinn 362
96: Profiling Window COIUMNScccoueiriirieiinieiniiieereteeeeeeee e e 368
97: Stack WindOw COIUMNSccocviiiiiiiiiiiiiiiic e 370
98: Symbols WINdOW COIUMNScceevuiriiriiriniiniiniieieietetctctete et 372
99: Commands on the Symbols window context Mmenuccecceecerverruereeennennnn 373

xxvii

xxviii

IAR Embedded Workbench® IDE
User Guide

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:

Debug menu commandscoevererueririneeieieieeeee e 373
L0g file OPLIONSooiiiiiiiiiiiieeitet ettt st 377
Description of Disassembly menu commandsc.ccoccevevevenenenreneneenenne. 378
Assembler list file OPLIONScovevueriirirererieeeieeeeeee e 404
Linker checksum algorithmsc..coceeverieniinieniieneeeceeeeeceeeeee 424
C-SPY driver OPLIONScovevueeuieieiinientinieniesieetteeeeieeeeen ettt sre b sne v eae 430
cspybat parameters

Examples of C-SPY macro variablesccccceveriiriienieneinenneeienieseenee 460
C-SPY SELUP MACIOS ...eeeuveuiiiiieienienierienieniteiteitetentete et sre v st et enennes 464
Summary of SYSLEIM MACTOS ...c.evververuerierieniieieiteiteteteneente s eseeeeseeeennes 465
__cancellnterrupt return ValUESscoceevierierieeneenienie st 467
__disableInterrupts return ValUesc..cecceveeeeieieieneneneneneneneneeeeeennens 468
__driverType return ValUEScoceeeviriereririeieieieteteseetereeie e
__emulatorSpeed return VAIUEScoceevierieriiniieiieniesteeeeieeseee e
__enablelnterrupts return values

__evaluate Teturn VAIUESccecovveeeiuiieiiie i eeteeeie e et eiee et e e et eveeeeveeeane e

__hwReSet return VAlUESc.ccccviieiiiieiiieeriiiecieeeie ettt eaee v

__hwReset return Valuescccveieiiiieiiiiiiiieeieeeieeete et

__openFile return VAIUEScccoceiirirenieieteeeieetetet et

__0openFile return VAlUESccccoocuerierienienieieeieeieete et 478
__readFile 1eturn ValUesccccoeeereniiininineiieierctenenese et 480
__setCodeBreak return VAIUEScccueeiiveieiiiiiiiieeieieee e eeaaee e 484
__setDataBreak return valuesccccocevviniiiiiiiiiiiiieneneneneneneseeeeeens 485

__setSimBreak return values

__SourcePosition return VAIUESccceeiiveiuviiiiiiiieeieiieee et e e 487

Figures

1: DITECIOTY SIIUCLUIE ...cuvevirierinierientieiieiteitetetentestesbesbesbee st e st este et e et essenteseesbesaeene 19
2: Create New Project dialog DOXccceoiiiirieniiniininininieeeeetete e 30
3: WOrkSpace WINAOWcc.cccevieriiririiriiiiiitcicienteteteereete ettt et se e e ene 30
4: New Workspace dialog DOXccevuerierienininenieninenenteeeteteseesee e 31
5: Adding files t0 PrOJECELcouiviiriririeiieiietetetet ettt s 32
6: Setting eneral OPLIONScoevererereriiieteietenterere ettt ettt eer s e s esteseesaesaeene 33
7: Setting COMPILET OPLIONSevirviriiriieiieiieieieeteteete ettt ettt 34
8: ComPilation MESSAZEccververuerieriiriieiieiieieieie ettt ettt ettt et et b e beseesbesbe e 35
9: Workspace window after compilationccccecevevenienieneneeieienicneneneneeeenens 36
10: Setting the option Scan for Changed Files ... 37
11: Linker options dialog box for project]lcccceevervierierieneenieenenieeienieseeseeae 38
12: The C-SPY Debugger main WindOWcccceveeeeirieieienieneneneneneneneneneene 42
13: Stepping i C-SPY ..ottt st 43
14: Using Step Into in C-SPY ..ooiiiiiiiie et 43
15: Inspecting variables in the Auto window

16: Watching variables in the Watch window ...

17: Setting BreakpOintscc.eereeiierieriereenieertee ettt ettt st ee e saee i
18: Debugging in disassembly MOdEcccceveririeiriiiiniiieienenenenenesesesenene 47
19: MONItOTING METNOTY ..cuveuviriruerrerterieeiteitetetentestestessessesseeseesteeessestensessessessessessenne 47
20: Displaying memory contents as 16-bit UNILSccceceerieriereeneereenenreenieeneennne 48
21: Output from the I/O OPErationsc.ccoceeeririeieienienenenieeeeeeeeereresresrenienee 49
22: Reaching program exXit in C-SPYcccooiiiiiiiniiniiiniieeeececeneneee 49
23: Assembler settings for creating a list filecccevvevinirieiniieieieeeeseeeee 53
24: Project2 output in terminal I/O WindOWcccceceririririiiniiniiniincnencnenenenene 54
25: Setting a breakpoint in CPPtUtOT.CPP .c.vevvevirviniiniriieinietcceiei e 56
26: Inspecting the function Callsccceceeierierierieniinieececeeee e 57
27: Printing Fibonacci sequences .. 58
28: Specifying Setup mMacro fileccoceeveeiriieniiniiniinieeeeteeeee e 62
29: Inspecting the INteITUPL SELNZS ..eoveeverrerieriienieerieenieerie et ete st esiee e e eneeereeaees 64
30: ReISIEr WINAOW ..c.evuiriiriiiiiiiiiitiietcicieeteeteete ettt ettt ettt et sre e sae s eneene 66
31: Printing the Fibonacci values in the Terminal I/O windowc..c.cceccveverenneee 67

XXix

XXX

IAR Embedded Workbench® IDE
User Guide

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

IAR Embedded Workbench IDE window

Configure Tools dialog DBOXccceeviiriiiniiiriinieciereeeereeeete et
Customized TOOLIS MENUcoeeiiiiriiniiiiririener ettt 80
Examples of workspaces and Projectsce.ceceecueeereerierienieneseneeeeeeienenenienee 82
Displaying a project in the Workspace Windowcc..cecceevveriienienennennenniennen. 86
Workspace WindOW—an OVEIVIEWc.cccueuerierienieniiniiniierieeeeeteneesnennesnesiensenne 87
General options

Editor window

Parentheses matching in editor WindOWcc.coceveninenininineneneneeeeeeenne 103
Editor window Status Darc.cceiiiiiiiiiiiiecieee e 103
Editor window code template MENUo.ccevuerieriiinienienieneeieeeete e 104
Specifying external command line editorc.ccocevvevvereeienieneneninenenenee 106
External editor DDE SEtHNESc.coevverierererenieieieienteseenreeteeieee et 107
C-SPY and target SYSIEIMNSccveerueerueriierieriieniienieeieereesreeeesisesteesseesbeenaesnenane 112
C-SPY highlighting source 10Cationcccecvevverenenenenineeneeienienenenenenes 124
Viewing assembler variables in the Watch windowcc.cccceceeeeineniniennnn. 133
Breakpoint 1CONS ...cc.viviiriiiieieeieeeeteste ettt sttt et 136
Breakpoint Usage dialog box

Z0NES I C-SPY .ooiiiiiiiieee e ettt
MEMOTY WINAOW ...ttt ettt st sttt et et ettt s sieesieenee
StaCK WINAOW ..oceeiiiiiiiciie ettt et e e et e e e saneesaseeenneeas

REGISIET WINAOWeiuiiiiiieiiiiesierie sttt sttt

Register FIlter PAZEcceoviiiriiiiiiieeteeeteeeee et
Macro Configuration dialog box
Quick WatCh WINAOWc.coovieiiiiiieiiciecieceete et ae e

Profiling WiNAOWc..cooiiiiiiiiiiiiieeieteeete ettt

Graphs in Profiling Windowccceoiviienininininiccccceeeese e
Function details WINAOWcccoooiuiiiiiiiiieceiec ettt e

Code Coverage window ...

SIMUIALOT TNEIIU ..evvitiiiiieiieictcterer ettt ettt
Pipeline Trace WinAOWcocevuerererenenenenteteeete et
Memory Access Configuration Windowc.cceceevieriienienienieneeneeneeieniene 168
Memory access costs dialog DOXceceeeeieieieiienenenineneneneseeeee e 169
TTACE WINAOW ..ottt be bttt 170

66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
T7:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

Figures __o

Trace toolbar

Function Trace WindOWc..ccccoeviviiiiiiiiiiiicieiceicieeeeeeee e 172
Trace EXpressions WindOWc..c.ccocevereriiinieienienieieteenreereeeeieeieee e 173
Find In Trace WindOWc.ccoceveriririnininieteeteeee e 174
Find in Trace dialog BOXccceevieriiiiiiieniieieiee et 175
Memory Access Setup dialog DOXccceceeveieieiiiiienenincneneneneeeeeeeeee 177
Edit Memory Access dialog box
Data breakpoints dialog DOXcc.eeveerierienieniiinieeiieieeieste et

Immediate breakpoints PAZEcccceeveriririreriiieieictenere e

Breakpoint Usage dialog DOXc..cocevererererieierieieienieseneeeeieeieeie e
Simulated interrupt CONfigUIatioNcoceervierierierienienierte e
Simulation states - eXample 1ccoceviriirenienininneeeeeeee e
Simulation states - eXample 2cceveereririnininene e
Interrupt Setup dialog DOX ...cccueiiiriiiiiiieniiesieeeete ettt
Edit Interrupt dialog DOXcoceeieiriiiiiiiiiiiciccenccsee e
Forced INterrupt WindOowc.ccocevererireiienieieteieseteeesteeresie e
Interrupt Log WINAOWcoooiiiiiiiiiiiiieiieieeteee ettt
C-SPY Angel debug monitor communication overview
C-SPY GDB Server communication OVEIVIEWcoceververeeeereeneenueniessenennes
C-SPY ROM-monitor communication OVEIVIEWcccceererereeeeeeuenenuennes
C-SPY J-Link communication OVEIVIEWc..ccceeveeveruenuenrenrineneeeeeenennennenne
C-SPY Macraigor communication OVEIVIEWccecevcereeeereeneenuenueneneneneenns
C-SPY RDI communication OVEIVIEWcccceererieruirteieienieniiniesieeeneensennenne
Debugger startup when debugging code in flash ...
Debugger startup when debugging code in RAMccccocovinininininininiene
C-SPY DowWnload OPtIONS ...c..eecueeieriinienienite sttt ettt sae e
C-SPY ANZEL OPLONS ...ouviviiieiieiieiieireiententenie sttt ettt et s
GDB SEIVET OPHOMNSviuviviiietietieiieiieiteteste et ste st sttt ettt be st besbe b eaeeaes
The GDB Server menu
IAR C-SPY ROM-mONitOr OPLIONScceevueuvevenuinrinieniiriieeeientenienseneesseeseeneenees
C-SPY J-Link/J-Trace Setup OPtiONSccceeereerereeienienieieniinienieereeieeeeeseeenes
C-SPY J-Link/J-Trace Connection OPONScecceeeerierieenreenerrueneenneneeneenne
The J-LIinK MENU ..c.coiririiriiiiriiicicictcecteeeereee ettt
SWO Setup dialog DOX ...coueeviriiiiiieieieiesieeteeteeiei ettt ettt

XXXi

XXXii

IAR Embedded Workbench® IDE
User Guide

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124
125:
126:
127:
128:
129:
130:
131:
132:
133:

C-SPY LMI FTDI Setup options

The LMI FTDI MENUoouiiiiiiiiiiiiiiieiiieiestetciteeeeeteeiee e
C-SPY MacraiZor OPtIONScceverueruiruinririeeieeetentetetentesresresresreeseeneeneenenne

The Macraigor JTAG MENUccooueriiririininieieeeeeeeeeeeeeere e
C-SPY RDI OPHONS ..coviiuiiiiiiniiniieniieitenieeieeeete sttt ettt

The RDIMENU «..overiiiiiiiiiiiiiictineeeeeeteieeee e
C-SPY Third-Party Driver Optionsc.ccecceereeieirenienienienieneneneesesieeeeneen 237
Trace Setup dialog DOXeooveriiriiiriiiriiiieeteeeee ettt 238
Trace Save dialog DOXccceoviriirininininiirireeeeeeeceee e 240
ETM Trace VIEW WINAOWc..coeririririenirinieieietetentesieseesiesresiesneeieeie e 240
Trace tOOIDATcoiiiiiiiiiiiiiiiiite e 242
Breakpoints OPLIONScouevueruiruiriiniiniierieieeie ettt ettt eeeneens 244
Code DreakpOoints PAZEcecvevereeriertiriiriinienieeeeieeieetetete et sbe s sie s ne 245
Data breakpoints dialog DOXccceeeeeriiinienierniieiienieeteseee e 247
Data Log breakpoints dialog BOXccccoveeveeieiiienienienenininenieeeeceeeeeaen 249
Breakpoint Usage dialog DOXccccoeverererenieieieieieeesiesesieeieeie e

The Vector Catch dialog DOXcccevieriiinienieiiiiierieeteseeeereee e
JTAG Watchpoints dialog box

Flash Loader Overview dialog DOXcccceveriririienieieieiesieseeieeieeieeieee e 257
Flash Loader Configuration dialog bOXc..cceccevieriienieneenennienienieneeneee 258
IAR Embedded Workbench IDE Windowc.ccccccvveveviiniininneniencnicneeeene 264
IDE tOOIDAL ...ttt 265
TIAR Embedded Workbench IDE window status barcccceceeveeeevenennenn. 266
Workspace window

Workspace WindOow CONLEXt MENUocververueruerrerieenienieieieteneestestesreeresieeaeens 268
Source Code Control MENUcceeevieririririeieieieieiereeeee e 269
Select Source Code Control Provider dialog boXc.ccccevvevevininenicncnnennee 271
Check In Files dialog box

Check Out File dialog box

Editor WINAOW ..c..ooviiiiiiiiiiiiienenenencretetet ettt
Editor window tab CONtEXt MENUecuerveruerierieieieieieieesieste et ebe e 275
Editor window CONEXt MENUooueviuiriiriiriieiieiieiieieteieie et 276
Source Browser WindOWccccocevireririeieieieicicieientenesee e 280
Source Browser window CONtEXt MENUccveeeeeienuenienierienienieeieeeeeeeeeenees 281

Figures __o

134: Breakpoints window

135: Breakpoints WindOw CONEEXt MENUccververreriieniierieenieenieetesetenireseeenaeeneeeeens 282
136: Code breakpoints PAZEcceeverererieririerierieteeetenienrenresresreere s sresees e esennene 284
137: Log breakpoints PAZEcccccveveriererierierieneriesteeeieestenteee et sresbesbe i eaeens 285
138: Enter Location dialog DOXccceeviiriiiiiiiniinienieieeeceeeete e 287
139: Build window (message WiNdOW)cccceceeveeieienienienienienrenrenrenesesneeeeeenene 288

140: Build window context menu

141: Find in Files window (message WindOW)cc.coeceerernieeneniienienieneenieenieeneens 289
142: Find in Files window cONteXt MENUcocceeeieruenienienienrenienrenrenenesieeeeeeeene 289
143: Tool Output window (message WIndOW)c.ccoeveeruenreneneneneneneneeeeeeeenne 290
144: Tool Output WindOW CONLEXE MEMNU ...eeuververnrerireniierieenieerieetesitesirenieeseeenseenaens 290
145: Debug Log window (message WindOW)c.cccevuerenienrenreneneneneneeeenennenne 290
146: Debug Log window CONtEXt MENU ...c..evverueruererereeieieeeneenreneesresressessessesanenns 291
147: FAle MENU ..ottt st 292
148: Edit MGIIU .eveviiiiiieiieiieieieiet ettt ettt ettt r bbb 294
149: Find in Files dialog DOXcccoererererinireieeteeeteeeese e 299
150: Incremental Search dialog DOXccceevieriiiriiniinieiereeeee e 300
151: Template dialog box

152: VIEW IMEIIUL ..ouviiiiienieieieieste sttt ettt ettt et e st e bbb bbbt e bt e e e e nee

1537 PrOJECE INEIIUL c..eiuiiiniieiieeiie ettt ettt ettt st e bt esbeebeenaees

154: Configurations for project dialog BOXcccceoveveevuenieniinininenineneneeeeieeenne 307
155: New Configuration dialog DOXcccevceeiriiiiniiniiieriireeeeeeeeeeee e 308
156: Create New Project dialog DOXccoceevieiririiiniinienieeeeieeieeieseee e 309
157: Batch Build dialog box

158: Edit Batch Build dialog DOXccoceveririiiiiiieieieeieee e 312
159: TOOLS MENUeonviiiiiiiiiiiiiiieniesie et 313
160: Common FONtS OPIONScc.evvirererieririiiiteteteietetereste ettt 314
161: Key Bindings OPLionscccecvevereriereneneneetetetete ettt ens 315
162: Language options

163: EdIitOr OPLIONS ...veovieuieiiiieiinienienienierierieet ettt ettt sbesr e bbb nee
164: Configure Auto Indent dialog BOXcccoeviiiniiiineiiniceeccceeee 319
165: External EditOr OPtIONScccevieriiriiiniieiienieritenitesieesieesee et eeeas 320
166: Editor Setup Files OPtIONSccccoveveriririiiiieieieieteieeresreereeieere e 322
167: Editor Colors and FONts OPtioNSc..ceceeeeieienienienienieniesiesieeeeieeieeieeeeee e 323

xxxiii

IAR Embedded Workbench® IDE
xxxiv User Guide

168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:

Messages option

Message dialog box containing a Don’t show again optionc.ccceceevueenee. 325
PrOJECt OPLIONS ettt st 326
Source Code Control OPLIONSc.cevererereririeieteeeietete et 327
DeEbUZZET OPLIONS .uveiuiiiiiiieeiieeteeiteiteste ettt sttt se et ea e st saee b enaes
SEACK OPLIONS ..ottt ettt ettt ettt
Register Filter options

Terminal I/O options

Configure Tools dialog DOXccceoeviririninieicicicieceteeeeeeeee 334
Customized TOOIS MENUc..coueriiriiririiniineeeeeeteeeetee e 335
Filename Extensions dialog BOXc.cccoceverniirneniieniienieneeieeieceeee e 336
Filename Extension Overrides dialog bOXc.cccccceveneneninininieeeieeenennee 337
Edit Filename Extensions dialog bBOXcccceeeevieieieiieniinenenenencneeeeeeenee 337
Configure Viewers dialog DOXccceeviriieriiriienieneeneeeecete et 338
Edit Viewer Extensions dialog boXcccccceveeiiiinienienenineneninineececeeee 338
WINAOW MENU .ottt ettt ettt b e bbb 339
Embedded Workbench Startup dialog boXccoceeviiriiniiniiniiienieienee, 340
C-SPY debug toolbar

C-SPY Disassembly WindOWccccoerereririeieieieienienesieeieere e 346
Disassembly window CONteXt MENUcovverrverreerieriiereenieenieeieeeeeeesee e 347
MeEmOTry WINAOWceouiiiiiiniiniinienienenerienieet ettt 349
Memory Window CONEXE MEMUocververrerrerieriieieieientesiestestessessessesseeseeneesenee 350
Fill dialog DOX ..couviiiiiiiiieeieee et
Memory Save dialog box ...

Memory Restore dialog DOXccevereririririeieieieeee et 353
Symbolic Memory WindOWccccevvierierienienienieieeneeie ettt 354
Symbolic Memory window CONnteXt MENUc.couevverververuenrenenenrereeeenennes 355
REGISLEr WINAOW ...cuiiiiiiiiiieieieietesiee ettt 356
Watch window

Watch Window CONEXE MENU ..c..eoviruiriirririiriieiieiieiteitetetete et nene 357
L0Cals WINAOW ..cveiiiiiiiiieiiiieteiesieei s st 358
AULO WINAOW ittt s s 359
Live Watch WINAOWccocciiviininininincnnetctctctctcetee s 359
Quick WatCh WINAOWocveiiiiiieiiciieieeteee sttt e 360

Figures __o

202: Statics window

203: Statics WINAOW CONEEXE MEIUoveveuirririiriierienieiierereresre e st sre e ereeneesnene 361
204: Select Statics dialog DOXcoeveriririninirietececeeee e 362
205: Call Stack WINAOWcccoviuiiiiiiiiieieniciicte e e 363
206: Call Stack Window CONLEXt MENUccuevuivuiruiririeieieieieieiesteee et 363
207: Terminal I/O WINAOWcccoceriiiiiiiiniiiiniiniincntrte et 364
208: Ctrl codes menu

209: Input Mode dialog DOX ...ccc.eoviiriiiiiiiieniirie ettt 365
210: Code Coverage WiNdOWc..coevveririinirieeeieteietetetenresresresresresreeneeaeenenee 365
211: Code cOVErage CONEXE MEMU ..c..evverrerrerrermeereereeneestetenteneensensensessessessesseeneensenee 366
212: Profiling WINAOWc.ccooiiriiiiiiniiiiieieeie ettt st eeeen 367
213: Profiling CONEXE MENU ...c.coviiiriiniiniintirtiniceceteitetetetetesre et 367
214 Stack WINAOWocviiiiiiiiiiiiieieeeree et 369
215: Stack Window CONEXE MENU ...c.eoveiiiiniiniiniiriiriietteeetetet ettt 370
216: SymboOls WINAOW ..c..coueiiiiiiiiiiinieniintentere ettt s 372
217: Symbols WindOW CONEEXt MENUecverververrerrerreeieeeieteeentententestesiesreebeeaeeeene 372
218: DEDUZ MEMU ...eiiiiieiiiieiieeiteeteste ettt sttt ettt ettt s it s et e naeebeeneean
219: Autostep settings dialog box

220: Macro Configuration dialog DOXcccceceeerieiriieiienieieieseesieeeeeeieee e 376
221: Log File dialog DOXoociiiiiiiiiieiieieeieeteeteest e 377
222: Terminal I/O Log File dialog boXcccceceviririeiiiiiiiinincncncnceeeeeeeenee 378
223: Disassembly MENUccuerieiirierienienienieniesiesteiteiteit ettt et sb sttt ne 378
224: TATZEL OPLIONS ..euvverureriieriieriteniterteenteeteeiteetesutesttesaeenseesseeasesssesssesseenseenseenseensenn 379
225: Output options ...

226: Library Configuration OPONScceeereruereeueeieieieieeesteniessesresiesseeieeneeeenes 382
227: Library OPLiONS PAZE ...cceevveerueerierrierrierienitesiieneeenieenseeiesseesesseessaesseessesnseensens 384
228: Multi-file COmMPIlationcccoueverinininirieieeeeeeeeeeeeee e 387
229: Compiler 1anguage OPHONSccecerveuirreirenierinieeniereeneee sttt eenes 388
230: Compiler code options

231: Compiler optimizations OPtIONScceeereererereeeenienteeenrenenreseseeieeieeenenene 391
232: Compiler OutPut OPLIONSc.eerveueeuerieririeieiererereierree et seeieseeseereseeresseseeseseenes 392
233: Compiler list file OPLONSoceeriieriiiieniieienietereeeeeee et 394
234: Compiler preprocessor OPONS ..c..cc.cverveerererrereereneenrenrenrenrenresesesseeseeeesenne 395
235: Compiler diagnostiCs OPLIONSc.cccerveuerueirerieuinieierieeeieeeeseeeere s reeenes 397

XXXV

XXXVi

IAR Embedded Workbench® IDE
User Guide

236:
237:
238:
239:
240:
241:
242:
243:
244
245:
246:
247:
248:
249:
250:
251:
252:
253:
254
255:
256:
257:
258:
259:
260:

Extra Options page for the compiler ...

Assembler 1anguage OPLONSceoveeverrierierierieniceneenie et ettt see e 401
Choosing macro qUOtE CharaCterSc.cceceeeeieierienienienieneneneneereeeeeeeennes 402
ASSEMDIET OULPUL OPLIONSveuvenreniirririintinieeieeiceicete ettt sb e 403
Assembler list file OPLONScoveviiriiriiiieieeiceereee e 404
Assembler preprocessor OPHONS ..c..cc.evvereeeeeetertertertetententeneesreereeseeeeseensennes 405
Assembler diagnostics options

Extra Options page for the assemblerccccovevievienieneinenieeieneeesee 408
Converter output file OPtIONScccevverererieieieieicictete e 409
CUSLOIM tOO] OPLIONS ...eeevieiiiiiieienierierieni ettt ettt st 411
Build actions OPLIONScc.eeveriirienienitenieee ettt sttt 413
Linker configuration OPtiONSc.ccccverererererereenieieteienenreneesreesesseeneenees 415
Linker configuration file €ditorcccevvererereriieienieiieeseeeeeeeeeeeeeee 416
LIDTAry PAZE .oouveeiieiieiieieeieete ettt ettt et ettt 417
Linker input file OPONScceovevieririenininieieietetcteteteseseeee e 418
Linker output file OPtiONSc..covevverieririninieeeceteeeeeseseere e 419
Linker diagnostiCs OPONS ...cc.vevveruieriieniierierieeie et sieesie et ere s siee i 420
Linker defined symbols options ...

Linker diagnostiCs OPLIONScccerverueruiriirieeieieieieeese st
Linker checksum and fill OPtionsc.ccocceeviirieniienienieneeneeeeeeeesee e 423
Extra Options page for the lInKerc..ccceveeieieiiininiininininicceeeceee 425
Library builder output options

GeneriC C-SPY OPLONS ...ooviiiiiriieieeiieieeie ettt st
Extra Options page for C-SPY

C-SPY Plugin OPLIONSc.eeieieriinienieniieieeieeieeiietetete ettt

Preface

Welcome to the IAR Embedded Workbench® IDE User Guide. The purpose of
this guide is to help you fully utilize the features in IAR Embedded Workbench
with its integrated Windows development tools for the ARM core. The IAR
Embedded Workbench IDE is a very powerful Integrated Development
Environment that allows you to develop and manage a complete embedded
application project.

The user guide includes product overviews and reference information, as well
as tutorials that will help you get started. It also describes the processes of
editing, project managing, building, and debugging.

Who should read this guide

You should read this guide if you want to get the most out of the features and tools
available in the IDE. In addition, you should have a working knowledge of:

o The C or C++ programming language

e Application development for embedded systems

o The architecture and instruction set of the ARM core (refer to the chip
manufacturer's documentation)

o The operating system of your host computer.
Refer to the JAR C/C++ Development Guide for ARM® and ARM® [4R Assembler

Reference Guide for more information about the other development tools incorporated
in the IDE.

How to use this guide

If you are new to using this product, we suggest that you start by reading Part 1. Product
overview to give you an overview of the tools and the functions that the IDE can offer.

If you already have had some experience using IAR Embedded Workbench, but need
refreshing on how to work with the IAR development tools, Part 2. Tutorials is a good
place to begin. The process of managing projects and building, as well as editing, can
be found in Part 3. Project management and building, page 73, whereas information
about how to use C-SPY can be found in Part 4. Debugging, page 109.

XXXVii

What this guide contains

If you are an experienced user and need this guide only for reference information, see
the reference chapters in Part 7. Reference information and the online help system
available from the IAR Embedded Workbench Help menu.

Finally, we recommend the Glossary in the IAR C/C++ Development Guide for ARM®
if you should encounter any unfamiliar terms in the IAR Systems user and reference
guides.

What this guide contains

IAR Embedded Workbench® IDE
xxxvii User Guide

Below is a brief outline and summary of the chapters in this guide.

Part I. Product overview

This section provides a general overview of all the IAR development tools so that you
can become familiar with them:

® Product introduction provides a brief summary and lists the features offered in each
of the IAR Systems development tools—IAR Embedded Workbench® IDE, IAR
C/C++ Compiler, IAR Assembler, IAR ILINK Linker and its accompanying tools,
and IAR C-SPY Debugger—for the ARM core.

o [nstalled files describes the directory structure and the types of files it contains. The
chapter also includes an overview of the documentation supplied with the IAR
development tools.

Part 2. Tutorials

The tutorials give you hands-on training in order to help you get started with using the
tools:

o Creating an application project guides you through setting up a new project,
compiling your application, examining the list file, and linking your application.
The tutorial demonstrates a typical development cycle, which is continued with
debugging in the next chapter.

® Debugging using the IAR C-SPY® Debugger explores the basic facilities of the
debugger.
o Mixing C and assembler modules demonstrates how you can easily combine source

modules written in C with assembler modules. The chapter also demonstrates how
the compiler can be used for examining the calling convention.

o Using C++ shows how to create a C++ class, which creates two independent
objects. The application is then built and debugged.

Preface __4

Simulating an interrupt shows how you can add an interrupt handler to the project
and how this interrupt can be simulated using C-SPY facilities for simulated
interrupts, breakpoints, and macros.

Creating and using libraries demonstrates how to create library modules.

Part 3. Project management and building

This section describes the process of editing and building your application:

The development environment introduces you to the IAR Embedded Workbench
development environment. The chapter also demonstrates the facilities available for
customizing the environment to meet your requirements.

Managing projects describes how you can create workspaces with multiple projects,
build configurations, groups, source files, and options that helps you handle
different versions of your applications.

Building discusses the process of building your application.

Editing contains detailed descriptions about the IAR Embedded Workbench editor,
how to use it, and the facilities related to its usage. The final section also contains
information about how to integrate an external editor of your choice.

Part 4. Debugging

This section gives conceptual information about C-SPY functionality and how to use it:

The IAR C-SPY® Debugger introduces some of the concepts that are related to
debugging in general and to the IAR C-SPY Debugger in particular. It also
introduces you to the C-SPY environment and how to setup, start, and configure the
debugger to reflect the target hardware.

Executing your application describes how you initialize C-SPY, the conceptual
differences between source and disassembly mode debugging, the facilities for
executing your application, and finally, how you can handle terminal input and
output.

Working with variables and expressions defines the syntax of the expressions and
variables used in C-SPY, as well as the limitations on variable information. The
chapter also demonstrates the different methods for monitoring variables and
expressions.

Using breakpoints describes the breakpoint system and the different ways to define
breakpoints.

Monitoring memory and registers shows how you can examine memory and
registers.

Using the C-SPY® macro system describes the C-SPY macro system, its features,
for what purposes these features can be used, and how to use them.

XXXiX

What this guide contains

xI

IAR Embedded Workbench® IDE
User Guide

Analyzing your application presents facilities for analyzing your application.

Part 5. The C-SPY® Simulator

Simulator-specific debugging describes the functionality specific to the simulator.

Simulating interrupts contains detailed information about the C-SPY interrupt
simulation system and how to configure the simulated interrupts to make them
reflect the interrupts of your target hardware.

Part 6. C-SPY hardware debugger systems

Introduction to C-SPY® hardware debugger systems introduces you to the
available C-SPY debugger drivers other than the simulator driver. The chapter
briefly shows the difference in functionality provided by the drivers and the
simulator driver.

Hardware-specific debugging describes the additional options, menus, and features
provided by these debugger systems.

Using flash loaders describes the flash loader, what it is and how to use it.

Part 7. Reference information

IAR Embedded Workbench® IDE reference contains detailed reference information
about the development environment, such as details about the graphical user
interface.

C-SPY® reference provides detailed reference information about the graphical user
interface of the IAR C-SPY Debugger.

General options specifies the target, output, library, and MISRA C options.

Compiler options specifies compiler options for language, code, optimizations,
output, list file, preprocessor, diagnostics, and MISRA C.

Assembler options describes the assembler options for language, output, list,
preprocessor, and diagnostics.

Converter options describes the options available for converting linker output files
from the ELF format.

o Custom build options describes the options available for custom tool configuration.

® Build actions options describes the options available for pre-build and post-build

actions.

Linker options describes the ILINK options for output, input, defining symbols,
diagnostics, list generation, and configuration.

Library builder options describes the XAR options available in the Embedded
Workbench.

Debugger options gives reference information about generic C-SPY options.

Preface __4

® The C-SPY Command Line Utility—cspybat describes how to use the debugger in
batch mode.

o C-SPY® macros reference gives reference information about C-SPY macros, such
as asyntax description of the macro language, summaries of the available setup
macro functions, and pre-defined system macros. Finally, a description of each
system macro is provided.

Other documentation

The complete set of IAR Systems development tools are described in a series of guides.
For information about:

o Programming for the IAR C/C++ Compiler for ARM and linking using the IAR
ILINK Linker, refer to the IJAR C/C++ Development Guide for ARM®

o Programming for the IAR Assembler for ARM, refer to the ARM® [4R Assembler
Reference Guide

o Using the IAR DLIB Library, refer to the DLIB Library Reference information,
available in the IDE online help system.

e Porting application code and projects created with a previous version of the IAR
Embedded Workbench for ARM, refer to ARM® IAR Embedded Workbench®
Migration Guide.

o Developing safety-critical applications using the MISRA C guidelines, refer to the
1AR Embedded Workbench® MISRA C Reference Guide.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books. Note that additional
documentation might be available on the Help menu depending on your product
installation.

Recommended web sites:
® The Advanced RISC Machines Ltd web site, www.arm.com, contains information
and news about the ARM cores.

o The IAR Systems web site, www.iar.com, holds application notes and other
product information.

o The web site www.SevensAndNines.com, maintained by IAR Systems, provides
an online user community and resource site for ARM developers.

o Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, contains information about the Embedded C++
standard.

xli

Document conventions

Document conventions

IAR Embedded Workbench® IDE
xlii User Guide

When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example arm\doc, the full
path to the location is assumed, for example c: \Program Files\IAR
Systems \Embedded Workbench 5.0\arm\doc.

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
¢ Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where £ilename represents the name of the file.

[optionl] An optional part of a command, where [] is part of the described
syntax.

{option} A mandatory part of a command, where {} is part of the described
syntax.

[option] An optional part of a command.

{option} A mandatory part of a command.

alb|c Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic * A cross-reference within this guide or to another guide.

* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

Preface __4

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

Brand name Generic term

IAR Embedded Workbench® for ARM IAR Embedded Workbench®
IAR Embedded Workbench® IDE for ARM the IDE

IAR C-SPY® Debugger for ARM C-SPY, the debugger

IAR C/C++ Compiler™ for ARM the compiler

IAR Assembler™ for ARM the assembler

IAR ILINK™ Linker ILINK, the linker

IAR DLIB Library™ the DLIB library

Table 2: Naming conventions used in this guide

xliii

Document conventions

IAR Embedded Workbench® IDE
xliv User Guide

Part |. Product overview

This part of the IAR Embedded Workbench® IDE User Guide includes the
following chapters:

e Product introduction

o Installed files.

- .hmuhhhhi

AARArA

Product introduction

The IAR Embedded Workbench® IDE is a very powerful Integrated
Development Environment, that allows you to develop and manage complete
embedded application projects. It is a development platform, with all the
features you would expect to find in your everyday working place.

This chapter describes the IDE and provides a general overview of all the tools
that are integrated in this product.

The IAR Embedded Workbench IDE

The IDE is the framework where all necessary tools are seamlessly integrated:

The highly optimizing IAR C/C++ Compiler

The IAR Assembler

The versatile IAR ILINK Linker, including accompanying tools
A powerful editor

A project manager

A command line build utility

IAR C-SPY® Debugger, a state-of-the-art high-level language debugger.

IAR Embedded Workbench is available for a large number of microprocessors and
microcontrollers in the 8-, 16-, and 32-bit segments, allowing you to stay within a
well-known development environment also for your next project. It provides an
easy-to-learn and highly efficient development environment with maximum code
inheritance capabilities, comprehensive and specific target support. IAR Embedded
Workbench promotes a useful working methodology, and thus a significant reduction of
the development time can be achieved by using the IAR Systems tools. We call this
concept “Different Architectures. One Solution.”

If you want detailed information about supported target processors, contact your
software distributor or your IAR representative, or visit the AR Systems web site
www.iar.com for information about recent product releases.

Part |. Product overview

The IAR Embedded Workbench IDE

IAR Embedded Workbench® IDE
4 User Guide

AN EXTENSIBLE AND MODULAR ENVIRONMENT

Although the IDE provides all the features required for a successful project, we also
recognize the need to integrate other tools. Therefore the IDE can be easily adapted to
work with your favorite editor and source code control system. The IAR ILINK Linker
can produce output files in the ELF format including DWARF for debug information,
allowing for debugging on most third-party emulators. Support for RTOS-aware
debugging and high-level debugging of state machines can also be added to the product.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

FEATURES

The IDE is a flexible integrated development environment, allowing you to develop
applications for a variety of different target processors. It provides a convenient
Windows interface for rapid development and debugging.

Project management

The IDE comes with functions that will help you to stay in control of all project
modules, for example, C or C++ source code files, assembler files, include files, and
other related modules. You create workspaces and let them contain one or several
projects. Files can be grouped, and options can be set on all levels—project, group, or
file. Changes are tracked so that a request for rebuild will retranslate all required
modules, making sure that no executable files contain out-of-date modules. The
following list shows some additional features:

e Project templates to create a project that can be built and executed out of the box for
a smooth development startup

Hierarchical project representation

Source browser with an hierarchical symbol presentation

Options can be set globally, on groups of source files, or on individual source files

The Make command automatically detects changes and performs only the required
operations

Text-based project files
o Custom Build utility to expand the standard tool chain in an easy way

o Command line build with the project file as input.

Product introduction °

Source code control

Source code control (SCC)—or revision control—is useful for keeping track of different
versions of your source code. AR Embedded Workbench can identify and access any
third-party source code control system that conforms to the SCC interface published by
Microsoft.

Window management

To give you full and convenient control of the placement of the windows, each window
is dockable and you can optionally organize the windows in tab groups. The system of
dockable windows also provides a space-saving way to keep many windows open at the
same time. It also makes it easy to rearrange the size of the windows.

The text editor

The integrated text editor allows editing of multiple files in parallel, and provides all
basic editing features expected from a modern editor, including unlimited undo/redo and
automatic completion. In addition, it provides functions specific to software
development, like coloring of keywords (C/C++, assembler, and user-defined), block
indent, and function navigation within source files. It also recognizes C language
elements like matching brackets. The following list shows some additional features:

o Context-sensitive help system that can display reference information for DLIB
library functions

o Syntax of C or C++ programs and assembler directives shown using text styles and
colors

Powerful search and replace commands, including multi-file search
Direct jump to context from error listing

Multibyte character support

Parenthesis matching

Automatic indentation

Bookmarks

Unlimited undo and redo for each window.

DOCUMENTATION

The IDE is documented in the JAR Embedded Workbench® IDE User Guide for ARM®
(this guide). There is also help and hypertext PDF versions of the user documentation
available online.

Part |. Product overview 5

IAR C-SPY Debugger

IAR C-SPY Debugger

IAR Embedded Workbench® IDE
6 User Guide

The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications. It is designed for use with the IAR Systems compilers and assemblers, and
it is completely integrated in the IDE, providing seamless switching between
development and debugging. This will give you possibilities such as:

o Editing while debugging. During a debug session, corrections can be made directly
into the same source code window that is used to control the debugging. Changes
will be included in the next project rebuild.

e Setting source code breakpoints before starting the debugger. Breakpoints in source
code will be associated with the same piece of source code even if additional code is
inserted.

C-SPY consists both of a general part which provides a basic set of debugger features,
and of a driver. The C-SPY driver is the part that provides communication with and
control of the target system. The driver also provides a user interface—special menus,
windows, and dialog boxes—to the functions provided by the target system, for
instance, special breakpoints.

Contact your software distributor or IAR Systems representative for information about
available C-SPY drivers. You can also find information on the IAR Systems website,
www.iar.com.

Depending on your product installation, C-SPY is available with a simulator driver and
optional drivers for hardware debugger systems.

For a brief overview of the available C-SPY drivers, see [AR C-SPY Debugger systems,
page 9.

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire tool chain, the output provided by the compiler
and linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you. C-SPY offers the general features described in this
section.

Source and disassembly level debugging

C-SPY allows you to switch between source and disassembly debugging as required, for
both C or C++ and assembler source code.

Debugging the C or C++ source code provides the quickest and easiest way of verifying
the program logic of your application whereas disassembly debugging lets you focus on
the critical sections of your application, and provides you with precise control over the
hardware. In Mixed-Mode display, the debugger also displays the corresponding C/C++
source code interleaved with the disassembly listing.

Product introduction °

Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function calls—inside
expressions, as well as function calls being part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging C++
code, where numerous extra function calls are made, for example to object constructors.

The debug information also presents inlined functions as if a call was made, making the
source code of the inlined function available.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest. You
can set a code breakpoint to investigate whether your program logic is correct. You can
also set a data breakpoint, to investigate how and when the data changes. Finally, you
can add conditions and connect actions to your breakpoints.

Monitoring variables and expressions

When you work with variables and expressions you are presented with a wide choice of
facilities. Any variable and expression can be evaluated in one-shot views. You can
easily both monitor and log values of a defined set of expressions during a longer period
of time. You have instant control over local variables, and real-time data is displayed
non-intrusively. Finally, the last referred variables are displayed automatically.

Container awareness

When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and premium
debugging opportunities when you work with C++ STL containers.

Call stack information

The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the
program counter is. You can select any function in the call stack, and for each function
you get valid information for local variables and registers available.

Part |. Product overview 7

IAR C-SPY Debugger

IAR Embedded Workbench® IDE
8 User Guide

Powerful macro system

C-SPY includes a powerful internal macro system, to allow you to define complex sets
of actions to be performed. C-SPY macros can be used solely or in conjunction with
complex breakpoints and—if you are using the simulator—the interrupt simulation
system to perform a wide variety of tasks.

Additional general C-SPY debugger features
This list shows some additional features:

o A modular and extensible architecture allowing third-party extensions to the
debugger, for example, real-time operating systems, peripheral simulation modules,
and emulator drivers

Threaded execution keeps the IDE responsive while running the target application
Automatic stepping

Source browser provides easy navigation to functions, types and variables
Extensive type recognition of variables

Configurable registers (CPU and peripherals) and memory windows

Dedicated Stack window

Support for code coverage and function level profiling

Target application can access files on host PC using file I/O

Optional terminal I/O emulation.

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules can be provided by IAR Systems, as well as by third-party suppliers.
Example of such modules are:

Code Coverage, Profiling, and the Stack window, all well-integrated in the IDE.
The various C-SPY drivers for debugging using certain debug systems.

RTOS plugin modules for support for real-time OS awareness debugging.

Peripheral simulation modules make C-SPY simulate peripheral units. Such plugin
modules are not provided by IAR Systems, but can be developed and distributed by
third-party suppliers.

o C-SPYLink that bridges visualSTATE and IAR Embedded Workbench to make true
high-level state machine debugging possible directly in C-SPY, in addition to the

Product introduction °

normal C level symbolic debugging. For more information, refer to the
documentation provided with IAR visualSTATE.

For more information about the C-SPY SDK, contact IAR Systems.

RTOS AWARENESS

C-SPY supports real-time OS awareness debugging. The following operating systems
are currently supported:

IAR PowerPac RTOS

CMX CMX-RTX and CMX-Tiny+ real-time operating systems
Micripm pC/OS-1I

Express Logic ThreadX

RTXC Quadros RTOS

Fusion RTOS

OSEK (ORTI)

OSE Epsilon

Micro Digital SMX RTOS

NORTi MiSPO

Segger embOS.

RTOS plugin modules can be provided by IAR Systems, as well as by third-party
suppliers. Contact your software distributor or IAR Systems representative, alternatively
visit the IAR Systems web site, for information about supported RTOS modules.

DOCUMENTATION

C-SPY is documented in the AR Embedded Workbench® IDE User Guide for ARM®
(this guide). Generic debugger features are described in Part 4. Debugging, whereas
features specific to each debugger driver are described in Part 5. The C-SPY®
Simulator, and Part 6. C-SPY hardware debugger systems. There are also help and
hypertext PDF versions of the documentation available online.

IAR C-SPY Debugger systems

At the time of writing this guide, the IAR C-SPY Debugger for the ARM core is
available with drivers for the following target systems:

e Simulator
o RDI (Remote Debug Interface)
o J-Link /J-Trace JTAG interface

Part |. Product overview 9

IAR C-SPY Debugger systems

10

IAR Embedded Workbench® IDE
User Guide

o Macraigor JTAG interface
o Angel debug monitor

o JAR ROM-monitor for Analog Devices ADuC7xxx boards, IAR Kickstart Card for
Philips LPC210x, and OKI evaluation boards

o Luminary FTDI JTAG interface (for Cortex devices only).
Contact your software distributor or IAR representative for information about available

C-SPY drivers. You can also find information on the IAR Systems web site,
www.iar.com.

For further details about the concepts that are related to the IAR C-SPY Debugger, see
Debugger concepts, page 111. In the following sections you can find general
descriptions of the different drivers.

IAR C-SPY SIMULATOR

The C-SPY simulator driver simulates the functions of the target processor entirely in
software. With this driver, the program logic can be debugged long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

Features

In addition to the general features of C-SPY, the simulator driver also provides:

Instruction-level simulation
Memory configuration and validation

Interrupt simulation

Peripheral simulation, using the C-SPY macro system in conjunction with
immediate breakpoints.

For additional information about the IAR C-SPY Simulator, refer to Part 5. The
C-SPY® Simulator in this guide.

IAR C-SPY J-LINK DRIVER
Using the IAR ARM C-SPY J-Link driver, C-SPY can connect to the Segger
J-Link/J-Trace JTAG interface.

Features

In addition to the general features of the IAR C-SPY Debugger, the J-Link driver also
provides:

e Execution in real time

Product introduction °

o Communication through USB
o Zero memory footprint on the target system

o Use of the two available hardware breakpoints in the ARM core to allow debugging
code in non-volatile memory such as flash. Cortex devices have support for six
hardware breakpoints

e Direct access to the ARM core watchpoint registers
o An unlimited number of breakpoints when debugging code in RAM
o A possibility for the debugger to attach to a running application without resetting

the target system.

Note: Code coverage is supported by J-Trace. Live watch is supported by the C-SPY
J-Link/J-Trace driver for Cortex devices. For ARM7/9 devices it is supported if a DCC
handler is added to your application.

For additional information about the IAR C-SPY J-Link driver, see Part 6. C-SPY
hardware debugger systems.

IAR C-SPY LMI FTDI DRIVER

Using the IAR ARM C-SPY LMI FTDI driver, C-SPY can connect to the Luminary
FTDI JTAG interface.

Features

In addition to the general features of the IAR C-SPY Debugger, the J-Link driver also
provides:

Support for Luminary Cortex devices

Execution in real time

Communication through USB

Zero memory footprint on the target system

Use of the six available hardware breakpoints

An unlimited number of breakpoints when debugging code in RAM.

Note: Code coverage is not supported by the LMI FTDI driver. Live watch is
supported.

For additional information about the IAR C-SPY J-Link driver, see Part 6. C-SPY
hardware debugger systems.

Part |. Product overview 11

IAR C-SPY Debugger systems

12

IAR Embedded Workbench® IDE
User Guide

IAR C-SPY RDI DRIVER

Using the IAR ARM C-SPY RDI driver, C-SPY can connect to an RDI-compliant debug
system. This can, for example, be a simulator, a ROM-monitor, a JTAG interface, or an
emulator. The IAR ARM C-SPY RDI driver is compliant with the RDI specification
1.5.1.

In the feature list below, an RDI-based connection to a JTAG interface is assumed.

Features

In addition to the general features of the IAR C-SPY Debugger, the RDI driver also
provides:
e Execution in real time

e High-speed communication through USB, Ethernet, or the parallel port depending
on the RDI-compatible JTAG interface used

® Zero memory footprint on the target system

o Use of the two available hardware breakpoints in the ARM core to allow debugging
code in non-volatile memory, such as flash

o An unlimited number of breakpoints when debugging code in RAM
e A possibility for the debugger to attach to a running application without resetting
the target system.

Note: Code coverage and live watch are not supported by the C-SPY RDI driver.

For additional information about the IAR C-SPY RDI driver, see Part 6. C-SPY
hardware debugger systems.

IAR C-SPY MACRAIGOR DRIVER

Using the IAR ARM C-SPY Macraigor JTAG driver, C-SPY can connect to the
Macraigor RAVEN, WIGGLER, mpDemon, USB2 Demon, and USB2 Sprite JTAG
interfaces.

Features

In addition to the general features of the IAR C-SPY Debugger, the Macraigor JTAG
driver also provides:

Execution in real time

Communication through the parallel port or Ethernet

Zero memory footprint on the target system

Use of the two available hardware breakpoints in the ARM core to allow debugging
code in non-volatile memory such as flash

Product introduction °

e Direct access to the ARM core watchpoint registers

o An unlimited number of breakpoints when debugging code in RAM

e A possibility for the debugger to attach to a running application without resetting
the target system.

Note: Code coverage and live watch are not supported by the C-SPY Macraigor JTAG
driver.

For additional information about the IAR C-SPY Macraigor JTAG driver, see Part 6.
C-SPY hardware debugger systems.

IAR C-SPY ROM-MONITOR DRIVER

Using the JAR ROM-monitor driver, C-SPY can connect to the Analog Devices
ADuC7xxx boards, the IAR Kickstart Card for Philips LPC210x, and OKI evaluation
boards. The boards contain firmware (the ROM-monitor itself) that runs in parallel with
your application software.

Features for Analog Devices evaluation boards

In addition to the general features of the IAR C-SPY Debugger, the ROM-monitor driver
also provides:

e Execution in real time
o Communication through serial port

o Support for the Analog Devices ADuC7xxx evaluation board.

Note: Code coverage and live watch are not supported by the C-SPY ROM-monitor
driver.

For additional information about the IAR C-SPY ROM-monitor driver, see Part 6.
C-SPY hardware debugger systems.

Features for IAR Kickstart Card for Philips LPC210x

In addition to the general features of the IAR C-SPY Debugger, the ROM-monitor driver
also provides:

e Execution in real time
o Communication through the RS232 serial port
o Support for the IAR Kickstart Card for Philips LPC210x.

Note: Code coverage and live watch are not supported by the C-SPY ROM-monitor
driver.

Part |. Product overview 13

IAR C/C++ Compiler

Features for OKI evaluation boards

In addition to the general features of the IAR C-SPY Debugger, the ROM-monitor driver
also provides:

e Execution in real time

o Communication through serial port or USB connection

o Support for the OKI JOB671000 evaluation board.

Note: Code coverage and live watch are not supported by the C-SPY OKI
ROM-monitor driver.

For additional information about the IAR C-SPY ROM-monitor driver, see Part 6.
C-SPY hardware debugger systems.

IAR C-SPY ANGEL DEBUG MONITOR DRIVER

Using the IAR Angel debug monitor driver, you can communicate with any device
compliant with the Angel debug monitor protocol. In most cases these are evaluation
boards. However, the EPI JEENI JTAG interface also uses this protocol. When
connecting to an evaluation board the Angel firmware will run in parallel with your
application software.

Features

In addition to the general features of the IAR C-SPY Debugger the ANGEL debug
monitor driver also provides:

e Execution in real time

o Communication through the serial port or Ethernet
o Support for all Angel equipped evaluation boards
o Support for the EPI JEENI JTAG interface.

Note: Code coverage and live watch are not supported by the C-SPY Angel debug
monitor driver.

For additional information about the IAR C-SPY Angel debug monitor driver, see Part
6. C-SPY hardware debugger systems.

IAR C/C++ Compiler

IAR Embedded Workbench® IDE
User Guide

The IAR C/C++ Compiler for ARM is a state-of-the-art compiler that offers the standard
features of the C or C++ languages, plus many extensions designed to take advantage of
the ARM-specific facilities.

The compiler is integrated with other IAR Systems software in the IDE.

Product introduction °

FEATURES

The compiler provides the following features:

Code generation
o Generic and ARM-specific optimization techniques produce very efficient machine
code

o Comprehensive output options, including relocatable object code, assembler source
code, and list files with optional assembler mnemonics

o Support for ARM EABI ELF/DWARF object format
o The object code can be linked together with assembler routines

o Generation of extensive debug information.

Language facilities
o Support for the C and C++ programming languages

o Support for IAR Extended EC++ with features such as full template support,
namespace support, the cast operators static_cast, const_cast, and
reinterpret_cast, as well as the Standard Template Library (STL).

o Placement of classes in different memory types
o Conformance to the ISO/ANSI C standard for a free-standing environment

o Target-specific language extensions, such as special function types, extended
keywords, pragma directives, predefined symbols, intrinsic functions, absolute
allocation, and inline assembler

e Standard library of functions applicable to embedded systems
o [EEE-compatible floating-point arithmetic

e Interrupt functions can be written in C or C++.

Type checking

e Extensive type checking at compile time
e External references are type checked at link time

o Link-time inter-module consistency checking of the application.

Part |. Product overview 15

IAR Assembler

16

RUNTIME ENVIRONMENT

The IAR Embedded Workbench for ARM supports the IAR DLIB Library, which
supports ISO/ANSI C and C++. This library also supports floating-point numbers in
IEEE 754 format, multi-byte characters, and locales.

There are several mechanisms available for customizing the runtime environment and
the runtime libraries. For the runtime library, library source code is included.
DOCUMENTATION

The compiler is documented in the /AR C/C++ Development Guide for ARM®.

IAR Assembler

IAR Embedded Workbench® IDE
User Guide

The IAR Assembler is integrated with other IAR Systems software for the ARM core.
It is a powerful relocating macro assembler (supporting the Intel/Motorola style) with a
versatile set of directives and expression operators. The assembler features a built-in C
language preprocessor and supports conditional assembly.

The assembler uses the same mnemonics and operand syntax as the Advanced RISC
Machines Ltd Assembler for ARM, which simplifies the migration of existing code. For
detailed information, see the ARM® [4R Assembler Reference Guide.

FEATURES
The IAR Assembler provides the following features:

C preprocessor

List file with extensive cross-reference output

Number of symbols and program size limited only by available memory
Support for complex expressions with external references

255 significant characters in symbol names

Support for ARM EABI ELF/DWAREF object format.

DOCUMENTATION
The assembler is documented in the ARM® IAR Assembler Reference Guide.

Product introduction °

IAR ILINK Linker and accompanying tools
The IAR ILINK Linker is a powerful, flexible software tool for use in the development
of embedded applications. It is equally well suited for linking small, single-file, absolute
assembler programs as it is for linking large, relocatable, multi-module, C/C++, or
mixed C/C++ and assembler programs.

ILINK combines one or more relocatable object files—produced by the IAR Systems
compiler or assembler—with selected parts of one or more object libraries to produce
an executable image in the industry-standard format ELF (Executable and Linking
Format).

ILINK will automatically load only those library modules—user libraries and standard
C or C++ library variants—that are actually needed by the application you are linking.
Further, ILINK eliminates duplicate sections and sections that are not required.

ILINK can link both ARM and Thumb code, as well as a combination of them. By
automatically inserting additional instructions (veneers), ILINK will assure that the
destination will be reached for any calls and branches, and that the processor state is
switched when required.

ILINK uses a configuration file where you can specify separate locations for code and
data areas of your target system memory map. This file also supports automatic handling
of the application’s initialization phase, which means initializing global variable areas
and code areas by copying initializers and possibly decompressing them as well.

The final output produced by ILINK is an absolute object file containing the executable
image in the ELF (including DWARF for debug information) format. The file can be
downloaded to C-SPY or any other debugger that supports ELF/DWARE, or it can be
programmed into EPROM.

To handle ELF files, there are various tools included, such as an archiver, an ELF reader,
and a format converter.

FEATURES

Flexible section commands allow detailed control of code and data placement
Link-time symbol definition enables flexible configuration control

Optional code checksum generation for runtime checking

Removes unused code and data

Support for ARM EABI ELF/DWARF object format.

DOCUMENTATION

The IAR ILINK Linker is documented in the /AR C/C++ Development Guide for
ARM®.

Part |. Product overview 17

IAR ILINK Linker and accompanying tools

IAR Embedded Workbench® IDE
18 User Guide

Installed files

This chapter describes which directories are created during installation and
what file types are used. At the end of the chapter, there is a section that
describes what information you can find in the various guides and online
documentation.

Refer to the QuickStart Card and the Installation and Licensing Guide, which are
delivered with the product, for system requirements and information about
how to install and register the IAR Systems products.

Directory structure

The installation procedure creates several directories to contain the different types of
files used with the IAR Systems development tools. The following sections give a
description of the files contained by default in each directory.

ROOT DIRECTORY

The root directory created by the default installation procedure is the

x:\Program Files\IAR Systems\Embedded Workbench 5.n\ directory where x
is the drive where Microsoft Windows is installed and 5 . n is the version number of the
IDE.

= |2) Embedded Workbench 5.0
= [3) BRM
1) bin
+ |) config
+ |) doc
+ |2 drivers
* |) examples
*) inc
1= lib
+ |2 plugins
* |) PowerPac
+) sre
+ |2 butor
= |2) common
1) bin
|20 config
1) doc
+ |2 plugins

Figure 1: Directory structure

Part |. Product overview

19

Directory structure

20

IAR Embedded Workbench® IDE
User Guide

Note: The installation path can be different from the one shown above depending on
previously installed IAR products, and on your preferences.

THE ARM DIRECTORY

The arm directory contains all product-specific subdirectories.

The arm\bin directory

The arm\bin subdirectory contains executable files for ARM-specific components,
such as the compiler, the assembler, the linker, and the C-SPY® drivers. This directory
also contains executable files for the GNU binary utilities.

The arm\config directory

The arm\config subdirectory contains files used for configuring the development
environment and projects, for example:

Linker configuration files (* . ic£)

C-SPY device description files (* . ddf)

Device selection files (*.179, * .menu)

Flash loader applications for different devices (* . out)

Syntax coloring configuration files (*.cfg)

Project templates for both application and library projects (* . ewp), and for the
library projects, the corresponding library configuration files.

The arm\doc directory

The arm\doc subdirectory contains release notes with recent additional information
about the ARM tools. We recommend that you read all of these files. The directory also
contains online hypertext versions in hypertext PDF format of this user guide, and of the
ARM reference guides, as well as online help files (* . chm). Documentation for the
GNU binary utilities is available in html format.

The arm\drivers directory
The arm\drivers subdirectory contains low-level device drivers, typically USB
drivers, required by the C-SPY drivers.

The arm\examples directory

The arm\examples subdirectory contains files related to example projects, which can
be opened from the Startup Screen dialog box.

Installed files °

The armlinc directory

The arm\ inc subdirectory holds include files, such as the header files for the standard
C or C++ library. There are also specific header files defining special function registers
(SFRs); these files are used by both the compiler and the assembler.

The arml\lib directory

The arm\1ib subdirectory holds prebuilt libraries and the corresponding library
configuration files, used by the compiler.

The arm\plugins directory

The arm\plugins subdirectory contains executable files and description files for
components that can be loaded as plugin modules.

The arm\powerpac directory

The arm\powerpac subdirectory contains files related to the add-on product IAR
PowerPac.

The arm\src directory

The arm\src subdirectory holds source files for some configurable library functions.
This directory also holds the library source code and the source code for ELF utilities.
The arm\tutor directory

The arm\ tutor subdirectory contains the files used for the tutorials in this guide.

THE COMMON DIRECTORY

The common directory contains subdirectories for components shared by all IAR
Embedded Workbench products.

The common\bin directory

The common\bin subdirectory contains executable files for components common to all
IAR Embedded Workbench products, such as the editor and the graphical user interface
components. The executable file for the IDE is also located here.

Part |. Product overview 21

File types

22

The common\config directory

The common\ config subdirectory contains files used by IDE for holding settings in the
development environment.

The common\doc directory

The common\doc subdirectory contains readme files with recent additional information
about the components common to all JAR Embedded Workbench products, such as the
linker and library tools. We recommend that you read these files. The directory also
contains an online version in PDF format of the /AR Linker and Library Tools Reference
Guide.

The common\plugins directory

The common\plugins subdirectory contains executable files and description files for
components that can be loaded as plugin modules, for example modules for Code
coverage and Profiling.

File types

IAR Embedded Workbench® IDE

User Guide

The ARM versions of the IAR Systems development tools use the following default
filename extensions to identify the produced files and other recognized file types:

Ext. Type of file Output from Input to

out Target application ILINK EPROM, C-SPY, etc.

asm Assembler source code Text editor Assembler

bat Windows command batch file C-SPY Windows

c C source code Text editor Compiler

cfg Syntax coloring configuration Text editor IDE

chm Online help system -- IDE

cpp C++ source code Text editor Comepiler

out Target application with debug information ILINK C-SPY and other
symbolic debuggers

dat Macros for formatting of STL containers IDE IDE

dbgt Debugger desktop settings C-SPY C-SPY

ddf Device description file Text editor C-SPY

dep Dependency information IDE IDE

dni Debugger initialization file C-SPY C-SPY

Table 3: File types

Installed files °

Ext. Type of file Output from Input to
ewd Project settings for C-SPY IDE IDE
ewp IAR Embedded Workbench project DE IDE
(current version)
ewplugin IDE description file for plugin modules -- IDE
eww Workspace file IDE IDE
fmt Formatting information for the Locals and IDE IDE
Watch windows
h C/C++ or assembler header source Text editor Compiler or
assembler
#include
helpfiles Help menu configuration file Text editor IDE
html, htm HTML document Text editor IDE
i Preprocessed source Compiler Compiler
i79 Device selection file Text editor IDE
icf Linker configuration file Text editor ILINK linker
inc Assembler header source Text editor Assembler
#include
ini Project configuration IDE -
log Log information IDE -
1st List output Compiler and -
assembler
mac C-SPY macro definition Text editor C-SPY
menu Device selection file Text editor IDE
pbd Source browse information IDE IDE
pbi Source browse information IDE IDE
pew IAR Embedded Workbench project (old IDE IDE
project format)
prj IAR Embedded Workbench project (old IDE IDE
project format)
o Object module Compiler and ILINK
assembler
s ARM assembler source code Text editor Assembler

Table 3: File types (Continued)

Part |. Product overview

23

Documentation

24

Ext. Type of file Output from Input to
vsp visualSTATE project files IAR visualSTATE 1AR visualSTATE
Designer Designer and IAR

Embedded
Workbench IDE

wsdt Workspace desktop settings IDE IDE

xcl Extended command line Text editor Assembler, compiler,
linker

Table 3: File types (Continued)

When you run the IDE, some files are created and located in dedicated directories under
your project directory, by default $PROJ_DIR$\Debug, $PROJ_DIRS\Release,
$PROJ_DIRS\settings, and the file * . dep under the installation directory. None of
these directories or files affect the execution of the IDE, which means you can safely
remove them if required.

FILES WITH NON-DEFAULT FILENAME EXTENSIONS

In the IDE you can increase the number of recognized filename extensions using the
Filename Extensions dialog box, available from the Tools menu. You can also connect
your filename extension to a specific tool in the tool chain. See Filename Extensions
dialog box, page 336.

On the command line, you can override the default filename extension by including an
explicit extension when specifying a filename.

Documentation

IAR Embedded Workbench® IDE
User Guide

This section briefly describes the information that is available in the ARM user and
reference guides, in the online help, and on the Internet.

You can access the ARM online documentation from the Help menu in the IDE. Help
is also available via the F1 key in the IDE.

We recommend that you read the file readme . htm for recent information that might not
be included in the user guides. It is located in the arm\doc directory.

THE USER AND REFERENCE GUIDES

The user and reference guides provided with AR Embedded Workbench are as follows:

IAR Embedded Workbench® IDE User Guide

This guide. For a brief overview, see What this guide contains, page XxXxviii.

Installed files °

IAR C/C++ Development Guide for ARM®

This guide provides reference information about the IAR C/C++ Compiler and the IAR
ILINK Linker for ARM. You should refer to this guide for information about:

e How to configure the compiler to suit your target processor and application
requirements

How to write efficient code for your target processor

The assembler language interface and the calling convention

The available data types

The runtime libraries

The IAR language extensions

The IAR ILINK Linker reference sections provide information about ILINK
invocation syntax, environment variables, diagnostics, options, and syntax for the
linker configuration file.

ARM® IAR Assembler Reference Guide

This guide provides reference information about the IAR Assembler, including details
of the assembler source format, and reference information about the assembler
operators, directives, mnemonics, and diagnostics.

DLIB Library Reference information

This online documentation in HTML format provides reference information about the
IAR DLIB library functions. It is available from the IAR Embedded Workbench® IDE
online help system.

IAR Embedded Workbench® MISRA C Reference Guide

This online guide in hypertext PDF format describes how IAR Systems has interpreted
and implemented the rules given in Guidelines for the Use of the C Language in Vehicle
Based Software to enforce measures for stricter safety in the ISO standard for the C
programming language [ISO/IEC 9899:1990].

ONLINE HELP

The context-sensitive online help contains reference information about the menus and
dialog boxes in the IDE. There is also keyword reference information for the DLIB
library functions. To obtain reference information for a function, select the function
name in the editor window and press F1.

Part |. Product overview 25

Documentation

IAR ON THE WEB

The latest news from IAR Systems can be found at the web site www.iar.com, available
from the Help menu in the IDE. Visit it for information about:

Product announcements

Updates and news about current versions

Special offerings

Evaluation copies of the IAR Systems products

Technical Support, including technical notes

Application notes

Links to chip manufacturers and other interesting sites

Distributors; the names and addresses of distributors in each country.

IAR Embedded Workbench® IDE
26 User Guide

http://www.iar.com

Part 2. Tutorials

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

e Creating an application project

e Debugging using the IAR C-SPY® Debugger
e Mixing C and assembler modules

e Using C++

e Simulating an interrupt

e Creating and using libraries.

N

.hmuiuhhhi

7

AAARRIE

8

o~

Creating an application
project

This chapter introduces you to the IAR Embedded Workbench® integrated
development environment (IDE). The tutorial demonstrates a typical
development cycle and shows how you use the compiler and the linker to
create a small application for the ARM core. For instance, creating a
workspace, setting up a project with C source files, and compiling and linking
your application.

The development cycle continues in the next chapter, see Debugging using the
IAR C-SPY® Debugger, page 41.

Setting up a new project
Using the IDE, you can design advanced project models. You create a workspace to
which you add one or several projects. There are ready-made project templates for both
application and library projects. Each project can contain a hierarchy of groups in which
you collect your source files. For each project you can define one or several build
configurations. For more details about designing project models, see the chapter
Managing projects in this guide.

Because the application in this tutorial is a simple application with very few files, the
tutorial does not need an advanced project model.

We recommend that you create a specific directory where you can store all your project
files. In this tutorial we call the directory projects. You can find all the files needed
for the tutorials in the arm\ tutor directory. Make a copy of the tutor directory in your
projects directory.

Before you can create your project you must first create a workspace.

CREATING A WORKSPACE WINDOW

The first step is to create a new workspace for the tutorial application. When you start
the IDE for the first time, there is already a ready-made workspace, which you can use
for the tutorial projects. If you are using that workspace, you can ignore the first step.

Choose File>New>Workspace. Now you are ready to create a project and add it to the
workspace.

Part 2. Tutorials 29

Setting up a new project

IAR Embedded Workbench® IDE
30 User Guide

CREATING THE NEW PROJECT

To create a new project, choose Project>Create New Project. The Create New
Project dialog box appears, which lets you base your new project on a project

template.

Create New Project g|

Tool chain:

Project templates:

Empty project
+|- asm
+- L+t
+-C
DLIB
Externally built executable

Drescription:

Creates an empty project.

=]

Figure 2: Create New Project dialog box

Cancel |

Make sure the Tool chain is set to ARM, and click OK.

For this tutorial, select the project template Empty project, which simply creates an

empty project that uses default project settings.

In the standard Save As dialog box that appears, specify where you want to place your
project file, that is, in your newly created projects directory. Type projectl in the
File name box, and click Save to create the new project.

The project will appear in the Workspace window.

IDebug 'l
Files IEES
Elproject! - Debug * v

project] I

Figure 3: Workspace window

Creating an application project __o

By default two build configurations are created: Debug and Release. In this tutorial only
Debug will be used. You choose the build configuration from the drop-down menu at the
top of the window. The asterisk in the project name indicates that there are changes that
have not been saved.

Note: The tutorials calls the print£ library function, which calls the low-level write
function that works in the C-SPY simulator. If you want to run the tutorials in release
configuration on real hardware, you must provide your own write function that has
been adapted to your hardware.

A project file—with the filename extension ewp—will be created in the projects
directory, not immediately, but later on when you save the workspace. This file contains
information about your project-specific settings, such as build options.

Before you add any files to your project, you should save the workspace. Choose
File>Save Workspace and specify where you want to place your workspace file. In
this tutorial, you should place it in your newly created projects directory. Type
tutorials in the File name box, and click Save to create the new workspace.

Save Workspace As EHE
Save ir: Ia projects j - £ B
|1 Debug

D setkings

File name: IME j Save I
j Cancel |

Save as type: IW’orkspace Files [*.eww]

Figure 4: New Workspace dialog box

A workspace file—with the filename extension eww—has now been created in the
projects directory. This file lists all projects that you will add to the workspace.
Information related to the current session, such as the placement of windows and
breakpoints is located in the files created in the projects\settings directory.

ADDING FILES TO THE PROJECT

This tutorial uses the source files Tutor.c and Utilities.c.

Part 2. Tutorials 31

Setting up a new project

o The Tutor. c application is a simple program using only standard features of the C
language. It initializes an array with the ten first Fibonacci numbers and prints the
result to stdout.

o Theutilities.c application contains utility routines for the Fibonacci
calculations.

Creating several groups is a possibility for you to organize your source files logically
according to your project needs. However, because there are only two files in this project
there is no need for creating a group. For more information about how to create complex
project structures, see the chapter Managing projects.

I In the Workspace window, select the destination to which you want to add a source file;
a group or, as in this case, directly to the project.

2 Choose Project>Add Files to open a standard browse dialog box. Locate the files
Tutor.c and Utilities.c, select them in the file selection list, and click Open to
add them to the projectl project.

Add Files - project1 HE

Laak in: Ia tutar j L] £ E-

[settings
CppTutor.cpp
Fibonacci.cpp

Inkerrupk.c

File name: I"Utilities.c" "Tutaor.c" j Open I
Files of type: IEI.-"EI++ Source Files [* o cpps®.cc) j Cancel |

Figure 5: Adding files to projectl

SETTING PROJECT OPTIONS

Now you will set the project options. For application projects, options can be set on all
levels of nodes. First you will set the general options to suit the processor configuration
in this tutorial. Because these options must be the same for the whole build
configuration, they must be set on the project node.

I Select the project folder icon projectl - Debug in the Workspace window and choose
Project>Options.

IAR Embedded Workbench® IDE
32 User Guide

Creating an application project __o

The Target options page in the General Options category is displayed.

Options for node *project1™ PS_<|

Category:

CiC++ Compiler
Assembler

Qukput Corwverker Target l Dutput] Library Eonfiguration] Library Options | MISRA-C
Customn Build
Build Actions

Linker + Core ARMFTOMI-S -

Debugger
Sirmulatar " Device | J
Angel
GDE Server
IAR. ROM-monitar

Processar variant

K Endian mode FFU
J-Linkj1-Trace
LM ETOI " Little Maone -
Macraigor " Big
ROI {v
Third-Party Driver -

(] 8 | Cancel

Figure 6: Setting general options

Verify the following settings:

Page Setting
Target Core: ARM7TDMI
Output Output file: Executable

Library Configuration Library: Normal

Library Configuration Library low-level interface implementation: Semihosted

Table 4: General settings for projectl

Then set up the compiler options for the project.

Part 2. Tutorials 33

Setting up a new project

34

IAR Embedded Workbench® IDE
User Guide

2 Select C/C++ Compiler in the Category list to display the compiler option pages.

Options for node “project1*™

Tty Factory Settings
General Options [Multi-file Compilation
bl .
Assembler
Output Converter Language] Code] Dplimizaliuns] Dulpul] List] Preprucessur] DAjr
Customn Build
Build Actions
Linker Language
Debugger ¢ C
Simulakar " Embedded C++
Angel " Extended Embedded C++
GDE Server " Automatic [extension based)
TAR ROM-monitor
I-Linkj1-Trace I Require prototypes
LMI FTDI Language confarmance Plain 'char' is
Macraigor & Allow 4R extensions " Signed
RET " Relaved IS50/8M5] o Ursigred
Third-Party Driver © Stict I50/4NS]
[Enable multibyte support

Ok | Cancel

Figure 7: Setting compiler options

3 Verify the following settings:

Page Setting

Optimizations Level: None (Best debug support)
Output Generate debug information

List Output list file

Assembler mnemonics

Table 5: Compiler options for projectl

4 Click OK to set the options you have specified.

Note: It is possible to customize the amount of information to be displayed in the Build
messages window. In this tutorial, the default setting is not used. Thus, the contents of
the Build messages window on your screen might differ from the screen shots.

The project is now ready to be built.

Creating an application project __o

Compiling and linking the application
You can now compile and link the application. You should also create a compiler list file
and a linker map file and view both of them.
COMPILING THE SOURCE FILES
I To compile the file Utilities.c, select it in the Workspace window.
2 Choose Project>Compile.

% Alternatively, click the Compile button in the toolbar or choose the Compile command
— from the context menu that appears when you right-click on the selected file in the
Workspace window.

The progress will be displayed in the Build messages window.

Messages |
Compiling

utilities.c

Generating Browse Info

Dane. 0 erroris). 0warning(s)

Figure 8: Compilation message

3 Compile the file Tutor. c in the same manner.

The IDE has now created new directories in your project directory. Because you are
using the build configuration Debug, a Debug directory has been created containing the
directories List, Obj, and Exe:

o The List directory is the destination directory for the list files. The list files have
the extension 1lst.

o The Obj directory is the destination directory for the object files from the compiler
and the assembler. These files have the extension o and will be used as input to the
IAR ILINK Linker.

o The Exe directory is the destination directory for the executable file. It has the
extension out and will be used as input to the IAR C-SPY® Debugger. Note that
this directory will be empty until you have linked the object files.

Part 2. Tutorials 35

Compiling and linking the application

36

IAR Embedded Workbench® IDE
User Guide

Click on the plus signs in the Workspace window to expand the view. As you can see,
IAR Embedded Workbench has also created an output folder icon in the Workspace
window containing any generated output files. All included header files are displayed as
well, showing the dependencies between the files.

VWorkspace =

| [ebug j

o
Fa

Files
Bl (P projectl - Debug v
&1 [Tutor.c «
&1 L Output
— B Tutor.o
L [Tutor phi
— [Tutorh
L [Utilities.h
&1 [Utilities.c B
&1 L Output
— B Utilities.o
L— B Utilities.phi
— [DLib_Defaults.h
— [DLib_Producth
— [DLib_Threads.h
— [stdio.h
— B Utilities.h
— [xencading_limits.h
— [ycheckh
— [ysizeth
L— B yvalsh
= [Output

Owverview project] |pr0iect2] proiect3] 4|

Figure 9: Workspace window after compilation

VIEWING THE LIST FILE

Now examine the compiler list file and notice how it is automatically updated when you,
as in this case, will investigate how different optimization levels affect the generated
code size.

Open the list file tilities.1st by double-clicking it in the Workspace window.
Examine the list file, which contains the following information:

o The header shows the product version, information about when the file was created,
and the command line version of the compiler options that were used

® The body of the list file shows the assembler code and binary code generated for
each statement. It also shows how the variables are assigned to different sections

Creating an application project __o

o The end of the list file shows the amount of stack, code, and data memory required,
and contains information about error and warning messages that might have been
generated.

Notice the amount of generated code at the end of the file and keep the file open.

2 Choose Tools>Options to open the IDE Options dialog box and click the Editor tab.
Select the option Scan for Changed Files. This option turns on the automatic update
of any file open in an editor window, such as a list file. Click the OK button.

IDE Options)

Cornrman Fonts
Key Bindings Telh s F] ¥ Syntax highlighting
Language ¥ Auto indznt

+ Indert size: 2 Canfigure.
Messages '
Project Tab Key Function v _Show line: numbers
Source Code Control ™ |nser tab ¥ Scan for changed files
Debuager —

& |ndent with spaces

Stack
[~ Enable vitual space
EDL characters: FC hal "
™ Remaove trailing blanks

¥ Shaw right margin
" Printing edge

@ Columns: o0

(u]:4 | Cancel ‘ ‘ Help |

Figure 10: Setting the option Scan for Changed Files

3 Select the file Utilities.c in the Workspace window. Open the C/C++ Compiler
options dialog box by right-clicking on the selected file in the Workspace window.
Click the Optimizations tab and select the Override inherited settings option.
Choose High from the Level drop-down list. Click OK.

Notice that the options override on the file node is indicated in the Workspace window.

4 Compile the file Utilities.c. Now you will notice two things. First, note the
automatic updating of the open list file due to the selected option Scan for Changed
Files. Second, look at the end of the list file and notice the effect on the code size due
to the increased optimization.

5 For this tutorial, the optimization level None should be used, so before linking the
application, restore the default optimization level. Open the C/C++ Compiler options
dialog box by right-clicking on the selected file in the Workspace window. Deselect the
Override inherited settings option and click OK. Recompile the file Utilities.c.

Part 2. Tutorials 37

Compiling and linking the application

LINKING THE APPLICATION
Now you should set up the options for the IAR ILINK Linker.

I Select the project folder icon projectl - Debug in the Workspace window and choose
Project>Options. Then select Linker in the Category list to display the linker option

pages.

Options for node *project1™ PZ|

Categony: Factary Settings

General Options

CC++ Compiler Config l Librar}l] Input] Dutput] List] ﬂdefine] Diagnostics] Chit|*
Assembler
Cubput Converter

Linker configuration file

Custom Build .
Build Actions ™ Overide default
- Linker | J
Debugger
Sirmulator
Angel
GDE Server Configuration file symbal definitions: [one per ling]

IAR. ROM-monitar
J-Linkj1-Trace
LMI FTDT
Macraigor

ROI

Third-Party Driver

(] 8 | Cancel |

Figure 11: Linker options dialog box for project]

For this tutorial, default factory settings are used. However, pay attention to the choice
of linker configuration file.

Output format

The linker produces an output file in the ELF format, including DWARF for debug
information. If you need to have a file in the Motorola or Intel-standard formats instead,
for example to load the file to a PROM memory, you need to convert the file. You can
use the converted provided with IAR Embedded Workbench, see Converter options,
page 409.

IAR Embedded Workbench® IDE
38 User Guide

Creating an application project __o

Linker configuration file

Program code and data are placed in memory according to the configuration specified
in the linker configuration file. It is important to be familiar with its syntax for how
sections are placed in memory. You can read more about this in the JAR C/C++
Development Guide for ARM®.

The definitions in the supplied linker configuration files are not related to any particular
hardware. The linker configuration file template supplied with the product can be used
as is in the simulator, but when using it for your target system you must adapt it to your
actual hardware memory layout. You can find linker configuration files for some
evaluation boards in src\examples.

In this tutorial you will use the default linker configuration file, which you can see on
the Config page.

If you want to examine the linker configuration file, use a suitable text editor, such as
the AR Embedded Workbench editor, or print a copy of the file, and verify that the
definitions match your requirements. Alternatively, click the Edit button to open the
linker configuration file editor.

Linker map file

By default no linker map file is generated. To generate a linker map file, click the List
tab and select the option Generate linker map file.

Click OK to save the linker options.
Now you should link the object file, to generate code that can be debugged.

Choose Project>Make. The progress will as usual be displayed in the Build messages
window. The result of the linking is a code file projectl.out with debug information
and a map file projectl.map.

VIEWING THE MAP FILE

Examine the file projectl.map to see how the sections were placed in memory.
You can read more about the map file in the /AR C/C++ Development Guide for ARM®.

The projectl.out application is now ready to be run in C-SPY.

Part 2. Tutorials 39

Compiling and linking the application

IAR Embedded Workbench® IDE
40 User Guide

Debugging using the IAR
C-SPY® Debugger

This chapter continues the development cycle started in the previous chapter
and explores the basic features of C-SPY.

Note that, depending on what IAR product package you have installed, C-SPY
might or might not be included. The tutorials assume that you are using the
C-SPY Simulator.

Debugging the application

The projectl.out application, created in the previous chapter, is now ready to be run
in C-SPY where you can watch variables, set breakpoints, view code in disassembly
mode, monitor registers and memory, and print the program output in the Terminal I[/O
window.

STARTING THE DEBUGGER
Before starting C-SPY, you must set a few options.

Choose Project>Options and then the Debugger category. On the Setup page, make
sure that you have chosen Simulator from the Driver drop-down list and that Run to
main is selected. Click OK.

Choose Project>Download and Debug. Alternatively, click the Download and
Debug button in the toolbar. C-SPY starts with the projectl. out application loaded.
In addition to the windows already opened in the IDE, a set of C-SPY-specific
windows are now available.

ORGANIZING THE WINDOWS

In the IDE, you can dock windows at specific places, and organize them in tab groups.
You can also make a window floating, which means it is always on top of other
windows. If you change the size or position of a floating window, other currently open
windows are not affected.

The status bar, located at the bottom of the Embedded Workbench main window,
contains useful help about how to arrange windows. For further details, see Organizing
the windows on the screen, page 77.

Part 2. Tutorials

41

Debugging the application

42

IAR Embedded Workbench® IDE
User Guide

Make sure the following windows and window contents are open and visible on the
screen: the Workspace window with the active build configuration tutorials — project1,
the editor window with the source files Tutor.candUtilities.c, and the Debug Log

window.

A IAR Embedded Workbench IDE

File Edt Wiew Project Debug Disassembly Simulstor Tooks Window Help
B oop
D a 2 e A
— : e
= ZaLE 2R
Z i li | Uitties.c
|Debug I~
Filas) Increase the 'call count' variable.
> Get and print the associated Fibonacei mumber.
B Elproject! - Debug v . P
Fa B Tutore static void do_toreground process (void)
| =& 0utput ¢
| | B Tutorlst igned int £ib; 000003D6 4808
AR unsigned int fib; 00000308 2100
[Tutora next_sounter () ; 000003DA 6001
|] [Tutorphi fib - ger_fib[call_count) ;
| —BTutarh put_fib(£ib ; 000003DC F7FF
| L— R Utitiesh ' 000003DE FF34
8 [liities.c . Next label is a Thw
e @ output s ?7main_0:
— [project! map Main prograw. 000003E0 4805
L& B praject] out , Prints the Fibonacci mmbers. 000003E2 6800
FoCitups o e st s
L BddLna int uain(void)
— B genericict call count = 03 000003E8 F7FF
— Enatala nir fib(): ‘ OO0003EA FFEG
I Rlshsla T ‘ 000003EC ETFB
L otre while [call_count < MAX_FIB)
T mui { Next label is a Thw
filities.o do_foreground_processi); 27main_1:
= } - 000003EE 2000 ¥
Owerview piojsct] | project? | projects 4 | » ‘ﬁll ‘ 4 | | » <18 >
* -
Messages File [
Building configuration: project! - Debug
Updating build tree...
Tutor.c -
Utilities.c
Linking |
< 3
| DebugLog Build *
Ready Errors 0, Warnings 0 UM

Figure 12: The C-SPY Debugger main

window

INSPECTING SOURCE STATEMENTS

To inspect the source statements, double-click the file Tutor. c in the Workspace

window.

With the file Tutor . c displayed in the editor window, first step over with the

Debug>Step Over command.

Alternatively, click the Step Over button on the toolbar.

The current position should be the call to the init_£ib function.

| Utities.c

- x

/:(-
Mzin program.
Prints the Fibonacci numbers.
s
int main(woid)
{
call count = 0;
2 Anit fihi);
while [call count < MAX FIE)
{
do_foreground processi():
i
i

[fol <]

Figure 13: Stepping in C-SPY

B

Choose Debug>Step Into to step into the function init_fib.

Alternatively, click the Step Into button on the toolbar.

At source level, the Step Over and Step Into commands allow you to execute your
application a statement at a time. Step Into continues stepping inside function or
subroutine calls, whereas Step Over executes each function call in a single step. For

further details, see Step, page 122.

When Step Into is executed you will notice that the active window changes to
Utilities.c asthe function init_£ib is located in this file.

4 Use the Step Into command until you reach the for loop.

unsigmed int root[MiX FIB]:
/:(-

s
void init_fib{ woid)
i
int i = 45;
root[0] = root[l] = 1;

2 for | i=z ; i<MA¥ FIB ; i++)
{
root[i] = get_fib{i) + get fih(i-1):

}
[fol <]

Initialize MAX FIB Fibonacci numbers.

Figure 14: Using Step Into in C-SPY

-
]
o

Part 2. Tutorials

Debugging using the IAR C-SPY® Debugger __4

43

Debugging the application

44

IAR Embedded Workbench® IDE
User Guide

5 Use Step Over until you are back in the header of the for loop. Notice that the step

points are on statement level, not on source line level.

INSPECTING VARIABLES

C-SPY allows you to watch variables or expressions in the source code, so that you can
keep track of their values as you execute your application. You can look at a variable in
a number of ways; for example by pointing at it in the source window with the mouse
pointer, or by opening one of the Locals, Watch, Live Watch, or Auto windows. For
more information about inspecting variables, see the chapter Working with variables and
expressions.

Note: When optimization level None is used, all non-static variables will live during
their entire scope and thus, the variables are fully debuggable. When higher levels of
optimizations are used, variables might not be fully debuggable.

Using the Auto window

Choose View>Auto to open the Auto window.

The Auto window will show the current value of recently modified expressions.

x
Expression Yalue Location Type
i 4 R4 short
rootfi] 0 0x100014 unsigned int
root <array> 0x100004 unsigned int[10]
get_fib 0x00008164 unsigned int_...
4] 3

Figure 15: Inspecting variables in the Auto window

Keep stepping to see how the values change.

Setting a watchpoint
Next you will use the Watch window to inspect variables.

Choose View>Watch to open the Watch window. Notice that it is by default grouped
together with the currently open Auto window; the windows are located as a tab group.

Set a watchpoint on the variable i using the following procedure: Click the dotted
rectangle in the Watch window. In the entry field that appears, type i and press the
Enter key.

You can also drag a variable from the editor window to the Watch window.

Select the root array in the init_fib function, then drag it to the Watch window.

Debugging using the IAR C-SPY® Debugger __4

The Watch window will show the current value of i and root. You can expand the root
array to watch it in more detail.

Expression Walue Location Type

i 5 R4 short
= root <array> 0x100004 unsigned int[10]
— [0 1 0x100004 unsigned int
= [1 0x100008 unsigned int
= [2] 2 Ox10000C unsigned int
= [3] 3 0x100010 unsigned int
— [4] 5 0x100014 unsigned int
— [5] 0 0x100018 unsigned int
— [6] 0 Ox10001C unsigned int
= [7] 0 0x100020 unsigned int
— [8] 0 0x100024 unsigned int
— 9 0 0x100028 unsigned int

Figure 16: Watching variables in the Watch window

Execute some more steps to see how the values of i and root change.

To remove a variable from the Watch window, select it and press Delete.

SETTING AND MONITORING BREAKPOINTS

C-SPY contains a powerful breakpoint system with many features. For detailed
information about the different breakpoints, see The breakpoint system, page 135.

The most convenient way is usually to set breakpoints interactively, simply by
positioning the insertion point in or near a statement and then choosing the Toggle
Breakpoint command.

Set a breakpoint on the statement root [i) using the following procedure: First, click
the Utilities.c tab in the editor window and click in the statement to position the
insertion point. Then choose Edit>Toggle Breakpoint.

Alternatively, click the Toggle Breakpoint button on the toolbar.

Part 2. Tutorials 45

Debugging the application

46

e+
e

IAR Embedded Workbench® IDE
User Guide

A breakpoint will be set at this statement. The statement will be highlighted and there
will be a red dot in the margin to show that there is a breakpoint there.

A

Initialize MAX FIB Fibonacci numbers.
s
void init_fib{ woid)
{
short i = 45;
root[0] = root[l] = 1;

for { i=2 ; i<MAX _FIE : i++)

{
L] Bootril = get fib(i) + ger_fib(i-1):
i

Figure 17: Setting breakpoints

To view all defined breakpoints, choose View>Breakpoints to open the Breakpoints
window. You can find information about the breakpoint execution in the Debug Log
window.

Executing up to a breakpoint

To execute your application until it reaches the breakpoint, choose Debug>Go.
Alternatively, click the Go button on the toolbar.

The application will execute up to the breakpoint you set. The Watch window will
display the value of the root expression and the Debug Log window will contain
information about the breakpoint.

Select the breakpoint and choose Edit>Toggle Breakpoint to remove the breakpoint.

DEBUGGING IN DISASSEMBLY MODE

Debugging with C-SPY is usually quicker and more straightforward in C/C++ source
mode. However, if you want to have full control over low-level routines, you can debug
in disassembly mode where each step corresponds to one assembler instruction. C-SPY
lets you switch freely between the two modes.

First reset your application by clicking the Reset button on the toolbar.

Choose View>Disassembly to open the Disassembly window, if it is not already
open.You will see the assembler code corresponding to the current C statement.

To view code coverage information, right-click and choose Code Coverage>Enable
and then Code Coverage>Show from the context menu in the Disassembly window.

Debugging using the IAR C-SPY® Debugger __4

Try the different step commands also in the Disassembly window and note the code
coverage information indicated by green diamonds.

Disassembly =

Goto | j |Mem0ry j
Next label is a Thumb label ~
main:
main:
¢ 00008350 EBS500 PUSH {LE}
¢ 00008352 EBOA1 SUE SP, SP, #4
¢ 00008354 4807 LLOR RO, [PC,#0x01C]
¢ 00008358 2100 MoV Rl, #0
¢ 00008358 s001 STR Rl. [RO, #0]
¢ 0000835A F7FF ; pre BL/BLX
¢ 0000835C FF35 EL init_fib
00008360 &RO00 LLOR RO, [RO, #0]
00008362 2804 CMP RO, #10
00008354 DACZ2 BGE Ox00836C hd
< ¥

Figure 18: Debugging in disassembly mode

MONITORING MEMORY

The Memory window lets you monitor selected areas of memory. In the following
example, the memory corresponding to the variable root will be monitored.

Choose View>Memory to open the Memory window.

Make the Utilities.c window active and select root. Then drag it from the C source
window to the Memory window.

The memory contents in the Memory window corresponding to root will be selected.

Goto I j IMemory

OOOEEEER 00 00 00 ﬂ
00100000 01 fea

00100008 j oz

00100010 E] as

00100018 od

00100020

00100028

00100030 cd cd

00100038 cd cd

00100040 cd cd cd cd cd LI

Figure 19: Monitoring memory

Part 2. Tutorials 47

Debugging the application

3 To display the memory contents as 16-bit data units, choose the x2 Units command
from the drop-down arrow menu on the Memory window toolbar.

Got0| ﬂ |Mem0ry ﬂ E

O0OOEf££40 0000 0O0CO OOCO OOOO COOO OOOO0 0000 o000 fJ
O0O0f£fe0 0000 OOOO 0000 0000 0000 0000 0000
OOOEEEE0 0O0OO OOOO 0000 0000 0000 0000 0000
00100000 0ooo

00100010

00100020 37

00100030 cdcd cdcd cdcd cdcd cdecd cdecd cded
00100040 cdcd cdcd cdcd cdcd cdecd cdecd cded
00100050 cdcd cdcd cdcd cdcd cdecd cdecd cded
00100060 cded cdcd cdcd cded cdecd cded cded :j

Figure 20: Displaying memory contents as 16-bit units

If not all of the memory units have been initialized by the init_£ib function of the C
application yet, continue to step over and you will notice how the memory contents will
be updated.

You can change the memory contents by editing the values in the Memory window. Just
place the insertion point at the memory content that you want to edit and type the desired
value.

Close the Memory window.

VIEWING TERMINAL I/O

Sometimes you might need to debug constructions in your application that make use of
stdin and stdout without the possibility of having hardware support. C-SPY lets you
simulate stdin and stdout by using the Terminal I/O window.

Note: The Terminal I/O window is only available in C-SPY if you have linked your
project using the Semihosted or the IAR breakpoint option. This means that some
low-level routines will be linked that direct stdin and stdout to the Terminal I/O
window, see Linking the application, page 38.

IAR Embedded Workbench® IDE
48 User Guide

Debugging using the IAR C-SPY® Debugger __4

I Choose View>Terminal 1/0 to display the output from the I/O operations.

Terminal I;0 B
Output: Loq file: OFff
1 =
1
2
3
5
8
13
21
34
55 -
K| 3
Input: LCtl codes | Input Mode... |
I— Buffer size: 1]

Figure 21: Output from the 1/O operations

The contents of the window depends on how far you have executed the application.

REACHING PROGRAM EXIT
I To complete the execution of your application, choose Debug>Go.
gl Alternatively, click the Go button on the toolbar.

As no more breakpoints are encountered, C-SPY reaches the end of the application and
a program exit reached message is printed in the Debug Log window.

Log

Mon May 14 14:42:59 2007: Download completed.

Mon May 1414:42:53 2007: Loaded debugee: ChProgram Filesi|AR Systemsh,
Embedded Workbench 5. 0harmiytutortDebughExe\projectl .out

Mon May 1414:42:53 2007: Target reset

Mon May 14 14:50:14 2007: Program exit reached.

Debug Log | Build x

Figure 22: Reaching program exit in C-SPY
All output from the application has now been displayed in the Terminal I/O window.

4—| If you want to start again with the existing application, choose Debug>Reset, or click
= the Reset button on the toolbar.

2 To exit from C-SPY, choose Debug>Stop Debugging. Alternatively, click the Stop
Debugging button on the toolbar. The Embedded Workbench workspace is displayed.
b4 gging P play

Part 2. Tutorials 49

Debugging the application

C-SPY also provides many other debugging facilities. Some of these—for example
macros and interrupt simulation—are described in the following tutorial chapters.

For further details about how to use C-SPY, see Part 4. Debugging. For reference
information about the features of C-SPY, see Part 7. Reference information and the
online help system.

IAR Embedded Workbench® IDE
50 User Guide

Mixing C and assembler
modules

In some projects it may be necessary to write certain pieces of source code
in assembler language. The chapter first demonstrates how the compiler can
be helpful in examining the calling convention, which you need to be familiar
with when calling assembler modules from C/C++ modules or vice versa.
Furthermore, this chapter demonstrates how you can easily combine source
modules written in C with assembler modules, but the procedure is applicable
to projects containing source modules written in C++, too.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Examining the calling convention

When writing an assembler routine that will be called from a C routine, it is necessary
to be aware of the calling convention used by the compiler. By creating skeleton code in
C and letting the compiler produce an assembler output file from it, you can study the

produced assembler output file and find the details of the calling convention.

In this example you will make the compiler create an assembler output file from the file
Utilities.c.

I Create a new project in the workspace tutorials used in previous tutorials, and name
the project project2.

2 Add the files Tutor.c and Utilities.c to the project.

To display an overview of the workspace, click the Overview tab available at the bottom
of the Workspace window. To view only the newly created project, click the project2
tab. For now, the project2 view should be visible.

3 To set options on file level node, in the Workspace window, select the file
Utilities.c.

Choose Project>Options. You will notice that only the C/C++ Compiler and Custom
Build categories are available.

Part 2. Tutorials 51

Adding an assembler module to the project

In the C/C++ Compiler category, select Override inherited settings and verify the
following settings:

Page Option
Optimizations Level: None (Best debug support)
List Output assembler file

Include source
Include call frame information (deselected).

Table 6: Compiler options for project?

Note: In this example it is necessary to use a low optimization level when compiling
the code to show local and global variable accesses. If a higher level of optimization is
used, the required references to local variables can be removed. The actual function
declaration is not changed by the optimization level.

Click OK and return to the Workspace window.

Compile the file utilities.c. You can find the output file Utilities.s in the
subdirectory projects\debug\list.

Note: If you have a limited product installation, it might not be possible to generate an
assembler file. In that case you can instead study the pre-generated file, located in the
tutor directory.

To examine the calling convention and to see how the C or C++ code is represented in
assembler language, open the file Utilities.s.

You can now study where and how parameters are passed, how to return to the program
location from where a function was called, and how to return a resulting value. You can
also see which registers an assembler-level routine must preserve.

To obtain the correct interface for your own application functions, you should create
skeleton code for each function that you need.

For more information about the calling convention used in the compiler, see the /AR
C/C++ Development Guide for ARM®.

Adding an assembler module to the project

IAR Embedded Workbench® IDE

52 User Guide

This tutorial demonstrates how you can easily create a project containing both assembler
modules and C modules. You will also compile the project and view the assembler
output list file.

Mixing C and assembler modules __¢

You will add an assembler module containing a __write function.This function is a
primitive output function, which is used by putchar to handle all character output. The
standard implementation of __write redirects character output to the C-SPY®
Terminal I/O window. Your own version of __write also does this, with the extra
feature that it outputs the sign * before every character written.

SETTING UP THE PROJECT

Modify project2 by adding the file irite.s.

Note: To view assembler files in the Add files dialog box, choose Project>Add Files
and choose Assembler Files from the Files of type drop-down list.

Select the project level node in the Workspace window, choose Project>Options. Use
the default settings in the General Options, C/C++ Compiler, and Linker categories.
Select the Assembler category, click the List tab, and select the option Output list file.

Options for node “project1™ E

Category: Factary Settings |

General Options

C/C++ Compiler Languagel Output List |Preprocessor| Diagnosticsl Extra Dptionsl
Custom Build V' Output list file
Ei:iLd:ctions W Include headsr ™ Include cross reference
Debugger ¥ Include listing I= | Hlefities
Simulatar [T #Hincluded text = | terrial syritics

™ Macra definitions = | Dualline spacita

v M i I
l_ acro expansions l_ Linesa"pagEZ an

™ Macro execution info
Tab spacing: IS

™ Aszembled lines anly
™ Multine code

()8 I Cancel

Figure 23: Assembler settings for creating a list file
Click OK.

Select the file write. s in the Workspace window and choose Project>Compile to
assemble it.

Assuming that the source file was assembled successfully, the file write.o will be
created, containing the linkable object code.

Part 2. Tutorials 53

Adding an assembler module to the project

IAR Embedded Workbench® IDE

54 User Guide

Viewing the assembler list file

Open the list file by double-clicking the file write. 1st available in the output folder
icon in the Workspace window.

The end of the file contains a summary of errors and warnings that were generated.
For further details of the list file format, see the ARM® I4R Assembler Reference Guide.
Choose Project>Make to relink project?2.

Start C-SPY to run the project2 . out application and see that it behaves like in the
previous tutorial, but with a * before every character written.

Output: Log file: Off

- B

ey

g
e
g
.
g
-
.
g
-

Kl _>l_I
Input: LCtl codes | Input Mode... |
|| Buffer size: 1}

Figure 24: Project2 output in terminal 1/0 window

Exit the debugger when you are done.

Using C++

In this chapter, C++ is used to create a C++ class. The class is then used for
creating two independent objects, and the application is built and debugged.
We also show an example of how to set a conditional breakpoint.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Creating a C++ application

This tutorial will demonstrate how to use the C++ features. The tutorial consists of two
files:

® Fibonacci.cpp creates a class fibonacci that can be used to extract a series of
Fibonacci numbers

® CPPtutor.cpp creates two objects, £ibl and £ib2, from the class fibonacci
and extracts two sequences of Fibonacci numbers using the £ibonacci class.

To demonstrate that the two objects are independent of each other, the numbers are
extracted at different speeds. A number is extracted from £ib1 each turn in the loop
while a number is extracted from £ib2 only every second turn.

The object £ib1 is created using the default constructor while the definition of £ib2
uses the constructor that takes an integer as its argument.
COMPILING AND LINKING THE C++ APPLICATION

I In the workspace tutorials used in the previous chapters, create a new project,
project3.

2 Add the files Fibonacci . cpp and CPPtutor. cpp to project3.

Part 2. Tutorials 55

Creating a C++ application

3 Choose Project>Options and make sure the following options are selected:

Category Page Option
General Options Target ARM7TDMI
C/C++ Compiler Language Embedded C++

Table 7: Project options for Embedded C++ tutorial

All you need to do to switch to the Embedded C++ programming language is to choose
the language option Embedded C++.

4 Choose Project>Make to compile and link your application.

ooo Alternatively, click the Make button on the toolbar. The Make command compiles and
Z links those files that have been modified.

5 Choose Project>Debug to start C-SPY.

SETTING A BREAKPOINT AND EXECUTING TO IT
I Open the CPPtutor.cpp window if it is not already open.

2 To see how the object is constructed, set a breakpoint on the C++ object fib1 on the
following line:

fibonacci fibl;

CppTutor.cpp s =R T

#include <iostreams j

#include "Fibonacci.h™

Sint mainiwoid)
{

A4 Create two fibonacci objects.

@ ctibonacci -:

fibonacci £ibZ(7): A4 FibZ starts at Fibonacci mumber 7.

A Extract two series of Fibonaccl numbers.
for (int i = 1:; i < 30; +i)
{

cout << fibl.next():

A I "It is even, we print out the next Fibonacci number of
A4 the sequence represented by fibZ.
if (i % 2 == 0}
{
cout <« " " L fibZ.nexti):

4 >
[fol [« |>|_I

Figure 25: Setting a breakpoint in CPPtutor.cpp

3 Choose Debug>Go, or click the Go button on the toolbar.

IAR Embedded Workbench® IDE
56 User Guide

Using C++ ___ 4

The cursor should now be placed at the breakpoint.

To step into the constructor, choose Debug>Step Into or click the Step Into button in
the toolbar. Then click Step Out again.

Step Over until the line:
cout << fibl.next();
Step Into until you are in the function next in the file Fibonacci. cpp.

Use the Go to function button in the lower left corner of the editor window to find and
go to the function nth by double-clicking the function name. Set a breakpoint on the
function call nth (n-1) at the line

value = nth(n-1) + nth(n-2);

It can be interesting to backtrace the function calls a few levels down and to examine
the value of the parameter for each function call. By adding a condition to the
breakpoint, the break will not be triggered until the condition is true, and you will be
able to see each function call in the Call Stack window.

To open the Breakpoints window, choose View>Breakpoints. Select the breakpoint in
the Breakpoints window, right-click to open the context menu, and choose Edit to open
the Edit Breakpoints dialog box. Set the value in the Skip count text box to 4 and click
OK.

Close the dialog box.

Looking at the function calls

Choose Debug>Go to execute the application until the breakpoint condition is
fulfilled.

When C-SPY stops at the breakpoint, choose View>Call Stack to open the Call Stack
window.

3 fibonacci:nth(ing

©nth(3)

[Pestartup_call_main + 0xd]

Figure 26: Inspecting the function calls

Part 2. Tutorials

57

Creating a C++ application

There are five instances of the function nth displayed on the call stack. Because the Call
Stack window displays the values of the function parameters, you can see the different
values of n in the different function instances.

You can also open the Register window to see how it is updated as you trace the function
calls by double-clicking on the function instances.

PRINTING THE FIBONACCI NUMBERS
I Open the Terminal I/O window from the View menu.
2 Remove the breakpoints and run the application to the end and verify the Fibonacci

sequences being printed.

Terminal I;0 B

Output: Log file: Off

A fibonacci ohjectwas created. o
A fibonacc ohjectthat starts at fibonacc number 7 was created.

1
113
2
32
5
g 34
13

21 55
34

o o

Input: LCtl codes | InputMode...l

I Buffer size: 1]

Figure 27: Printing Fibonacci sequences

IAR Embedded Workbench® IDE
58 User Guide

Simulating an interrupt

In this tutorial an interrupt handler for a serial port is added to the project.
The Fibonacci numbers will be read from an on-chip communication
peripheral device (UART).

This tutorial will show how the compiler keywords __irq and __arm can be
used. The tutorial will also show how an interrupt can be simulated using the
features that support interrupts, breakpoints, and macros. Notice that this
example does not describe an exact simulation; the purpose is to illustrate a
situation where C-SPY® macros, breakpoints, and the interrupt system can be
useful to simulate hardware.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Note that interrupt simulation is possible only when you are using the IAR
C-SPY Simulator.

Adding an interrupt handler

This section will demonstrate how to write an interrupt in an easy way. It starts with a
brief description of the application used in this project, followed by a description of how
to set up the project.

THE APPLICATION—A BRIEF DESCRIPTION

The interrupt handler will read values from the serial communication port receive
register (UART), UARTRBRTHR (in header files __UARTRBRTHR). It will then print the
value. The main program enables interrupts and starts printing periods (.) in the
foreground process while waiting for interrupts.

WRITING AN INTERRUPT HANDLER

The following lines define the interrupt handler used in this tutorial (the complete source
code can be found in the file Interrupt.c supplied in the arm\ tutor directory):

/* define the IRQ handler */
__irg __arm void irqgHandler (void)

Part 2. Tutorials

59

Setting up the simulation environment

60

The __irqgkeyword is used for directing the compiler to use the calling convention
needed for an interrupt function. The __arm keyword is used for making sure that the
IRQ handler is compiled in ARM mode. In this example only UART receive interrupts
are used, so there is no need to check the interrupt source. In the general case however,
when several interrupt sources are used, an interrupt service routine must check the
source of an interrupt before action is taken.

For detailed information about the extended keywords and pragma directives used in
this tutorial, see the 4R C/C++ Development Guide for ARM®.
SETTING UP THE PROJECT

Add a new project—project4—to the workspace tutorials used in previous
tutorials.

Add the files Utilities.c and Interrupt.c toit.

In the Workspace window, select the project level node and choose
Project>Options. Select the General Options category, and click the Target tab.
Choose ARM7TDMI from the Core drop-down menu.

Select the C/C++ Compiler category, and click the Code tab. Select the option
Generate interwork code.

In addition, make sure the factory settings are used in the C/C++ Compiler and Linker
categories. Next you will set up the simulation environment.

Setting up the simulation environment

IAR Embedded Workbench® IDE
User Guide

The C-SPY interrupt system is based on the cycle counter. You can specify the amount
of cycles to pass before C-SPY generates an interrupt.

To simulate the input to UART, values will be read from the file InputData. txt,
which contains the Fibonacci series. You will set an immediate read breakpoint on the
UART receive register, UARTRBRTHR, and connect a user-defined macro function to it
(in this example the Access macro function). The macro reads the Fibonacci values
from the text file.

Whenever an interrupt is generated, the interrupt routine will read UARTRBRTHR and the
breakpoint will be triggered, the Access macro function will be executed and the
Fibonacci values will be fed into the UART receive register.

The immediate read breakpoint will trigger the break before the processor reads the
UARTRBRTHR register, allowing the macro to store a new value in the register that is
immediately read by the instruction.

Simulating an interrupt __o

This section will demonstrate the steps involved in setting up the simulator for
simulating a serial port interrupt. The steps involved are:

o Defining a C-SPY setup file which will open the file InputData. txt and define
the Access macro function

Specifying debugger options

Building the project

Starting the simulator

Specifying the interrupt request

Setting the breakpoint and associating the Access macro function to it.

Note: For a simple example of a system timer interrupt simulation, see Simulating a
simple interrupt, page 195.

DEFINING A C-SPY SETUP MACRO FILE

In C-SPY, you can define setup macros that will be registered during the C-SPY startup
sequence. In this tutorial you will use the C-SPY macro file SetupSimple.mac,
available in the arm\ tutor directory. It is structured as follows:

First the setup macro function execUserSetup is defined, which is automatically
executed during C-SPY setup. Thus, it can be used to set up the simulation environment
automatically. A message is printed in the Log window to confirm that this macro has
been executed:

execUserSetup ()
{
__message "execUserSetup() called\n";

Then the file TnputData. txt, which contains the Fibonacci series to be fed into
UART, will be opened:

_fileHandle = __openFile(
"STOOLKIT_DIRS\\tutor\\InputData.txt", "r");

After that, the macro function Access is defined. It will read the Fibonacci values from
the file InputData. txt, and assign them to the receive register address:

Access ()
{
__message "Access () called\n";
__var _fibvalue;
if(0 == __readFile(_fileHandle, &_fibvalue))
{
UARTRBRTHR = _fibvalue;

Part 2. Tutorials 61

Setting up the simulation environment

62

IAR Embedded Workbench® IDE
User Guide

You will have to connect the Access macro to an immediate read breakpoint. However,
this will be done at a later stage in this tutorial.

Finally, the file contains two macro functions for managing correct file handling at reset
and exit.

For detailed information about macros, see the chapters Using the C-SPY® macro
system and C-SPY® macros reference.

Next you will specify the macro file and set the other debugger options needed.

SETTING C-SPY OPTIONS

To set debugger options, choose Project>Options. In the Debugger category, click the
Setup tab.

Use the Use macro file browse button to specify the macro file to be used:
SetupSimple.mac

Alternatively, use an argument variable to specify the path:

STOOLKIT_ DIRS\tutor\SetupSimple.mac

See Argument variables summary, page 306, for details.

Options for node *project4”

Categony: Factory Settings

General Options

CiC++ Compiler Setup l Download] Extra Dptions] F'Iugins]
Assembler
Qutput Converter Dirivver ¥ Runto
Customn Build Simulator - ’maini
Build Actions
Linker
Simlator Setup macroz
angel W Use macro file
1AR ROMmanitor [$PROJ_DIR$ SetupSimple.mac [
J-Linkj1-Trace
LMI FTDT Device description file
Macrai
R;;ralgor W Overide default
Third-Party Driver |$TDDLKIT_DIF|$\EIDNFIG\debugger\DKI\iomIB?4DD‘I .ddf J

()3 | Cancel

Figure 28: Specifying setup macro file

Simulating an interrupt __o

Set the Device description file option to 1om1674001 .dd£. This file makes it possible
to view the value of UARTRBRTHR in the Register window and provides the interrupt
definitions that are needed by the interrupt system.

Select Run to main and click OK. This will ensure that the debug session will start by
running to the main function.

The project is now ready to be built.

BUILDING THE PROJECT

Compile and link the project by choosing Project>Make.

Alternatively, click the Make button on the toolbar. The Make command compiles and
links those files that have been modified.

STARTING THE SIMULATOR

Start C-SPY to run the project4 project.

The Interrupt.c window is displayed (among other windows). Click in it to make it the
active window.

Examine the Log window. Note that the macro file has been loaded and that the
execUserSetup function has been called.

SPECIFYING A SIMULATED INTERRUPT

Now you will specify your interrupt to make it simulate an interrupt every 2000 cycles.

Choose Simulator>Interrupt Setup to display the Interrupt Setup dialog box. Click
New to display the Edit Interrupt dialog box and make the following settings for your
interrupt:

Setting Value Description
Interrupt IRQ Specifies which interrupt to use;
Description As is The interrupt definition that the simulator uses to be

able to simulate the interrupt correctly.

First activation 4000 Specifies the first activation moment for the
interrupt. The interrupt is activated when the cycle
counter has passed this value.

Repeat Interval 2000 Specifies the repeat interval for the interrupt,
measured in clock cycles.

Hold time Infinite Hold time, not used here.

Table 8: Interrupts dialog box

Part 2. Tutorials

63

Setting up the simulation environment

64

IAR Embedded Workbench® IDE
User Guide

Setting Value Description

Probability % 100 Specifies probability. 100% specifies that the
interrupt will occur at the given frequency. Another
percentage might be used for simulating a more
random interrupt behavior.

Variance % 0 Time variance, not used here.

Table 8: Interrupts dialog box (Continued)

Edit Interrupt E

Interrupt:

fFa =
Drescription: Cancel |
[10:16 CPSRLI

First activatior:

4000 Hold tirne

& Infirite
Fiepeat interval:

r
[2000 r
Wariance [%]: Probability [%]:

[= N =

Figure 29: Inspecting the interrupt settings

During execution, C-SPY will wait until the cycle counter has passed the activation
time. When the current assembler instruction is executed, C-SPY will generate an
interrupt which is repeated approximately every 2000 cycles.

When you have specified the settings, click OK to close the Edit Interrupt dialog box,
and then click OK to close the Interrupt Setup dialog box.

For information about how you can use the system macro __orderInterrupt in a
C-SPY setup file to automate the procedure of defining the interrupt, see Using macros
for interrupts and breakpoints, page 67.

SETTING AN IMMEDIATE BREAKPOINT

By defining a macro and connecting it to an immediate breakpoint, you can make the
macro simulate the behavior of a hardware device, for instance an I/O port, as in this
tutorial. The immediate breakpoint will not halt the execution, only temporarily suspend
it to check the conditions and execute any connected macro.

Simulating an interrupt __o

In this example, the input to the UART is simulated by setting an immediate read
breakpoint on the UARTRBRTHR address and connecting the defined Access macro to it.
The macro will simulate the input to the UART. These are the steps involved:

I Choose View>Breakpoints to open the Breakpoints window, right-click to open the
context menu, choose New Breakpoint>Immediate to open the Immediate tab.

2 Add the following parameters for your breakpoint.

Setting Value Description

Break at UARTRBRTHR Receive buffer address.

Access Type Read The breakpoint type (Read or Write)
Action Access () The macro connected to the breakpoint.

Table 9: Breakpoints dialog box

During execution, when C-SPY detects a read access from the UARTRBRTHR address,
C-SPY will temporarily suspend the simulation and execute the Access macro. The
macro will read a value from the file InputData. txt and write it to UARTRBRTHR.
C-SPY will then resume the simulation by reading the receive buffer value in
UARTRBRTHR.

3 Click OK to close the breakpoints dialog box.

For information about how you can use the system macro __setSimBreak in a C-SPY
setup file to automate the breakpoint setting, see Using macros for interrupts and
breakpoints, page 67.

Simulating the interrupt

In this section you will execute your application and simulate the serial port interrupt.

EXECUTING THE APPLICATION

I Step through the application and stop when it reaches the while loop, where the
application waits for input.

2 In the Interrupt.c source window, locate the function irgHandler.

3 Place the insertion point on the ++callCount; statement in this function and set a
breakpoint by choosing Edit>Toggle Breakpoint, or click the Toggle Breakpoint
button on the toolbar. Alternatively, use the context menu.

If you want to inspect the details of the breakpoint, choose Edit>Breakpoints.

4 The Register window lets you monitor and modify the contents of the processor
registers.

Part 2. Tutorials 65

Simulating the interrupt

66

IAR Embedded Workbench® IDE
User Guide

To inspect the contents of the serial communication port receive register UARTRBRTHR,
choose View>Register to open the Register window. Choose UART from the drop
down list.

Register 5]
UAR hd
[HUARTLCR = 0x03
[HUARTMCR = 0x00
[HUARTLSR = 0x00
[HUARTMSR = 0x00
TARTSCR = 0x00

Figure 30: Register window

Run your application by choosing Debug>Go or clicking the Go button on the toolbar.
The application should stop in the interrupt function.

Note how the contents of UARTRBRTHR has been updated.

Open the Terminal I/O window and run your application by choosing Debug>Go or
clicking the Go button on the toolbar.

The application should stop in the interrupt function.

Click Go again in order to see the next number being printed in the Terminal I/O
window.

Because the main program has an upper limit on the Fibonacci value counter, the tutorial
application will soon reach the exit label and stop.

Simulating an interrupt __o

The Terminal I/O window will display the Fibonacci series.

Log file: Off

=

< _>l_I
Input: LCtl codes | InputMode...l

I Buffer size: 1]

Figure 31: Printing the Fibonacci values in the Terminal I/O window

Using macros for interrupts and breakpoints
To automate the setting of breakpoints and the procedure of defining interrupts, the
system macros __setSimBreak and __orderInterrupt, respectively, can be
executed by the setup macro execUserSetup.

The file SetupAdvanced.mac is extended with system macro calls for setting the
breakpoint and specifying the interrupt:

SimulationSetup ()
{...
_interruptID = _ _orderInterrupt("IRQ", 4000,
2000, 0, 1, 0, 100);
if(-1 == _interruptID)

{

__message "ERROR: failed to order interrupt";

_breakID = __setSimBreak("UARTRBRTHR", "R", "Access()");

}

By replacing the file SetupSimple.mac, used in the previous tutorial, with the file
SetupAdvanced.mac, setting the breakpoint and defining the interrupt will be
automatically performed at C-SPY startup. Thus, you do not need to start the simulation
by manually filling in the values in the Interrupts and Breakpoints dialog boxes.

Part 2. Tutorials 67

Using macros for interrupts and breakpoints

Note: Before you load the file Setupadvanced.mac you should remove the
previously defined breakpoint and interrupt.

IAR Embedded Workbench® IDE
68 User Guide

Creating and using
libraries

This tutorial demonstrates how to create a library project and how you can

combine it with an application project.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Using libraries

If you are working on a large project you will soon accumulate a collection of useful
modules containing one or more routines that can be used by several of your
applications. To avoid having to assemble or compile a module each time it is needed,
you can store such modules as object files, that is, assembled or compiled but not linked.

You can collect many modules in a single object file which then is referred to as a
library. It is recommended that you use library files to create collections of related
routines, such as a device driver.

Use the GNU utility ar to build libraries.

The Main.s program

The Main.s program uses a routine called max to set the contents of the register R1 to
the maximum value of the word registers R1 and R2. The EXTERN directive declares max
as an external symbol, to be resolved at link time.

A copy of the program is provided in the arm\ tutor directory.

The library routines

The two library routines will form a separately assembled library. It consists of the max
routine called by main, and a corresponding min routine, both of which operate on the
contents of the registers R1 and R2 and return the result in R1. The files containing these

library routines are called Max . s and Min. s, and copies are provided with the product.

The PUBLIC directive makes the max and min symbols public to other modules.

For detailed information about the PUBLIC directive, see the ARM® IAR Assembler
Reference Guide.

Part 2. Tutorials

69

Using libraries

70

IAR Embedded Workbench® IDE
User Guide

CREATING A NEW PROJECT

In the workspace tutorials used in previous chapters, add a new project called
projects.

Add the file Main. s to the new project.

To set options, choose Project>Options. Select the General Options category and
click the Library Configuration tab. Choose None from the Library drop-down list,
which means that a standard C/C++ library will not be linked.

The default options are used for the other option categories.
To assemble the file Main. s, choose Project>Compile.

You can also click the Compile button on the toolbar.

CREATING A LIBRARY PROJECT

Now you are ready to create a library project.

In the same workspace tutorials, add a new project called tutor_library.
Add the files Max.s and Min. s to the project.

To set options, choose Project>Options. In the General Options category, verify the
following settings:

Page Option

Output Output file: Library

Library Configuration Library: None

Table 10: General options for a library project

Note that Library Builder appears in the list of categories, which means that the
GNUutility ar is added to the build tool chain. It is not necessary to set any ar-specific
options for this tutorial.

Click OK.
Choose Project>Make.

The library output file tutor_library.a has now been created.

USING THE LIBRARY IN YOUR APPLICATION PROJECT
You can now add your library containing the maxmin routine to projects5.

In the Workspace window, click the projectS tab. Choose Project>Add Files and add
the file tutor_library.a located in the projects\Debug\Exe directory. Click
Open.

Creating and using libraries ___¢

Click Make to build your project.

You have now combined a library with an executable project, and the application is
ready to be executed. For information about how to manipulate the library, see the
GNU Binary Utils documentation available on the Help menu.

Part 2. Tutorials 71

Using libraries

IAR Embedded Workbench® IDE
72 User Guide

Part 3. Project
management and building

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

e The development environment
e Managing projects
o Building

o Editing.

: .hmuhhhhi

AAARRIE

4

~

The development
environment

This chapter introduces you to the IAR Embedded Workbench® development
environment (IDE). The chapter also demonstrates how you can customize
the environment to suit your requirements.

The IAR Embedded Workbench IDE
THE TOOL CHAIN

The IDE is the framework where all necessary tools—the fool chain—are seamlessly
integrated: a C/C++ compiler, an assembler, the IAR ILINK Linker and its
accompanying tools, an editor, a project manager with Make utility, and the IAR
C-SPY® Debugger, which is a high-level language debugger. The tools used
specifically for building your source code are referred to as the build tools.

The tool chain that comes with your product installation is adapted for a certain
microcontroller. However, the IDE can simultaneously manage multiple tool chains for
various microcontrollers.

You can also add IAR visualSTATE to the tool chain, which means that you can add state
machine diagrams directly to your project in the IDE.

You can use the Custom Build mechanism to incorporate also other tools to the tool
chain, see Extending the tool chain, page 96.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

Part 3. Project management and building 75

The IAR Embedded Workbench IDE

% 1AR Embedded Workbench IDE

This illustration shows the IAR Embedded Workbench IDE window with different
components.

[_[o]x]
Menu bar — Fie Edt Wew Project Tools Window Help
Toolbar — DS EH@ S8 == o Ay wnEBe e dn BWE LD
i Ut\ht\as‘c o0
project - Debug =~
e %] ﬂ Increase the 'call count' variable.
Get and print the associzted Fibonacci mmber.
B Bltutarials .
el project - Debug [« | [il RSN dn_foreground_process (void)
| [Tutor.c ¢ L Editor
| [Utilties.c unsigned int fib; window
| L@ output next_counter) ;
@ Blproject? - Debug v fib - ger_fib[call_count) ;
-8 Blproject3 - Debug v put_fib(£ib ;
pro]ect4-Debug v)
Blprojects - Debug v
Workspace tulnr_l\brary-Debug v s
ind Main program.
window Prints the Fibonacci mumbers.
4
void main(void)
{
call_count = 0;
init_fib();
while { call_count < MAX_FIB)
do_foreground processi);
i
Overview project2 | proieet 4 [v 10 (4] >
| Messages
Building configuration: project] - Debug
Updating build tree
Caonfiguration is up-to-date
Messages
windows

4]

Status bar — Ready

i | s
= Build [Debug Loa | Tool Gutput [Find in Files &
|tn 29, Col21 [fum | v

Figure 32: IAR Embedded Workbench IDE window

The window might look different depending on what additional tools you are using.

RUNNING THE IDE

Click the Start button on the taskbar and choose All Programs>IAR Systems>IAR
Embedded Workbench for ARM>IAR Embedded Workbench.

The file TarIdePm. exe is located in the common\bin directory under your IAR

installation, in case you want to start the program from the command line or from within
Windows Explorer.

IAR Embedded Workbench® IDE

76 User Guide

The development environment ___¢

Double-clicking the workspace filename

The workspace file has the filename extension eww. If you double-click a workspace
filename, the IDE starts. If you have several versions of IAR Embedded Workbench
installed, the workspace file will be opened by the most recently used version of your
IAR Embedded Workbench that uses that file type.

EXITING

To exit the IDE, choose File>Exit. You will be asked whether you want to save any
changes to editor windows, the projects, and the workspace before closing them.

Customizing the environment

The IDE is a highly customizable environment. This section demonstrates how you can
work with and organize the windows on the screen, the possibilities for customizing the
IDE, and how you can set up the environment to communicate with external tools.

ORGANIZING THE WINDOWS ON THE SCREEN

In the IDE, you can position the windows and arrange a layout according to your
preferences. You can dock windows at specific places, and organize them in tab groups.
You can also make a window floating, which means it is always on top of other
windows. If you change the size or position of a floating window, other currently open
windows are not affected.

Each time you open a previously saved workspace, the same windows are open, and they
have the same sizes and positions.

For every project that is executed in the C-SPY environment, a separate layout is saved.
In addition to the information saved for the workspace, information about all open
debugger-specific windows is also saved.

Using docked versus floating windows

Each window that you open has a default location, which depends on other currently
open windows. To give you full and convenient control of window placement, each
window can either be docked or floating.

A docked window is locked to a specific area in the Embedded Workbench main
window, which you can decide. To keep many windows open at the same time, you can
organize the windows in tab groups. This means one area of the screen is used for several
concurrently open windows. The system also makes it easy to rearrange the size of the
windows. If you rearrange the size of one docked window, the sizes of any other docked
windows are adjusted accordingly.

Part 3. Project management and building 77

Customizing the environment

78

IAR Embedded Workbench® IDE
User Guide

A floating window is always on top of other windows. Its location and size does not
affect other currently open windows. You can move a floating window to any place on
your screen, also outside of the IAR Embedded Workbench IDE main window.

Note: The editor window is always docked. When you open the editor window, its
placement is decided automatically depending on other currently open windows. For
more information about how to work with the editor window, see Using the IAR
Embedded Workbench editor, page 99.

Organizing windows
To place a window as a separate window, drag it next to another open window.

To place a window in the same tab group as another open window, drag the window you
want to locate to the middle of the area and drop the window.

To make a window floating, double-click on the window’s title bar.

The status bar, located at the bottom of the IAR Embedded Workbench IDE main
window, contains useful help about how to arrange windows.

CUSTOMIZING THE IDE

To customize the IDE, choose Tools>Options to get access to a vide variety of
commands for:

Configuring the editor

Configuring the editor colors and fonts

Configuring the project build command

Organizing the windows in C-SPY

Using an external editor

Changing common fonts

Changing key bindings

Configuring the amount of output to the Messages window.

In addition, you can increase the number of recognized filename extensions. By default,
each tool in the build tool chain accepts a set of standard filename extensions. If you
have source files with a different filename extension, you can modify the set of accepted
filename extensions. Choose Tools>Filename Extensions to get access to the necessary
commands.

For reference information about the commands for customizing the IDE, see Tools
menu, page 313. You can also find further information related to customizing the editor
in the section Customizing the editor environment, page 105. For further information
about customizations related to C-SPY, see Part 4. Debugging.

INVOKING EXTERNAL TOOLS

The development environment ___¢

The Tools menu is a configurable menu to which you can add external tools for
convenient access to these tools from within the IDE. For this reason, the menu might
look different depending on which tools you have preconfigured to appear as menu

commands.

To add an external tool to the menu, choose Tools>Configure Tools to open the

Configure Tools dialog box.

Configure Tools

Menu Content:
Cancel
Mew
Remove |
Menu Text:
I&Notepad
Command:
IE:\W’INNT\Notepad.exe Browse... |
Argument:

Initial Directary:

™ Redirect to Output \Window

™ Prampt for Cormand Line

Tool Available:

IAIways j

Figure 33: Configure Tools dialog box

For reference information about this dialog box, see Configure Tools dialog box, page

334.

Note: It is not possible to use the Configure Tools dialog box to extend the tool chain

in the IDE, see The tool chain, page 75.

Part 3. Project management and building 79

Customizing the environment

80

IAR Embedded Workbench® IDE
User Guide

After you have entered the appropriate information and clicked OK, the menu command
you have specified is displayed on the Tools menu.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 34: Customized Tools menu

Note: If you intend to add an external tool to the standard build tool chain, see
Extending the tool chain, page 96.
Adding command line commands

Command line commands and calls to batch files must be run from a command shell.
You can add command line commands to the Tools menu and execute them from there.

To add commands to the Tools menu, you must specify an appropriate command shell.
Type one of the following command shells in the Command text box:

System Command shell

Windows 2000/XP/Vista cmd.exe (recommended) or command. com

Table 11: Command shells

Specity the command line command or batch file name in the Argument text box.
The Argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /c option terminates the shell after execution, to allow the IDE to detect when the
tool has finished.

Example

To add the command Backup to the Tools menu to make a copy of the entire project
directory to a network drive, you would specify Command either as command . cmd or
as cmd. exe depending on your host environment, and Argument as:

/C copy c:\project*.* F:
Alternatively, to use a variable for the argument to allow relocatable paths:

/C copy S$PROJ_DIRS*.* F:

Managing projects

This chapter discusses the project model used by the IAR Embedded
Workbench IDE. It covers how projects are organized and how you can specify
workspaces with multiple projects, build configurations, groups, source files,
and options that help you handle different versions of your applications. The
chapter also describes the steps involved in interacting with an external
third-party source code control system.

The project model

In a large-scale development project, with hundreds of files, you must be able to
organize the files in a structure that is easily navigated and maintained by perhaps
several engineers involved.

The IDE is a flexible environment for developing projects also with a number of
different target processors in the same project, and a selection of tools for each target
processor.

HOW PROJECTS ARE ORGANIZED

The IDE has been designed to suit the way that software development projects are
typically organized. For example, perhaps you need to develop related versions of an
application for different versions of the target hardware, and you might also want to
include debugging routines into the early versions, but not in the final application.

Versions of your applications for different target hardware will often have source files
in common, and you might want to be able to maintain only one unique copy of these
files, so that improvements are automatically carried through to each version of the
application. Perhaps you also have source files that differ between different versions of
the application, such as those dealing with hardware-dependent aspects of the
application.

The IDE allows you to organize projects in a hierarchical tree structure showing the
logical structure at a glance. In the following sections the different levels of the
hierarchy are described.

Projects and workspaces

Typically you create a project which contains the source files needed for your embedded
systems application. If you have several related projects, you can access and work with
them simultaneously. To achieve this, you can organize related projects in workspaces.

Part 3. Project management and building

81

The project model

82

IAR Embedded Workbench® IDE
User Guide

Each workspace you define can contain one or more projects, and each project must be

part of at least one workspace.

Consider this example: two related applications—for instance A and B—will be
developed, requiring one development team each (team A and B). Because the two
applications are related, parts of the source code can be shared between the applications.
The following project model can be applied:

o Three projects—one for each application, and one for the common source code

o Two workspaces—one for team A and one for team B.

It is both convenient and efficient

to collect the common sources in a library project

(compiled but not linked object code), to avoid having to compile it unnecessarily.

=

Project for application A

Utility
library

=

Project for application B

Library project for

common sources

Workspace for team A Om

Workspace for team B O m

Project for application A

Project for utility library

Project for application B

Project for utility library

Figure 35: Examples of workspaces and projects

For an example where a library project has been combined with an application project,
see the chapter Creating and using libraries in Part 2. Tutorials.

Managing projects °

Projects and build configurations

Often, you need to build several versions of your project. The Embedded Workbench
lets you define multiple build configurations for each project. In a simple case, you
might need just two, called Debug and Release, where the only differences are the
options used for optimization, debug information, and output format. In the Release
configuration, the preprocessor symbol NDEBUG is defined, which means the application
will not contain any asserts.

Additional build configurations can be useful, for instance, if you intend to use the
application on different target devices. The application is the same, but hardware-related
parts of the code differ. Thus, depending on which target device you intend to build for,
appropriate source files can be excluded from the build configuration. The following
build configurations might fulfil these requirements for Project A:

Project A - Device 1:Release
Project A - Device 1:Debug

°
°
e Project A - Device 2:Release
°

Project A - Device 2:Debug

Groups

Normally, projects contain hundreds of files that are logically related. You can define
each project to contain one or more groups, in which you can collect related source files.
You can also define multiple levels of subgroups to achieve a logical hierarchy. By
default, each group is present in all build configurations of the project, but you can also
specify a group to be excluded from a particular build configuration.

Source files

Source files can be located directly under the project node or in a hierarchy of groups.
The latter is convenient if the amount of files makes the project difficult to survey. By
default, each file is present in all build configurations of the project, but you can also
specify a file to be excluded from a particular build configuration.

Only the files that are part of a build configuration will actually be built and linked into
the output code.

Once a project has been successfully built, all include files and output files are displayed
in the structure below the source file that included or generated them.

Note: The settings for a build configuration can affect which include files that will be
used during compilation of a source file. This means that the set of include files
associated with the source file after compilation can differ between the build
configurations.

Part 3. Project management and building 83

The project model

84

IAR Embedded Workbench® IDE
User Guide

CREATING AND MANAGING WORKSPACES

This section describes the overall procedure for creating the workspace, projects,
groups, files, and build configurations. The File menu provides the commands for
creating workspaces. The Project menu provides commands for creating projects,
adding files to a project, creating groups, specifying project options, and running the
IAR Systems development tools on the current projects.

For reference information about these menus, menu commands, and dialog boxes, see
the chapter JAR Embedded Workbench® IDE reference.

The steps involved for creating and managing a workspace and its contents are:

o Creating a workspace.

An empty Workspace window appears, which is the place where you can view your
projects, groups, and files.

o Adding new or existing projects to the workspace.

When creating a new project, you can base it on a femplate project with
preconfigured project settings. There are template projects available for C
applications, C++ applications, assembler applications, and library projects.

o Creating groups.

A group can be added either to the project’s top node or to another group within the
project.

o Adding files to the project.
A file can be added either to the project’s top node or to a group within the project.
o Creating new build configurations.

By default, each project you add to a workspace will have two build configurations
called Debug and Release.

You can base a new configuration on an already existing configuration. Alternatively,
you can choose to create a default build configuration.

Note that you do not have to use the same tool chain for the new build configuration
as for other build configurations in the same project.

o Excluding groups and files from a build configuration.

Note that the icon indicating the excluded group or file will change to white in the
Workspace window.

e Removing items from a project.
For a detailed example, see Creating an application project, page 29.

Note: It might not be necessary for you to perform all of these steps.

Managing projects °

Drag and drop

You can easily drag individual source files and project files from the Windows file
explorer to the Workspace window. Source files dropped on a group will be added to that
group. Source files dropped outside the project tree—on the Workspace window
background—will be added to the active project.

Source file paths
The IDE supports relative source file paths to a certain degree.

o Project file

Paths to files part of the project file is relative if they are located on the same drive.
The path is relative either to $PROJ_DIRS or $EW_DIRS. The argument variable
$EW_DIRS is only used if the path refers to a file located in subdirectory to EW_DIRS
and the distance from $EW_DIRS is shorter than the distance from $PROJ_DIRS.

Paths to files that are part of the project file are absolute if the files are located on
different drives.

o Workspace file

For files located on the same drive as the workspace file, the path is relative to
$PROJ_DIRS.

For files located on another drive as the workspace file, the path is absolute.
o Debug files
The path is absolute if the file is built with IAR compilation tools.

Starting the IAR C-SPY® Debugger

When you start the IAR C-SPY Debugger, the current project is loaded. It is also
possible to load C-SPY with a project that was built outside IAR Embedded Workbench,
for example projects built on the command line. For more information, see Starting
C-SPY, page 117.

Navigating project files

There are two main different ways to navigate your project files: using the Workspace
window or the Source Browser window. The Workspace window displays an
hierarchical view of the source files, dependency files, and output files and how they are
logically grouped. The Source Browser window, on the other hand, displays information
about the build configuration that is currently active in the Workspace window. For that
configuration, the Source Browser window displays a hierarchical view of all globally
defined symbols, such as variables, functions, and type definitions. For classes,
information about any base classes is also displayed.

Part 3. Project management and building 85

Navigating project files

IAR Embedded Workbench® IDE

86 User Guide

VIEWING THE WORKSPACE

The Workspace window is where you access your projects and files during the
application development.

Choose which project you want to view by clicking its tab at the bottom of the

Workspace window.

Tabs for choosing
workspace display

VWorkspace =

| [ebug

Files
B (P projectl - Debug
&1 [Tutor.c
&1 L Output

— B Tutor.o

L [Tutor phi
— [Tutorh
L [Utilities.h
&1 [Utilities.c
&1 L Output
— B Utilities.o
L— B Utilities.phi
— [DLib_Defaults.h
— [DLib_Producth
— [DLib_Threads.h
— [stdio.h
— B Utilities.h
— [xencading_limits.h
— [ycheckh
— [ysizeth
L— B yvalsh
= [Output

&
Fa

v

Owverview project] |pr0iect2] proiect3] 4|

=l

Figure 36: Displaying a project in the Workspace window

For each file that has been built, an output folder icon appears, containing generated
files, such as object files and list files. The latter is generated only if the list file option

Configuration
drop-down menu

Indicates that the file
will be rebuilt next
time the project is built

is enabled. There is also an output folder related to the project node that contains

generated files related to the whole project, such as the executable file and the linker

map file (if the list file option is enabled).

Also, any included header files will appear, showing dependencies at a glance.

To display the project with a different build configuration, choose that build
configuration from the drop-down list at the top of the Workspace window.

Managing projects °

The project and build configuration you have selected are displayed highlighted in the
Workspace window. It is the project and build configuration that is selected from the
drop-down list that will be built when you build your application.

To display an overview of all projects in the workspace, click the Overview tab at the
bottom of the Workspace window.

An overview of all project members is displayed.

IDebug 'l

Filas I‘“ E3r
B EPproject] - Debug

- m--n
= [utilities.c

L@ 3 Output

Owverview project] Iproiect2|

Figure 37: Workspace window—an overview

The current selection in the Build Configuration drop-down list is also highlighted
when an overview of the workspace is displayed.

DISPLAYING BROWSE INFORMATION

To display browse information in the Source Browser window, choose
Tools>Options>Project and select the option Generate browse information.

To open the Source Browser window, choose View>Source Browser. The Source
Browser window is by default docked with the Workspace window. Source browse
information is displayed for the active build configuration. For reference information,
see Source Browser window, page 280.

Note that you can choose a file filter and a type filter from the context menu that appears
when you right-click in the top pane of the window.

To see the definition of a global symbol or a function, there are three alternative methods
that you can use:

o In the Source Browser window, right-click on a symbol, or function, and choose the
Go to definition command from the context menu that appears
o In the Source Browser window, double-click on a row

o In the editor window, right-click on a symbol, or function, and choose the Go to
definition command from the context menu that appears.

Part 3. Project management and building 87

Source code control

88

The definition of the symbol or function is displayed in the editor window.

The source browse information is continuously updated in the background. While you
are editing source files, or when you open a new project, there will be a short delay
before the information is up-to-date.

Source code control

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench can identify and access any installed third-party source code
control (SCC) system that conforms to the SCC interface published by Microsoft
corporation. From within the IDE you can connect an IAR Embedded Workbench
project to an external SCC project, and perform some of the most commonly used
operations.

To connect your IAR Embedded Workbench project to a source code control system you
should be familiar with the source code control client application you are using. Note

that some of the windows and dialog boxes that appear when you work with source code
control in the IAR Embedded Workbench IDE originate from the SCC system and are
not described in the documentation from IAR Systems. For information about details in
the client application, refer to the documentation supplied with that application.

Note: Different SCC systems use very different terminology even for some of the most
basic concepts involved. It is important to keep this in mind when reading the
description below.

INTERACTING WITH SOURCE CODE CONTROL SYSTEMS

In any SCC system, you use a client application to maintain a central archive. In this
archive you keep the working copies of the files of your project. The SCC integration in
IAR Embedded Workbench allows you to conveniently perform a few of the most
common SCC operations directly from within the IDE. However, several tasks must still
be performed in the client application.

To connect an IAR Embedded Workbench project to a source code control system, you
should:

o In the SCC client application, set up an SCC project
o In JAR Embedded Workbench, connect your project to the SCC project.

Setting up an SCC project in the SCC client application

Managing projects °

Use your SCC client tools to set up a working directory for the files in your IAR
Embedded Workbench project that you want to control using your SCC system. The
files can be placed in one or more nested subdirectories, all located under a common
root. Specifically, all the source files must reside in the same directory as the ewp project
file, or nested in subdirectories of this directory.

For information about the steps involved, refer to the documentation supplied with the
SCC client application.

Connecting projects in IAR Embedded Workbench
In IAR Embedded Workbench, connect your application project to the SCC project.

In the Workspace window, select the project for which you have created an SCC
project. From the Project menu, choose Source Code Control>Add Project To
Source Control. This command is also available from the context menu that appears
when you right-click in the Workspace window.

Note: The commands on the Source Code Control submenu are available when there
is at least one SCC client application available.

If you have source code control systems from different vendors installed, a dialog box
will appear to let you choose which system you want to connect to.

An SCC-specific dialog box will appear where you can navigate to the proper SCC
project that you have set up.

Viewing the SCC states
When your IAR Embedded Workbench project has been connected to the SCC project,
a column that contains status information for source code control will appear in the
Workspace window. Different icons will be displayed depending on whether:

a file is checked out to you

a file is checked out to someone else

°
°

e afileis checked in

e a file has been modified
°

there is a new version of a file in the archive.

There are also icons for some combinations of these states. Note that the interpretation
of these states depends on the SCC client application you are using. For reference
information about the icons and the different states they represent, see Source code
control states, page 270.

For reference information about the commands available for accessing the SCC system,
see Source Code Control menu, page 269.

Part 3. Project management and building 89

Source code control

Configuring the source code control system

To customize the source code control system, choose Tools>Options and click the
Source Code Control tab. For reference information about the available commands, see
Terminal 1/0 options, page 333.

IAR Embedded Workbench® IDE
90 User Guide

Building

This chapter briefly discusses the process of building your application, and
describes how you can extend the chain of build tools with tools from
third-party suppliers.

Building your application

The building process consists of the following steps:

e Setting project options
o Building the project

o Correcting any errors detected during the build procedure.

To make the build process more efficient, you can use the Batch Build command. This
gives you the possibility to perform several builds in one operation. If necessary, you can
also specity pre-build and post-build actions.

In addition to use the IAR Embedded Workbench IDE for building projects, it is also
possible to use the command line utility iarbuild.exe for building projects.

For examples of building application and library projects, see Part 2. Tutorials in this
guide. For further information about building library projects, see the IJAR C/C++
Development Guide for ARM®.

SETTING OPTIONS

To specify how your application should be built, you must define one or several build
configurations. Every build configuration has its own settings, which are independent of
the other configurations. All settings are indicated in a separate column in the
Workspace window.

For example, a configuration that is used for debugging would not be highly optimized,
and would produce output that suits the debugging. Conversely, a configuration for
building the final application would be highly optimized, and produce output that suits
a flash or PROM programmer.

For each build configuration, you can set options on the project level, group level, and
file level. Many options can only be set on the project level because they affect the entire
build configuration. Examples of such options are General Options (for example,
processor variant and library object file), linker settings, and debug settings. Other
options, such as compiler and assembler options, that you set on project level are default
for the entire build configuration.

Part 3. Project management and building 91

Building your application

92

IAR Embedded Workbench® IDE
User Guide

Itis possible to override project level settings by selecting the required item, for instance
a specific group of files, and selecting the option Override inherited settings. The new
settings will affect all members of that group, that is, files and any groups of files. To
restore all settings to the default factory settings, click the Factory Settings button.

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

Using the Options dialog box

The Options dialog box—available by choosing Project>Options—provides options
for the building tools. You set these options for the selected item in the Workspace
window. Options in the General Options, Linker, and Debugger categories can only
be set for the entire build configuration, and not for individual groups and files.
However, the options in the other categories can be set for the entire build configuration,
a group of files, or an individual file.

Options for node *project1™ g|

Category:

General Options

CiC++ Compiler

Assembler
Qutput Corverter Target l Dutput] Library Eonfiguration] Library Options | MISRA-C
Customn Build .
)) Processar variant
Build Actions
Linker * Core |ARM7TOMIS -
Debugger
Sirulator i~ Device | J
Angel
GDE Server
IAB ROM-manitar Endian mode FEL
J-Linkj1-Trace
LMI FTDI @ Little None -
Macraigor " Big
RDI =
Third-Party Driver -

(] 8 | Cancel

Figure 38: General options

Building °

The Category list allows you to select which building tool to set options for. The tools
available in the Category list depends on which tools are included in your product. If
you select Library as output file on the Output page, Linker will be replaced by
Library Builder in the category list. When you select a category, one or more pages
containing options for that component are displayed.

Click the tab corresponding to the type of options you want to view or change. To restore
all settings to the default factory settings, click the Factory Settings button, which is
available for all categories except General Options and Custom Build. Note that there
are two sets of factory settings available: Debug and Release. Which one that will be
used depends on your build configuration; see New Configuration dialog box, page 308.

For information about each option and how to set options, see the chapters General
options, Compiler options, Assembler options, Linker options, Library builder options,
Custom build options, and Debugger options in Part 7. Reference information in this
guide. For information about options specific to the C-SPY driver you are using, see the
part of this book that corresponds to your driver.

Note: If you add to your project a source file with a non-recognized filename extension,
you cannot set options on that source file. However, you can add support for additional
filename extensions. For reference information, see Filename Extensions dialog box,
page 336.

BUILDING A PROJECT

You have access to the build commands both from the Project menu and from the
context menu that appears if you right-click an item in the Workspace window.

The three build commands Make, Compile, and Rebuild All run in the background, so
you can continue editing or working with the IDE while your project is being built.

For further reference information, see Project menu, page 304.

BUILDING MULTIPLE CONFIGURATIONS IN A BATCH

Use the batch build feature when you want to build more than one configuration at once.
A batch is an ordered list of build configurations. The Batch Build dialog
box—available from the Project menu—Iets you create, modify, and build batches of
configurations.

For workspaces that contain several configurations it is convenient to define one or
several different batches. Instead of building the entire workspace, you can build only
the appropriate build configurations, for instance Release or Debug configurations.

For detailed information about the Batch Build dialog box, see Batch Build dialog box,
page 311.

Part 3. Project management and building 93

Building your application

94

IAR Embedded Workbench® IDE
User Guide

USING PRE- AND POST-BUILD ACTIONS

If necessary, you can specify pre-build and post-build actions that you want to take place
before or after the build. The Build Actions dialog box—available from the Project
menu—Ilets you specify the actions required.

For detailed information about the Build Actions dialog box, see Build actions options,
page 413.

Using pre-build actions for time stamping

Pre-build actions can be used for embedding a time stamp for the build in the resulting
binary file. To achieve this, follow these steps:

Create a dedicated time stamp file, for example, t imestamp . c and add it to your
project.

In this source file, use the preprocessor macros __TIME _ and __DATE__ to initialize
a string variable.

Choose Project>Options>Build Actions to open the Build Actions dialog box.
In the Pre-build command line text field, specify for example this pre-build action:
"touch $PROJ_DIRS\timestamp.c"

You can use the open source command line utility touch for this purpose or any other
suitable utility which updates the modification time of the source file.

If the project is not entirely up-to-date, the next time you use the Make command, the
pre-build action will be invoked before the regular build process. The regular build
process then always must recompile timestamp . c and the correct timestamp will end
up in the binary file.

If the project already is up-to-date, the pre-build action will not be invoked. This means
that nothing will be built, and the binary file still contains the timestamp for when it was
last built.

CORRECTING ERRORS FOUND DURING BUILD

The compiler, assembler, and debugger are fully integrated with the development
environment. So if there are errors in your source code, you can jump directly to the
correct position in the appropriate source file by double-clicking the error message in
the error listing in the Build message window, or selecting the error and pressing Enter.

After you have resolved any problems reported during the build process and rebuilt the
project, you can directly start debugging the resulting code at the source level.

Building °

To specify the level of output to the Build message window, choose Tools>Options to
open the IDE Options dialog box. Click the Messages tab and select the level of output
in the Show build messages drop-down list. Alternatively, you can right-click in the
Build Messages window and select Options from the context menu.

For reference information about the Build messages window, see Build window, page
288.
BUILDING FROM THE COMMAND LINE

It is possible to build the project from the command line by using the IAR Command
Line Build Utility (iarbuild.exe) located in the common\bin directory. As input you
use the project file, and the invocation syntax is:

iarbuild project.ewp [-clean|-build|-make] <configuration>
[-log errors|warnings|info|alll

Parameter Description

project.ewp Your IAR Embedded Workbench project file.

-clean Removes any intermediate and output files.

-build Rebuilds and relinks all files in the current build configuration.
-make Brings the current build configuration up to date by compiling,

assembling, and linking only the files that have changed since the last
build.

configuration The name of the configuration you want to build, which can either be
one of the predefined configurations Debug or Release, or a name that
you define yourself. For more information about build configurations, see
Projects and build configurations, page 83.

-log errors Displays build error messages.
-log warnings Displays build warning and error messages.
-log info Displays build warning and error messages, and messages issued by the

#pragma message preprocessor directive.

-log all Displays all messages generated from the build, for example compiler
sign-on information and the full command line.

Table 12: iarbuild.exe command line options

If you run the application from a command shell without specifying a project file, you
will get a sign-on message describing available parameters and their syntax.

Part 3. Project management and building 95

Extending the tool chain

96

Extending the tool chain

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench provides a feature—Custom Build—which lets you extend
the standard tool chain. This feature is used for executing external tools (not provided
by IAR Systems). You can make these tools execute each time specific files in your
project have changed.

By specifying custom build options, on the Custom tool configuration page, the build
commands treat the external tool and its associated files in the same way as the standard
tools within the IAR Embedded Workbench IDE and their associated files. The relation
between the external tool and its input files and generated output files is similar to the
relation between the C/C++ Compiler, c files, h files, and o files. See Custom build
options, page 411, for details about available custom build options.

You specify filename extensions of the files used as input to the external tool. If the input
file has changed since you last built your project, the external tool is executed; just as
the compiler executes if a c file has changed. In the same way, any changes in additional
input files (for instance include files) are detected.

You must specify the name of the external tool. You can also specify any necessary
command line options needed by the external tool, as well as the name of the output files
generated by the external tool. Note that it is possible to use argument variables for
substituting file paths.

For some of the file information, you can use argument variables.

It is possible to specify custom build options to any level in the project tree. The options
you specity are inherited by any sublevel in the project tree.

TOOLS THAT CAN BE ADDED TO THE TOOL CHAIN

Some examples of external tools, or types of tools, that you can add to the IAR
Embedded Workbench tool chain are:

o Tools that generate files from a specification, such as Lex and YACC

e Tools that convert binary files—for example files that contain bitmap images or
audio data—to a table of data in an assembler or C source file. This data can then be
compiled and linked together with the rest of your application.

ADDING AN EXTERNAL TOOL

The following example demonstrates how to add the tool Flex to the tool chain. The
same procedure can be used also for other tools.

In the example, Flex takes the file foo.lex as input. The two files foo.c and foo.h
are generated as output.

Add the file you want to work with to your project, for example foo. lex.

Building °

Select this file in the Workspace window and choose Project>Options. Select Custom
Build from the list of categories.

In the Filename extensions field, type the filename extension . lex. Remember to
specify the leading period (.).

In the Command line field, type the command line for executing the external tool, for
example

flex $FILE_PATHS -o$FILE_BPATHS.c
During the build process, this command line will be expanded to:
flex foo.lex -ofoo.c

Note the usage of argument variables. For further details of these variables, see
Argument variables summary, page 306.

Take special note of the use of $FILE_BNAMES which gives the base name of the input
file, in this example appended with the ¢ extension to provide a C source file in the same
directory as the input file foo.lex.

In the Output files field, describe the output files that are relevant for the build. In this
example, the tool Flex would generate two files—one source file and one header file.
The text in the Qutput files text box for these two files would look like this:

$FILE_BPATHS.c
$FILE_BPATHS.h

If there are any additional files used by the external tool during the build, these should
be added in the Additional input files field: for instance:

STOOLKIT_DIRS\inc\stdio.h

This is important, because if the dependency files change, the conditions will no longer
be the same and the need for a rebuild is detected.

Click OK.

To build your application, choose Project>Make.

Part 3. Project management and building 97

Extending the tool chain

IAR Embedded Workbench® IDE
98 User Guide

Editing

This chapter describes in detail how to use the IAR Embedded Workbench
editor. The final section describes how to customize the editor and how to

use an external editor of your choice.

Using the IAR Embedded Workbench editor

The integrated text editor allows editing of multiple files in parallel, and provides all
basic editing features expected from a modern editor. In addition, it provides features
specific to software development. It also recognizes C or C++ language elements.

EDITING A FILE

The editor window is where you write, view, and modify your source code. You can
open one or several text files, either from the File menu, or by double-clicking a file in
the Workspace window. If you open several files, they are organized in a fab group. You
can have several editor windows open at the same time.

Part 3. Project management and building 99

Using the IAR Embedded Workbench editor

100

Window tabs

Breakpoint icon

Bracket matching

Bookmark

Click the tab for the file that you want to display. All open files are also available from
the drop-down menu at the upper right corner of the editor window.

Drop-down menu

Tooltip information listing all open files
Tutar.c o=
P E— v T Splitter
d
‘;01 it I|C:'|,Pr0gram FilesiIAR SystemsiEmbedded Workbench'l,utilities.cl j control
@ short i = 4s:
root[0] = root[l] = 1;

for [i=z : i<MAX_FIE ; i++)|
root[i] = get_fib{i) + get fih(i-1):
i

/:(-
Return the Fibonacci mumber 'nr'.
s
unsigned int get_fib({ int nr |
{
if | inr > 0) && (nr <= MAX FIE))
{

return [root[nr-1] J:

} >
[fol [« |>|_I

Splitter control | | Go to function Right margin indicating

IAR Embedded Workbench® IDE
User Guide

limit of printing area

Figure 39: Editor window

The name of the open source file is displayed on the tab. If a file is read-only, a padlock
is visible at the bottom left corner of the editor window. If a file has been modified after
it was last saved, an asterisk appears on the tab after the filename, for example
Utilities.c *.

The commands on the Window menu allow you to split the editor window into panes.
On the Window menu you also find commands for opening multiple editor windows, as
well as commands for moving files between different editor windows. For reference
information about each command on the menu, see Window menu, page 339. For
reference information about the editor window, see Editor window, page 274.

Note: When you want to print a source file, it can be useful to enable the option Show
line numbers—available by choosing Tools>Options>Editor.
Accessing reference information for DLIB library functions

When you need to know the syntax for any C or Embedded C++ library function, select
the function name in the editor window and press F1. The library documentation for the
selected function appears in a help window.

Editing °

Using and customizing editor commands and shortcut keys

The Edit menu provides commands for editing and searching in editor windows. For
instance, unlimited undo/redo by using the Edit>Undo and Edit>Redo commands,
respectively. You can also find some of these commands on the context menu that
appears when you right-click in the editor window. For reference information about each
command, see Edit menu, page 294.

There are also editor shortcut keys for:

e moving the insertion point

e scrolling text

e selecting text.

For detailed information about these shortcut keys, see Editor key summary, page 278.

To change the default shortcut key bindings, choose Tools>Options, and click the Key
Bindings tab. For further details, see Key Bindings options, page 315.

Splitting the editor window into panes

You can split the editor window horizontally or vertically into multiple panes, to allow
you to look at different parts of the same source file at once, or move text between two
different panes.

To split the window, double-click the appropriate splitter bar, or drag it to the middle of
the window. Alternatively, you can split a window into panes using the Window>Split
command.

To revert to a single pane, double-click the splitter control or drag it back to the end of
the scroll bar.

Dragging and dropping of text

You can easily move text within an editor window or between different editor windows.
Select the text and drag it to the new location.

Syntax coloring

If the Tools>Options>Editor>Syntax highlighting option is enabled, the IAR
Embedded Workbench editor automatically recognizes the syntax of:

C and C++ keywords

C and C++ comments

Assembler directives and comments

Preprocessor directives

Strings.

Part 3. Project management and building 101

Using the IAR Embedded Workbench editor

102

IAR Embedded Workbench® IDE
User Guide

The different parts of source code are displayed in different text styles.

To change these styles, choose Tools>Options, and use the Editor>Colors and Fonts
options. For additional information, see Editor Colors and Fonts options, page 323.

In addition, you can define your own set of keywords that should be syntax-colored
automatically:

In a text file, list all the keywords that you want to be automatically syntax-colored.
Separate each keyword with either a space or a new line.

Choose Tools>Options and select Editor>Setup Files.

Select the Use Custom Keyword File option and specify your newly created text file.
A browse button is available for your convenience.

Select Edit>Colors and Fonts and choose User Keyword from the Syntax Coloring
list. Specify the font, color, and type style of your choice. For additional information,
see Editor Colors and Fonts options, page 323.

In the editor window, type any of the keywords you listed in your keyword file; see
how the keyword is syntax-colored according to your specification.
Automatic text indentation

The text editor can perform different kinds of indentation. For assembler source files and
normal text files, the editor automatically indents a line to match the previous line. If
you want to indent a number of lines, select the lines and press the Tab key. Press
Shift-Tab to move a whole block of lines to the left.

For C/C++ source files, the editor indents lines according to the syntax of the C/C++
source code. This is performed whenever you:

e Press the Return key
e Type any of the special characters {, }, :, and #

o Have selected one or several lines, and choose the Edit>Auto Indent command.
To enable or disable the indentation:

Choose Tools>Options and select Editor.

Select or deselect the Auto indent option.

To customize the C/C++ automatic indentation, click the Configure button.

For additional information, see Configure Auto Indent dialog box, page 319.

Editing °

Matching brackets and parentheses

When the insertion point is located next to a parenthesis, the matching parenthesis is
highlighted with a light gray color:
forf| int i = 0; i < 10; i++)]

i
'

Figure 40: Parentheses matching in editor window

The highlight remains in place as long as the insertion point is located next to the
parenthesis.

To select all text between the brackets surrounding the insertion point, choose
Edit>Match Brackets. Every time you choose Match Brackets after that, the selection
will increase to the next hierarchic pair of brackets.

Note: Both of these functions—automatic matching of corresponding parentheses and
selection of text between brackets—apply to (), [1, and {}.

Displaying status information

As you are editing, the status bar—available by choosing View>Status Bar— shows
the current line and column number containing the insertion point, and the Caps Lock,
Num Lock, and Overwrite status:

[Errors 0, Warnings O |Lm 28, Col 22 [CaP [WuM jovR

Figure 41: Editor window status bar

USING AND ADDING CODE TEMPLATES

Code templates is a method for conveniently inserting frequently used source code
sequences, for example for loops and i £ statements. The code templates are defined in
a normal text file. By default, there are a few example templates provided. In addition,
you can easily add your own code templates.

Enabling code templates

By default, code templates are enabled. To enable and disable the use of code templates:

I Choose Tools>Options.
2 Go to the Editor Setup Files page.

Part 3. Project management and building 103

Using the IAR Embedded Workbench editor

104

IAR Embedded Workbench® IDE
User Guide

3 Select or deselect the Use Code Templates option.

4 In the text field, specify which template file you want to use; either the default file or

one of your own template files. A browse button is available for your convenience.

Inserting a code template in your source code

To insert a code template in your source code, place the insertion point at the location
where you want the template to be inserted and choose Edit>Insert Template. This
command displays a list in the editor window from which you can choose a code
template.

Figure 42: Editor window code template menu

If the code template you choose requires any type of field input, as in the for loop
example which needs an end value and a count variable, an input dialog box appears.

Adding your own code templates

The source code templates are defined in a normal text file. The original template file
CodeTemplates. txt islocated in the common\config installation directory. The first
time you use IAR Embedded Workbench, the original template file is copied to a
directory for local settings, and this is the file that will be used by default if code
templates are enabled. To use your own template file, follow the procedure described in
Enabling code templates, page 103.

To open the template file and define your own code templates, choose Edit>Code
Templates>Edit Templates.

The syntax for defining templates is described in the default template file.

Editing °

NAVIGATING IN AND BETWEEN FILES

The editor provides several functions for easy navigation within the files and between
different files:
o Switching between source and header files

If the insertion point is located on an #include line, you can choose the Open
"header.h' command from the context menu, which opens the header file in an
editor window. You can also choose the command Open Header/Source File, which
opens the header or source file that corresponds to the current file, or activates it if it
is already open. This command is available if the insertion point is located on any
line except an #include line.

e Function navigation

F[] Click the Go to function button in the bottom left corner in an editor window to list
all functions defined in the source file displayed in the window. You can then choose
to go directly to one of the functions by double-clicking it in the list.

o Adding bookmarks

Use the Edit>Navigate>Toggle Bookmark command to add and remove
bookmarks. To switch between the marked locations, choose Edit>Navigate>Go to
Bookmark.

SEARCHING

There are several standard search functions available in the editor:

Quick search text box
Find dialog box
Replace dialog box
Find in files dialog box

Incremental Search dialog box.

To use the Quick search text box on the toolbar, type the text you want to search for and
press Enter. Press Esc to cancel the search. This is a quick method for searching for text
in the active editor window.

To use the Find, Replace, Find in Files, and Incremental Search functions, choose the
corresponding command from the Edit menu. For reference information about each
search function, see Edit menu, page 294.

Customizing the editor environment

The IDE editor can be configured on the IDE Options pages Editor and Editor Colors
and Fonts. Choose Tools>Options to access the pages.

Part 3. Project management and building 105

Customizing the editor environment

106

IAR Embedded Workbench® IDE
User Guide

For details about these pages, see Tools menu, page 313.

USING AN EXTERNAL EDITOR

The External Editor options—available by choosing Tools>Options>Editor—Ilet you
specify an external editor of your choice.

Note: While debugging using C-SPY, C-SPY will not use the external editor for
displaying the current debug state. Instead, the built-in editor will be used.

To specify an external editor of your choice, follow this procedure:

Select the option Use External Editor.

An external editor can be called in one of two ways, using the Type drop-down menu.
Command Line calls the external editor by passing command line parameters.

DDE calls the external editor by using DDE (Windows Dynamic Data Exchange).

If you use the command line, specify the command line to pass to the editor, that is, the
name of the editor and its path, for instance:

C:\WINNT\NOTEPAD.EXE.

You can send an argument to the external editor by typing the argument in the
Arguments field. For example, type $FILE_PATHS to start the editor with the active file
(in editor, project, or Messages window).

IDE Options E
- Cormmon Fonts
- Key Bindings ™ Use External Editor
Editar Tivpe: ICommand Line j
I Editar: I J
Arguments: I

- Messages

- Project

- Source Code Control
- Debugger

- Stack

- Register Filker

- Terminal IjQ

QK I Cancel | Apply | Help |

Figure 43: Specifving external command line editor

4 If you use DDE, specify the editor’s DDE service name in the Service field. In the

Command field, specify a sequence of command strings to send to the editor.

Editing °

The service name and command strings depend on the external editor that you are using.
Refer to the user documentation of your external editor to find the appropriate settings.

The command strings should be entered as:

DDE-Topic CommandString
DDE-Topic CommandString

as in the following example, which applies to Codewri ght®:

¥ Use External Editor
& Editor Type: [DDE

rnal Editar
Setup Files

Editor: |c:\cw32\cw32.exe

L L

Colors and Fonts Service: IEodewright
- Messages
- Project Command: |System BufEditFile $FILE_PATH$
- Source Code Contral $FILE_PATH$ MovToline $CUR_LINES
- Debugger

- Stack
- Register Filker
- Terminal IjQ

QK I Cancel | Apply | Help |

Figure 44: External editor DDE settings

The command strings used in this example will open the external editor with a dedicated
file activated. The cursor will be located on the current line as defined in the context
from where the file is open, for instance when searching for a string in a file, or when
double-clicking an error message in the Message window.

Click OK.

When you open a file by double-clicking it in the Workspace window, the file will be
opened by the external editor.

Variables can be used in the arguments. For more information about the argument
variables that are available, see Argument variables summary, page 306.

Part 3. Project management and building 107

Customizing the editor environment

IAR Embedded Workbench® IDE
108 User Guide

Part 4. Debugging

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

e The IAR C-SPY® Debugger

e Executing your application

e Working with variables and expressions
e Using breakpoints

e Monitoring memory and registers

e Using the C-SPY® macro system

e Analyzing your application.

.hmuiuhhhi

109

AAARRIE

110

The IAR C-SPY®
Debugger

This chapter introduces you to the IAR C-SPY Debugger. First some of the
concepts are introduced that are related to debugging in general and to C-SPY
in particular. Then C-SPY environment is presented, followed by a description
of how to setup, start, and finally adapt C-SPY to target hardware.

Debugger concepts

This section introduces some of the concepts that are related to debugging in general and
to C-SPY in particular. This section does not contain specific conceptual information
related to the functionality of C-SPY. Instead, such information can be found in each
chapter of this part of the guide. The IAR Systems user documentation uses the
following terms when referring to these concepts.

C-SPY AND TARGET SYSTEMS

C-SPY can be used for debugging either a software target system or a hardware target
system.

Part 4. Debugging

Debugger concepts

The following figure shows an overview of C-SPY and possible target systems.

Simulator

|
| . Simulator
driver
|
| ——
I -
ROM-monitor
monitor
Workbench Target hardware

|

C-SPY L —

Emulator

r— j\[JTAG Target
emulator [~ hardware

3rd-party
driver

Target
hardware

|
I
I
I
I
I
I
I .
IAREmbedded | driver
I
I
I
I
I
I
I
I
I
I
I

= Provided by IAR Systems

Figure 45: C-SPY and target systems

DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

USER APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

IAR Embedded Workbench® IDE
112 User Guide

The IAR C-SPY® Debugger __4

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a driver. The C-SPY driver is the part that provides communication with and control
of the target system. The driver also provides the user interface—menus, windows, and
dialog boxes—to the functions provided by the target system, for instance, special
breakpoints. There are three main types of C-SPY drivers:

o Simulator driver
e ROM-monitor driver

e Emulator driver

If you have more than one C-SPY driver installed on your computer you can switch
between them by choosing the appropriate driver from within the IDE.

For an overview of the general features of C-SPY, see /AR C-SPY Debugger, page 6. In
that chapter you can also find an overview of the functionality provided by each driver.
Contact your software distributor or IAR representative for information about available
C-SPY drivers. You can also find information on the IAR Systems website,
www.iar.com.

ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

It is possible to use a third-party debugger together with the IAR Systems tool chain as
long as the third-party debugger can read ELF/DWAREF, Intel-extended, or Motorola.
For information about which format to use with third-party debuggers, see the user
documentation supplied with that tool.

The C-SPY environment

AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR compiler and assembler for ARM, and is completely integrated in the
IDE, providing development and debugging within the same application.

Part 4. Debugging 113

Setting up C-SPY

114

All windows that are open in the Embedded Workbench workspace will stay open when
you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows will be
opened.

You can modify your source code in an editor window during the debug session, but
changes will not take effect until you exit from the debugger and rebuild your
application.

The integration also makes it possible to set breakpoints in the text editor at any point
during the development cycle. It is also possible to inspect and modify breakpoint
definitions also when the debugger is not running, and breakpoint definitions flow with
the text as you edit. Your debug settings, such as watch properties, window layouts, and
register groups will remain between your debug sessions. When the debugger is running,
breakpoints are highlighted in the editor windows.

In addition to the features available in the IDE, the C-SPY environment consists of a set
of C-SPY-specific items, such as a debugging toolbar, menus, windows, and dialog
boxes.

Reference information about each item specific to C-SPY can be found in the chapter
C-SPY® reference, page 343.

For specific information about a C-SPY driver, see the part of the book corresponding
to the driver.

Setting up C-SPY

IAR Embedded Workbench® IDE
User Guide

Before you start C-SPY, you should set options to set up the debugger system. These
options are available on the Setup page of the Debugger category, available with the
Project>Options command. On the Plugins page you can find options for loading
plug-in modules.

In addition to the options for setting up the debugger system, you can also set
debugger-specific IDE options. These options are available with the Tools>Options
command. For further information about these options, see Debugger options, page 328.

For information about how to configure the debugger to reflect the target hardware, see
Adapting C-SPY to target hardware, page 118.
CHOOSING A DEBUG DRIVER

Before starting C-SPY, you must choose a driver for the debugger system from the
Driver drop-down list on the Setup page.

If you choose a driver for a hardware debugger system, you also need to set
hardware-specific options. For information about these options, see Part 7. Reference
information in this guide.

The IAR C-SPY® Debugger __4

Note: You can only choose a driver you have installed on your computer.

EXECUTING FROM RESET

Using the Run to option, you can specify a location you want C-SPY to run to when you
start the debugger as well as after each reset. C-SPY will place a breakpoint at this
location and all code up to this point will be executed prior to stopping at the location.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will then contain the regular
hardware reset address at each reset.

If there are no breakpoints available when C-SPY starts, a warning message appears
notifying you that single stepping will be required and that this is time consuming. You
can then continue execution in single step mode or stop at the first instruction. If you
choose to stop at the first instruction, the debugger starts executing with the pC (program
counter) at the default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY Simulator, where
breakpoints are not limited.

USING A SETUP MACRO FILE

A setup macro file is a standard macro file that you choose to load automatically when
C-SPY starts. You can define the setup macro file to perform actions according to your
needs, by using setup macro functions and system macros. Thus, by loading a setup
macro file you can initialize C-SPY to perform actions automatically.

To register a setup macro file, select Use macro file and type the path and name of your
setup macro file, for example Setup.mac. If you do not type a filename extension, the
extension mac is assumed. A browse button is available for your convenience.

For detailed information about setup macro files and functions, see The macro file, page
150. For an example about how to use a setup macro file, see the chapter Simulating an
interrupt in Part 2. Tutorials.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY handles several of the target-specific adaptations by using device description
files. They contain device-specific information about for example, definitions of
peripheral units and CPU registers, and groups of these.

Part 4. Debugging 115

Setting up C-SPY

116

IAR Embedded Workbench® IDE
User Guide

If you want to use the device-specific information provided in the device description file
during your debug session, you must select the appropriate device description file.
Device description files are provided in the arm\config directory and they have the
filename extension ddf.

To load a device description file that suits your device, you must, before you start
C-SPY, choose Project>Options and select the Debugger category. On the Setup page,
enable the use of a description file and select a file using the Device description file
browse button.

For more information about device description files, see Adapting C-SPY to target
hardware, page 118. For an example about how to use a setup macro file, see Simulating
an interrupt in Part 2. Tutorials.

For an example about how to use a setup macro file, see Simulating an interrupt in Part
2. Tutorials.

LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules that are to be loaded and
made available during debug sessions. Plugin modules can be provided by IAR, as well
as by third-party suppliers. Contact your software distributor or IAR representative, or
visit the IAR Systems web site, for information about available modules.

For information about how to load plugin modules, see Plugins, page 432.

The C-SPY RTOS awareness plugin modules

You can load plugin modules for real-time operating systems plugin modules supported
for the IAR Embedded Workbench version you are using, you can load one for use with
C-SPY. C-SPY RTOS awareness plugin modules give you a high level of control and
visibility over an application built on top of a real-time operating system. It displays
RTOS-specific items like task lists, queues, semaphores, mailboxes and various RTOS
system variables. Task-specific breakpoints and task-specific stepping make it easier to
debug tasks.

A loaded plugin will add its own set of windows and buttons when a debug session is
started (provided that the RTOS is linked with the application). For links to the RTOS
documentation, see the release notes that are available from the Help menu.

The IAR C-SPY® Debugger __4

Starting C-SPY

When you have set up the debugger, you can start it.

b To start C-SPY and load the current project, click the Download and Debug button.
= Alternatively, choose Project>Download and Debug.

b To start C-SPY without reloading the current project, click the Debug without
i Downloading button. Alternatively, choose Project>Debug without Downloading.

For information about how to execute your application and how to use the C-SPY
features, see the remaining chapters in Part 4. Debugging.

EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

It is also possible to load C-SPY with a project that was built outside the IDE, for
example projects built on the command line. To be able to set debugger options for the
externally built project, you must create a project within the IDE.

To load an externally built executable file, you must first create a project for it in your
workspace. Choose Project>Create New Project, and specify a project name. To add
the executable file to the project, choose Project>Add Files and make sure to choose
All Files in the Files of type drop-down list. Locate the executable file (filename
extension out). To start the executable file, select the project in the Workspace window
and click the Debug button. The project can be reused whenever you rebuild your
executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

To flash an externally generated application, a corresponding sim file must be available
in the same directory as the out file. The sim file is automatically generated by C-SPY.

REDIRECTING DEBUGGER OUTPUT TO A FILE

The Debug Log window—available from the View menu—displays debugger output,
such as diagnostic messages and trace information. It can sometimes be convenient to
log the information to a file where it can be easily inspected. The Log Files dialog
box—available from the Debug menu—allows you to log output from C-SPY to a file.
The two main advantages are:

o The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

o The file provides history about how you have controlled the execution, for instance,
what breakpoints have been triggered etc.

Part 4. Debugging 117

Adapting C-SPY to target hardware

118

The information printed in the file is by default the same as the information listed in the
Log window. However, you can choose what you want to log in the file: errors,
warnings, system information, user messages, or all of these. For reference information
about the Log File options, see Log File dialog box, page 378.

Adapting C-SPY to target hardware

IAR Embedded Workbench® IDE
User Guide

This section describes how to configure the debugger to reflect the target hardware. The
C-SPY device description file and its contents is described, as well as how you can use
C-SPY macro functions to remap memory before your application is downloaded.

DEVICE DESCRIPTION FILE

C-SPY handles several of the target-specific adaptations by using device description
files provided with the product. They contain device-specific information such as
definitions of peripheral registers, and groups of these.

You can find device description files for each ARM device in the arm\config
directory.

For information about how to load a device description file, see Selecting a device
description file, page 115.

Registers

For each device there is a hardwired group of CPU registers. Their contents can be
displayed and edited in the Register window. Additional registers are defined in a
specific register definition file—with the filename extension sfr—which is included
from the register section of the device description file. These registers are the
device-specific memory-mapped control and status registers for the peripheral units on
the ARM cores.

Due to the large amount of registers it is inconvenient to list all registers concurrently in
the Register window. Instead the registers are divided into logical register groups. By
default there is one register group in the ARM debugger, namely CPU Registers.

For details about how to work with the Register window, view different register groups,
and how to configure your own register groups to better suit the use of registers in your
application, see the section Working with registers, page 147.

Modifying a device description file

There is normally no need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. The syntax of the
device descriptions is described in the files. Note, however, that the format of these
descriptions might be updated in future upgrade versions of the product.

The IAR C-SPY® Debugger __4

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file.

Note: The syntax of the device description files are described in the Writing device
header files guide (EWARM_DDFFormat .pdf) located in the arm\doc directory.

REMAPPING MEMORY

A common feature of many ARM-based processors is the ability to remap memory.
After a reset, the memory controller typically maps address zero to non-volatile
memory, such as flash. By configuring the memory controller, the system memory can
be remapped to place RAM at zero and non-volatile memory higher up in the address
map. By doing this the exception table will reside in RAM and can be easily modified
when you download code to the evaluation board.

You must configure the memory controller before you download your application code.
You can do this best by using a C-SPY macro function that is executed before the code
download takes place—execUserPreload (). The macro functions
__writeMemory32 () will perform the necessary initialization of the memory
controller.

The following example illustrates a macro used to setup the memory controller and
remap on the Atmel AT91EBSS chip, similar mechanisms exist in processors from other
ARM vendors.

execUserPreload()

{

__message "Setup memory controller, do remap command\n";

// Flash at 0x01000000, 16MB, 2 hold, 16 bits, 3 WS
__writeMemory32 (0x01002529, O0xffe00000, "Memory");

// RAM at 0x02000000, 16MB, 0 hold, 16 bits, 1 WS
__writeMemory32 (0x02002121, O0xffe00004, "Memory");

// unused
__writeMemory32 (0x20000000, 0xffe00008, "Memory");

// unused
__writeMemory32 (0x30000000, 0xffe0000c, "Memory");

// unused
__writeMemory32 (0x40000000, 0xffe00010, "Memory");

// unused
__writeMemory32 (0x50000000, 0xffe00014, "Memory");

Part 4. Debugging 119

Adapting C-SPY to target hardware

120

IAR Embedded Workbench® IDE
User Guide

// unused
__writeMemory32 (0x60000000, 0xffe00018, "Memory");

// unused
__writeMemory32 (0x70000000, 0xffe000lc, "Memory");

// REMAP command
__writeMemory32 (0x00000001, 0xffe00020, "Memory");

// standard read
__writeMemory32 (0x00000006, 0xffe00024, "Memory");
}

Note that the setup macro execUserReset () may have to be defined in the same way
to reinitialize the memory mapping after a C-SPY reset. This can be needed if you have
setup your hardware debugger system to do a hardware reset on C-SPY reset, for
example by adding __hwReset () to the execUserReset () macro.

For instructions on how to install a macro file in C-SPY, see Registering and executing
using setup macros and setup files, page 153. For details about the macro functions used,
see the chapter C-SPY® macros reference.

Executing your application

The IAR C-SPY® Debugger provides a flexible range of facilities for executing
your application during debugging. This chapter contains information about:

e The conceptual differences between source mode and disassembly mode
debugging

e Executing your application
e The call stack

e Handling terminal input and output.

Source and disassembly mode debugging

C-SPY allows you to switch seamlessly between source mode and disassembly mode
debugging as required.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control over the hardware. You can open a disassembly
window which displays a mnemonic assembler listing of your application based on
actual memory contents rather than source code, and lets you execute the application
exactly one instruction at a time. In Mixed-Mode display, the debugger also displays the
corresponding C/C++ source code interleaved with the disassembly listing.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

For an example of a debug session both in C source mode and disassembly mode, see
Debugging the application, page 41.

Executing

C-SPY provides a flexible range of features for executing your application. You can find
commands for executing on the Debug menu as well as on the toolbar.

Part 4. Debugging

121

Executing

122

IAR Embedded Workbench® IDE
User Guide

STEP

C-SPY allows slightly more precise stepping than most other debuggers in that it is not
line-oriented but statement-oriented. This means that you can follow the flow of
execution precisely even if there are multiple statements on the same line. Use any of
the following step commands:

e Step Into
o Step Over
e Step Out.

Consider the following example, and assume that the previous step has taken you to the
call £(3) as highlighted in green (and also indicated by a green arrow in the left margin
of the text editor):

void f (int n)

{
int i;
for (i = start(n); is_valid(i); i = next(i))
{

process (i) ;
}
}

£(3);
var += 1;

Step Into will execute the current statement, but will stop inside the first function called.
In this case, Step Into would take you directly inside the £ (int n) function, as shown
below:

void f (int n)

{
int i;
for (i = start(n); is_valid(i); i = next(i))
{
process (i) ;
}
}
£(3);

var += 1;

Executing your application __4

Step Over will execute the current statement without stopping inside called functions.
The command would first take you to the beginning of the for statement:

for (1 = start(n); is_valid(i); 1 = next(i))
{
process (i) ;

}
Repeating Step Over will follow the flow of execution as follows:

for (i = start(n); is_valid(i); i = next(i))
{

process (i) ;

for (i = start(n); is_valid(i); i = next(i))
{

process (i) ;

for (i = start(n); is_valid(i); i = next(i))
{
process (1) ;

}

The sequence is repeated until the loop terminates. At any time, you can use the Step
Out command function to directly take you back to the calling function:

void f (int n)

{
int i;
for (i = start(n); is_valid(i); i = next(i))
{

process (i) ;
}
£(3);
var += 1;

GO

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

Part 4. Debugging 123

Executing

124

IAR Embedded Workbench® IDE
User Guide

RUN TO CURSOR

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the window is currently placed over the other window.

void init fih| woid) j Goto j Men
! init_fib:
int i = 45; init_fib:
o Hoot[0] = root[l] = 1; 4 00000248 BS531 ru
o . ¢ 0000024A 202D Mo
for fi=2 7 MR FIE 3 i) J ¢ 0000024C 0004 LS
root[i] = get fib(i) + get_fibii-1): 0000024 2001 Mo
i 00000250 490C LD

Figure 46: C-SPY highlighting source location

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at its
beginning. This is often the case when stepping in the Disassembly window. Only when
the program counter is at the first instruction of the source statement, the ordinary
highlight color is used.

USING BREAKPOINTS TO STOP

You can set breakpoints in the application to stop at locations of particular interest.
These locations can be either at code sections where you want to investigate whether
your program logic is correct, or at data accesses to investigate when and how the data
is changed. Depending on which debugger system you are using you might also have
access to additional types of breakpoints. For instance, if you are using the C-SPY
Simulator there is a special kind of breakpoint to facilitate simulation of simple
hardware devices. See the chapter Simulator-specific debugging for further details.

Executing your application ___4

For a more advanced simulation, you can stop under certain conditions, which you
specify. It is also possible to connect a C-SPY macro to the breakpoint. The macro can
be defined to perform actions, which for instance can simulate specific hardware
behavior.

All these possibilities provide you with a flexible tool for investigating the status of, for
example, variables and registers at different stages during the application execution.

For detailed information about the breakpoint system and how to use the different
breakpoint types, see the chapter Using breakpoints.

USING THE BREAK BUTTON TO STOP

While your application is executing, the Break button on the debug toolbar is
highlighted in red. You can stop the application execution by clicking the Break button,
alternatively by choosing the Debug>Break command.

STOP AT PROGRAM EXIT

Typically, the execution of an embedded application is not intended to end, which means
that the application will not make use of a traditional exit. However, there are situations
where a controlled exit is necessary, such as during debug sessions. You can link your
application with a special library that contains an exit label. A breakpoint will be
automatically set on that label to stop execution when it gets there. Before you start
C-SPY, choose Project>Options, and select the Linker category. On the Output page,
select the General Options category. On the Library Configuration page, select the
option Semihosted.

Call stack information

The compiler generates extensive backtrace information. This allows C-SPY to show,
without any runtime penalty, the complete call chain at any time. Typically, this is useful
for two purposes:

e Determining in what context the current function has been called
o Tracing the origin of incorrect values in variables and incorrect values in

parameters, thus locating the function in the call chain where the problem occurred.

The Call Stack window—available from the View menu—shows a list of function calls,
with the current function at the top. When you inspect a function in the call chain, by

double-clicking on any function call frame, the contents of all affected windows will be
updated to display the state of that particular call frame. This includes the editor, Locals,

Part 4. Debugging 125

Terminal input and output

126

Register, Watch and Disassembly windows. A function would normally not make use of
all registers, so these registers might have undefined states and be displayed as dashes
(---). For reference information about the Call Stack window, see Call Stack window,
page 364.

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command—available on the Debug menu, or alternatively on the
context menu—to execute to that function.

Assembler source code does not automatically contain any backtrace information. To be
able to see the call chain also for your assembler modules, you can add the appropriate
CFI assembler directives to the source code. For further information, see the ARM® IAR
Assembler Reference Guide.

Terminal input and output

IAR Embedded Workbench® IDE
User Guide

Sometimes you might need to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window—available on the View menu—Iets you enter input to your application, and
display output from it. This facility can be useful in two different contexts:

e If your application uses stdin and stdout
e For producing debug trace printouts.
To use this window, you need to build your application with the Semihosted or the IAR

breakpoint option. C-SPY will then direct stdin, stdout, and stderr to this
window.

For reference information, see Terminal 1/0 window, page 365.

Directing stdin and stdout to a file

You can also direct stdin and stdout directly to a file. You can then open the file in
another tool, for instance an editor, to navigate and search within the file for particularly
interesting parts. The Terminal I/O Log Files dialog box—available by choosing
Debug>Logging—allows you to select a destination log file, and to log terminal I/O
input and output from C-SPY to this file.

For reference information, see Terminal I/0 Log File dialog box, page 379.

Working with variables
and expressions

This chapter defines the variables and expressions used in C-SPY®. It also
demonstrates the different methods for examining variables and expressions.

C-SPY expressions

C-SPY lets you examine the C variables, C expressions, and assembler symbols that you
have defined in your application code. In addition, C-SPY allows you to define C-SPY
macro variables and macro functions and use them when evaluating expressions.
Expressions that are built with these components are called C-SPY expressions and
there are several methods for monitoring these in C-SPY.

C-SPY expressions can include any type of C expression, except function calls. The
following types of symbols can be used in expressions:

o C/C++ symbols

o Assembler symbols (register names and assembler labels)

o C-SPY macro functions

o C-SPY macro variables

Examples of valid C-SPY expressions are:
i+ 3

i =42

#asm_label

#R2

#PC
my_macro_func(19)

C SYMBOLS

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions. C symbols can be referenced by their
names.

Part 4. Debugging 127

C-SPY expressions

128

IAR Embedded Workbench® IDE
User Guide

Using sizeof
According to the ISO/ANSI C standard, there are two syntactical forms of sizeof:

sizeof (type)
sizeof expr

The former is for types and the latter for expressions.

In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).
ASSEMBLER SYMBOLS

Assembler symbols can be assembler labels or register names. That is, general purpose
registers, such as RO—R14, and special purpose registers, such as the program counter
and the status register. If a device description file is used, all memory-mapped peripheral
units, such as I/O ports, can also be used as assembler symbols in the same way as the
CPU registers. See Device description file, page 118.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

Example What it does

#pc++ Increments the value of the program counter.

myptr = #label7 Setsmyptr to the integral address of label7 within its zone.

Table 13: C-SPY assembler symbols expressions

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes * (ASCII character 0x60). For example:

Example What it does
#pc Refers to the program counter.
pc’ Refers to the assembler label pc.

Table 14: Handling name conflicts between hardware registers and assembler labels

Which processor-specific symbols are available by default can be seen in the Register
window, using the CPU Registers register group. See Register groups, page 147.

MACRO FUNCTIONS

Macro functions consist of C-SPY variable definitions and macro statements which are
executed when the macro is called.

For details of C-SPY macro functions and how to use them, see The macro language,
page 150.

Working with variables and expressions ___¢

MACRO VARIABLES

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assigns both its value and type.

For details of C-SPY macro variables and how to use them, see The macro language,
page 459.

Limitations on variable information

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

EFFECTS OF OPTIMIZATIONS

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. Depending on your project settings, a high level of
optimization results in smaller or faster code, but also in increased compile time.
Debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.

Consider this example:

foo ()

{
int i = 42;

x = bar(i); //Not until here the value of i is known to C-SPY

}

From the point where the variable 1 is declared until it is actually used there is no need
for the compiler to waste stack or register space on it. The compiler can optimize the
code, which means C-SPY will not be able to display the value until it is actually used.
If you try to view a value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

Part 4. Debugging 129

Viewing variables and expressions

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Viewing variables and expressions
There are several methods for looking at variables and calculating their values:
e Tooltip watch—in the editor window—provides the simplest way of viewing the

value of a variable or more complex expressions. Just point at the variable with the
pointer. The value will be displayed next to the variable.

o The Auto window—available from the View menu—automatically displays a
useful selection of variables and expressions in, or near, the current statement.

o The Locals window—available from the View menu—automatically displays the
local variables, that is, auto variables and function parameters for the active
function.

o The Watch window—available from the View menu—allows you to monitor the
values of C-SPY expressions and variables.

o The Live Watch window—available from the View menu—repeatedly samples and
displays the value of expressions while your application is executing. Variables in
the expressions must be statically located, such as global variables.

o The Statics window—available from the View menu—automatically displays the
values of variables with static storage duration.

o The Quick Watch window, see Using the Quick Watch window, page 131.
o The Trace system, see Using the trace system, page 131.
@ For text that is to wide to fit in a column—in any of the above windows, except the Trace

window—and thus is truncated, just point at the text with the mouse pointer and tooltip
information will be displayed.

For reference information about the different windows, see C-SPY windows, page 343.

WORKING WITH THE WINDOWS

All the windows are easy to use. You can add, modify, and remove expressions, and
change the display format.

A context menu containing useful commands is available in all windows if you
right-click in each window. Convenient drag-and-drop between windows is supported,
except for in the Locals window and the Quick Watch window where it is not applicable.

IAR Embedded Workbench® IDE
130 User Guide

Working with variables and expressions ___¢

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click in the Value field and
modify its content. To remove an expression, select it and press the Delete key.

Using the Quick Watch window

The Quick Watch window—available from the View menu—Iets you watch the value
of a variable or expression and evaluate expressions.

The Quick Watch window is different from the Watch window in the following ways:

o The Quick Watch window offers a fast method for inspecting and evaluating
expressions. Right-click on the expression you want to examine and choose Quick
Watch from the context menu that appears. The expression will automatically
appear in the Quick Watch window.

e In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be
necessary, but for expressions with side effects, such as assignments and C-SPY
macro functions, it allows you to perform evaluations under controlled conditions.

USING THE TRACE SYSTEM

A traceis arecorded sequence of events in the target system, typically executed machine
instructions. Depending on what C-SPY driver you are using, additional types of trace
data can be recorded. For example, read and write accesses to memory, as well as the
values of C-SPY expressions.

By using the trace system, you can trace the program flow up to a specific state, for
instance an application crash, and use the trace information to locate the origin of the
problem. Trace information can be useful for locating programming errors that have
irregular symptoms and occur sporadically. Trace information can also be useful as test
documentation.

The trace system is not supported by all C-SPY drivers. For detailed information about
the trace system and the components provided by the C-SPY driver you are using, see
the corresponding driver documentation in Simulator-specific debugging, page 165 and
Hardware-specific debugging, page 213, respectively.

Which trace system functionality that is provided depends on the C-SPY driver you are
using. However, for all C-SPY drivers that support the trace system, the Trace window,
the Find in Trace window, and the Find in Trace dialog box are always available. You
can save the trace information to a file to be analyzed later.

Part 4. Debugging 131

Viewing variables and expressions

132

IAR Embedded Workbench® IDE
User Guide

The Trace window and its browse mode

The type of information that is displayed in the Trace window depends on the C-SPY

driver you are using. The different trace data is displayed in separate columns, but the
Trace column is always available if the driver you are using supports the trace system.
The corresponding source code can also be shown.

You can follow the execution history by simply looking and scrolling in the Trace
window. Alternatively, you can enter browse mode. To enter browse mode, double-click
an item in the Trace window, or click the Browse toolbar button. The selected item turns
yellow and the source and disassembly windows will highlight the corresponding
location. You can now move around in the Trace window by using the up and down
arrow keys, or by scrolling and clicking; the source and Disassembly windows will be
updated to show the corresponding location. Double-click again to leave browse mode.

Searching in the trace data

You can perform advanced searches in the recorded trace data. You specify the search
criteria in the Find in Trace dialog box and view the result in the Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY treats, by default, all data located at assembler labels as
variables of type int. However, in the Watch, Quick Watch, and Live Watch windows,
you can select a different interpretation to better suit the declaration of the variables.

Asmmain. asm

asmvarl:
asmvarz:
asmvari:
asmvard:

Srmain

PUBLIC

COMMOH
CODE 32

BSEG

DC32
DC32
DCE
DCE

CODE 32
NOP
B main

Working with variables and expressions ___¢

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

main

main

INTVEC:CODE

main

ICODE: CODE

a4z
456
55
10

main

[

Expression Walue Location Type
asmuvarl 42 0=3000 int
asmvare 456 0x5004 int
asrmvard 55 0x8008 <8-bit unsigned>

int

Add
Remove

v Defaulk Format
Binary Formak
Ockal Format
Decimal Format
Hexadecimal Format
Char Format

it Unsigned
16-bit Signed
16-hit Unsigned
32-bit Signed
32-bit Unsigned

Figure 47: Viewing assembler variables in the Watch window

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

Part 4. Debugging 133

Viewing variables and expressions

IAR Embedded Workbench® IDE
134 User Guide

Using breakpoints

This chapter describes the breakpoint system and different ways to create and
monitor breakpoints.

The breakpoint system

The C-SPY® breakpoint system lets you set various kinds of breakpoints in the
application you are debugging, allowing you to stop at locations of particular interest.
You can set a breakpoint at a code location to investigate whether your program logic is
correct, or to get trace printouts. In addition to code breakpoints, and depending on what
C-SPY driver you are using, additional breakpoint types might be available. For
example, you might be able to set a data breakpoint, to investigate how and when the
data changes. If you are using the simulator driver you can also set immediate
breakpoints.

All your breakpoints are listed in the Breakpoints window where you can conveniently
monitor, enable, and disable them.

You can let the execution stop only under certain conditions, which you specify. It is also
possible to let the breakpoint trigger a side effect, for instance executing a C-SPY macro
function, without stopping the execution. The macro function can be defined to perform
a wide variety of actions, for instance, simulating hardware behavior.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions. C-SPY provides different ways of defining
breakpoints.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

Defining breakpoints

The breakpoints you define will appear in the Breakpoints window. From this window
you can conveniently view all breakpoints, enable and disable breakpoints, and open a
dialog box for defining new breakpoints. For more details, see Breakpoints window,
page 282.

Breakpoints are set with a higher precision than single lines, in analogy with the step
mechanism; for more details about the step precision, see Step, page 122.

Part 4. Debugging

135

Defining breakpoints

136

Code breakpoint

Tooltip information

Log breakpoint
P —

You can set a breakpoint in various ways; by using:

The Toggle Breakpoint command
The Memory window
The Breakpoints dialog box

Predefined system macros

The editor window, see Editor window, page 274.

The different methods allow different levels of complexity and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:
o Double-click in the gray left-side margin of the window

e Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

o Choose Edit>Toggle Breakpoint

o Right-click and choose Toggle Breakpoint from the context menu.

Breakpoint icons

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
is different for code and for log breakpoints:

Tukar.c m |
unsigned int get _fik(int nr)
i
|© L ine >) s (nr <= WAX FIE))|
{
return | root[ne-]);

'
Log @ Utilities.c:37.5
Memory | 0x6A [Fetch]

Disabled code — 0 retwn {0}

breakpoint

&

IAR Embedded Workbench® IDE
User Guide

'
!

Figure 48: Breakpoint icons

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected, see Editor options, page 317.

H W N

Using breakpoints ___¢

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage dialog box.

Note: The breakpoint icons might look different for the C-SPY driver you are using.
For more information about breakpoint icons, see the driver-specific documentation.
SETTING A BREAKPOINT IN THE MEMORY WINDOW

It is possible to set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu

that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted; you can see, edit, and remove it by using the
Breakpoints window, which is available from the View menu. The breakpoints you set
in this window will be triggered for both read and write access. All breakpoints defined
in the Memory window are preserved between debug sessions.

Setting different types of breakpoints in the Memory window is only supported if the
driver you use supports these types of breakpoints.

DEFINING BREAKPOINTS USING THE DIALOG BOX

The advantage of using the dialog box is that it provides you with a graphical interface
where you can interactively fine tune the characteristics of the breakpoints. You can set

the options and quickly test whether the breakpoint works according to your intentions.

To define a new breakpoint:

Choose View>Breakpoints to open the Breakpoints window.

In the Breakpoints window, right-click to open the context menu.
On the context menu, choose New Breakpoint.

On the submenu, choose the breakpoint type you want to set. Depending on the C-SPY
driver you are using, different breakpoint types might be available.

To modify an existing breakpoint:
Choose View>Breakpoints to open the Breakpoints window.

In the Breakpoints window, select the breakpoint you want to modify and right-click to
open the context menu.

On the context menu, choose Edit.

Part 4. Debugging

137

Defining breakpoints

138

IAR Embedded Workbench® IDE
User Guide

A breakpoint dialog box appears. Specify the breakpoint settings and click OK. The
breakpoint will be displayed in the Breakpoints window.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

For reference information about code and log breakpoints, see Code breakpoints dialog
box, page 283 and Log breakpoints dialog box, page 285, respectively. For details about
any additional breakpoint types, see the driver-specific documentation.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, it is useful to put a breakpoint on the first line of the function with a condition
that is true only when the parameter is 0. The breakpoint will then not be triggered until
the problematic situation actually occurs.

Performing a task with or without stopping execution

You can perform a task when a breakpoint is triggered with or without stopping the
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed.

If you instead want to perform a task without stopping the execution, you can set a
condition which returns 0 (false). When the breakpoint is triggered, the condition will
be evaluated and since it is not true execution will continue.

Consider the following example where the C-SPY macro function performs a simple
task:

__var my_counter;

count ()

{
my_counter += 1;
return 0;

}

To use this function as a condition for the breakpoint, type count () in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

Using breakpoints ___¢

DEFINING BREAKPOINTS USING SYSTEM MACROS

You can define breakpoints not only by using the Breakpoints dialog box but also by
using built-in C-SPY system macros. When you use macros for defining breakpoints,
the breakpoint characteristics are specified as function parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file by using
built-in system macros and execute the file at C-SPY startup. The breakpoints will then
be set automatically each time you start C-SPY. Another advantage is that the debug
session will be documented, and that several engineers involved in the development
project can share the macro files.

If you use system macros for setting breakpoints it is still possible to view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros will be removed when
you exit the debug session.

The following breakpoint macros are available:

__setCodeBreak
__setDataBreak
__setSimBreak
__clearBreak

For details of each breakpoint macro, see the chapter C-SPY® macros reference.

Defining breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Registering and executing using setup macros and setup files,
page 153.

Viewing all breakpoints

To view breakpoints, you can use the Breakpoints window and the Breakpoints Usage
dialog box.

For information about the Breakpoints window, see Breakpoints window, page 282.

Part 4. Debugging 139

Viewing all breakpoints

140

IAR Embedded Workbench® IDE
User Guide

USING THE BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from C-SPY driver-specific menus, for
example the Simulator menu—Ilists all active breakpoints.

Breakpoint Usage [%]

[Fetch
-SSP Terminal 140 & libsupport module

Figure 49: Breakpoint Usage dialog box

The Breakpoint Usage dialog box lists all breakpoints currently set in the target system,
both the ones you have defined and the ones used internally by C-SPY. For each
breakpoint in the list, the address and access type are shown. Each breakpoint can also
be expanded to show its originator. The format of the items in this dialog box depends
on which C-SPY driver you are using.

The dialog box gives a low-level view of all breakpoints, related but not identical to the
list of breakpoints shown in the Breakpoints dialog box.

Exceeding the number of available low-level breakpoints will cause the debugger to
single step. This will significantly reduce the execution speed. Therefore, in a debugger
system with a limited amount of breakpoints, the Breakpoint Usage dialog box can be
useful for:

o Identifying all consumers of breakpoints
o Checking that the number of active breakpoints is supported by the target system
o Configuring the debugger to utilize the available breakpoints in a better way, if

possible.

For information about the available number of breakpoints in the debugger system you
are using and how to use the available breakpoints in a better way, see the section about
breakpoints in the part of this book that corresponds to the debugger system you are
using.

Using breakpoints ___¢

Breakpoint consumers
There are several consumers of breakpoints in a debugger system.

User breakpoints—the breakpoints you define by using the Breakpoints dialog box or
by toggling breakpoints in the editor window—often consume one low-level breakpoint
each, but this can vary greatly. Some user breakpoints consume several low-level
breakpoints and conversely, several user breakpoints can share one low-level
breakpoint. User breakpoints are displayed in the same way both in the Breakpoint
Usage dialog box and in the Breakpoints window, for example Data @[R]
callCount.

C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

o the debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set when the debugger system is
running. This means that they are not visible in the Breakpoint Usage window.

o the Semihosted or the IAR breakpoint option has been selected.

These types of breakpoint consumers are displayed in the Breakpoint Usage dialog
box, for example, C-SPY Terminal I/0 & libsupport module.

C-SPY plugin modules, for example modules for real-time operating systems, can
consume additional breakpoints. Specifically, by default the Stack window consumes a
breakpoint. To disable the breakpoint used by the Stack window:

o Choose Tools>Options>Stack.

e Deselect the Stack pointer(s) not valid until program reaches: label option.

Part 4. Debugging 141

Viewing all breakpoints

IAR Embedded Workbench® IDE
142 User Guide

Monitoring memory and
registers

This chapter describes how to use the features available in the IAR C-SPY®
Debugger for examining memory and registers.

Memory addressing
In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. There are four
memory zones: Memory, Memory8, Memory16, and Memory32, which all of them cover
the whole ARM memory range.

0x00000000

OxXFFFFFFFF

Default zone Memory
Figure 50: Zones in C-SPY
Memory zones are used in several contexts, perhaps most importantly in the Memory
and Disassembly windows. The Zone box in these windows allows you to choose which
memory zone to display.

By using different memory zones, you can control the access width used for reading and
writing in, for example, the Memory window. For normal memory, the default zone
Memory can be used, but certain I/O registers may require to be accessed as 8, 16, or 32
bits to give correct results.

Part 4. Debugging 143

Windows for monitoring memory and registers

144

Windows for monitoring memory and registers

IAR Embedded Workbench® IDE
User Guide

C-SPY provides many windows for monitoring memory and registers, each of them
available from the View menu:

o The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Different colors are used for indicating data coverage along with
execution of your application. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. You can open several
instances of this window, to monitor different memory areas.

o The Symbolic memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

o The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, some integrity checks of the stack can be performed to detect
and warn about problems with stack overflow. For example, the Stack window is
useful for determining the optimal size of the stack.

o The Register window
Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them.

You can easily view the memory contents for a specific variable by dragging the variable
to the Memory window or the Symbolic memory window. The memory area where the
variable is located will appear.

Go to memory —
address

USING THE MEMORY WINDOW

Monitoring memory and registers ___¢

The Memory window gives an up-to-date display of a specified area of memory and

allows you to edit it.

Zone display

Goto ﬂ |Mem0ry

ODOEE£Ef8 0o 0o
00100000
ooloooo8
0olo0010
ooloools
00100020
ooloooz8
00100030
0oloo038
00100040

|

Figure 51: Memory window

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and the memory contents in ASCII format. You can edit the
contents of the Memory window, both in the hexadecimal part and the ASCII part of the

window.

For reference information, see Memory window, page 349. See also Setting a breakpoint

in the Memory window, page 137.

Part 4. Debugging 145

Windows for monitoring memory and registers

146

Current stack

pointer

IAR Embedded Workbench® IDE
User Guide

USING THE STACK WINDOW

Before you can open the Stack window you must make sure it is enabled; Choose
Project>Options>Debugger>Plugins and select Stack from the list of plugins. In
C-SPY, you can then open a Stack window by choosing View>Stack. You can open
several instances of the Stack window, each showing a different stack—if several stacks
are available—or the same stack with different display settings.

Current stack
Stack view pointer Used stack memory, Unused stack memory,

in dark gray in light gray

The graphical stack bar
with tooltip information

Location | Data. Yariable Yalue | Frame |

0x08

+1 0x08

+2 0x0000 p.mStatus 0 [1] _exit

+4 Ox4Rh

+5 0x67

+6 OxEOQ

+7 0Ox04

Figure 52: Stack window

For detailed reference information about the Stack window, and the method used for
computing the stack usage and its limitations, see Stack window, page 369. For reference
information about the options specific to the window, see Stack options, page 330.

Place the mouse pointer over the stack bar to get tool tip information about stack usage.

Detecting stack overflows

If you have selected the option Enable stack checks, available by choosing
Tools>Options>Stack, you have also enabled the functionality needed to detect stack
overflows. This means that C-SPY can issue warnings for stack overflow when the
application stops executing. Warnings are issued either when the stack usage exceeds a
threshold that you can specity, or when the stack pointer is outside the stack memory
range.

Viewing the stack contents

The display area of the Stack window shows the contents of the stack, which can be
useful in many contexts. Some examples are:

e Investigating the stack usage when assembler modules are called from C modules
and vice versa

Monitoring memory and registers ___¢

e Investigating whether the correct elements are located on the stack

e Investigating whether the stack is restored properly.

WORKING WITH REGISTERS

The Register window gives an up-to-date display of the contents of the processor
registers and special function registers, and allows you to edit them.

Register 5]
UART hd
TUARTRERTHR = 0xD7 [HUARTLCR = 0x03
TARTDLL = 0xD7 [UARTMCR = 000
TARTRER = 0xD7 [HUARTLSR = 0x00
TUARTTHR = 0xD7 [UARTMSR = 0x00
TUARTIER = 0x01 TARTSCR = 0x00
TARTDLM = 0x01
UARTFCRITR = (Ox00
TARTFCR = 0x00
TUARTIIR = 0x00

Figure 53: Register window

Every time C-SPY stops, a value that has changed since the last stop is highlighted. To
edit the contents of a register, click it, and modify the value. Some registers can be
expanded to show individual bits or subgroups of bits.

You can change the display format by changing the Base setting on the Register Filter
page—available by choosing Tools>Options.

Register groups

Due to the large amount of registers—memory-mapped peripheral unit registers and
CPU registers—it is inconvenient to show all registers concurrently in the Register
window. Instead you can divide registers into register groups. By default there is only
one register group in the debugger: CPU Registers.

In addition to the CPU Registers there are additional register groups predefined in the
device description files—available in the arm\config directory—that make all SFR
registers available in the register window. The device description file contains a section
that defines the special function registers and their groups.

You can select which register group to display in the Register window using the
drop-down list. You can conveniently keep track of different register groups
simultaneously, as you can open several instances of the Register window.

Part 4. Debugging 147

Windows for monitoring memory and registers

Enabling predefined register groups

To use any of the predefined register groups, select a device description file that suits
your device, see Selecting a device description file, page 115.

The available register groups will be listed on the Register Filter page available if you
choose the Tools>Options command when C-SPY is running.

Defining application-specific groups

In addition to the predefined register groups, you can create your own register groups
that better suit the use of registers in your application.

To define new register groups, choose Tools>Options and click the Register Filter tab.
This page is only available when C-SPY is running.

IDE Dptions [%]

- Cormmon Fonts X .
Key Bindings ¥ Use register filter Groups:

Editar IMyFiIter.fIt Filter Files... | I - l
Messages
Project: = CPU Registers &

Group members:

Source Code Contral

-3

<o |
Baze
[T Ovenide

Register Filker
S Terminal 0

QK | Cancel | Apply | Help |

Figure 54: Register Filter page

For reference information about this dialog box, see Register Filter options, page 332.

IAR Embedded Workbench® IDE
148 User Guide

Using the C-SPY® macro
system

C-SPY includes a comprehensive macro system which allows you to automate
the debugging process and to simulate peripheral devices. Macros can be used
in conjunction with complex breakpoints and interrupt simulation to perform
a wide variety of tasks.

This chapter describes the macro system, its features, for what purpose these
features can be used, and how to use them.

The macro system

C-SPY macros can be used solely or in conjunction with complex breakpoints and
interrupt simulation to perform a wide variety of tasks. Some examples where macros
can be useful:

o Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.
e Hardware configuring, such as initializing hardware registers.

o Developing small debug utility functions, for instance calculating the stack depth,
see the provided example stack.mac located in the directory \arm\src\sim.

e Simulating peripheral devices, see the chapter Simulating interrupts. This only
applies if you are using the simulator driver.

The macro system has several features:

o The similarity between the macro language and the C language, which lets you
write your own macro functions.

e Predefined system macros which perform useful tasks such as opening and closing
files, setting breakpoints and defining simulated interrupts.

e Reserved setup macro functions which can be used for defining at which stage the
macro function should be executed. You define the function yourself, in a sefup
macro file.

The option of collecting your macro functions in one or several macro files.

A dialog box where you can view, register, and edit your macro functions and files.

Alternatively, you can register and execute your macro files and functions using
either the setup functionality or system macros.

Part 4. Debugging

149

The macro system

150

IAR Embedded Workbench® IDE
User Guide

Many C-SPY tasks can be performed either by using a dialog box or by using macro
functions. The advantage of using a dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the task you want
to perform, for instance setting a breakpoint. You can add parameters and quickly test
whether the breakpoint works according to your intentions.

Macros, on the other hand, are useful when you already have specified your breakpoints
so that they fully meet your requirements. You can set up your simulator environment
automatically by writing a macro file and executing it, for instance when you start
C-SPY. Another advantage is that the debug session will be documented, and if there are
several engineers involved in the development project you can share the macro files
within the group.

THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are macro
statements, which are similar to C statements. You can define macro functions, with or
without parameters and return values. You can use built-in system macros, similar to C
library functions. Finally, you can define global and local macro variables. For a
detailed description of the macro language components, see The macro language, page
459.

Example

Consider this example of a macro function which illustrates the different components of
the macro language:

CheckLatest (value)
{

oldvalue;

if (oldvalue != value)

{

__message "Message: Changed from ", oldvalue, " to ", value;

oldvalue = value;
}
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

THE MACRO FILE

You collect your macro variables and functions in one or several macro files. To define
a macro variable or macro function, first create a text file containing the definition. You
can use any suitable text editor, such as the editor supplied with the IDE. Save the file

with a suitable name using the filename extension mac.

Using the C-SPY® macro system __4

Setup macro file

It is possible to load a macro file at C-SPY startup; such a file is called a setup macro
file. This is especially convenient if you want to make C-SPY perform actions before
you load your application software, for instance to initialize some CPU registers or
memory-mapped peripheral units. Other reasons might be if you want to automate the
initialization of C-SPY, or if you want to register multiple setup macro files. An example
of a C-SPY setup macro file SetupSimple.mac can be found in the arm\tutor
directory.

For information about how to load a setup macro file, see Registering and executing
using setup macros and setup files, page 153. For an example of how to use setup macro
files, see the chapter Simulating an interrupt in Part 2. Tutorials.

SETUP MACRO FUNCTIONS

The setup macro functions are reserved macro function names that will be called by
C-SPY at specific stages during execution. The stages to choose between are:

o After communication with the target system has been established but before
downloading the application software

o Once after your application software has been downloaded
o FEach time the reset command is issued

o Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register
a macro function with the name of a setup macro function. For instance, if you want to
clear a specific memory area before you load your application software, the macro setup
function execUserPreload is suitable. This function is also suitable if you want to
initialize some CPU registers or memory mapped peripheral units before you load your
application software. For detailed information about each setup macro function, see
Setup macro functions summary, page 464.

As with any macro function, you collect your setup macro functions in a macro file.
Because many of the setup macro functions execute before main is reached, you should
define these functions in a setup macro file.

Remapping memory

A common feature of many ARM-based processors is the ability to remap memory.
After a reset, the memory controller typically maps address zero to non-volatile
memory, such as flash. By configuring the memory controller, the system memory can
be remapped to place RAM at zero and non-volatile memory higher up in the address

Part 4. Debugging 151

Using C-SPY macros

152

map. By doing this the exception table will reside in RAM and can be easily modified
when you download code to the evaluation board. To handle this in C-SPY, the setup
macro function execUserPreload () is suitable. For an example, see Remapping
memory, page 119.

Using C-SPY macros

IAR Embedded Workbench® IDE
User Guide

If you decide to use C-SPY macros, you first need to create a macro file in which you
define your macro functions. C-SPY needs to know that you intend to use your defined
macro functions, and thus you must register (load) your macro file. During the debug

session you might need to list all available macro functions as well as execute them.

To list the registered macro functions, you can use the Macro Configuration dialog
box. There are various ways to both register and execute macro functions:

e You can register a macro interactively by using the Macro Configuration dialog
box.

® You can register and execute macro functions at the C-SPY startup sequence by
defining setup macro functions in a setup macro file.

e A file containing macro function definitions can be registered using the system
macro __registerMacroFile. This means that you can dynamically select
which macro files to register, depending on the runtime conditions. Using the
system macro also lets you register multiple files at the same moment. For details
about the system macro, see __registerMacroFile, page 482.

o The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions.

o A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro will be executed.

USING THE MACRO CONFIGURATION DIALOG BOX

The Macro Configuration dialog box—available by choosing Debug>Macros—Ilets
you list, register, and edit your macro files and functions. The dialog box offers you an
interactive interface for registering your macro functions which is convenient when you
develop macro functions and continuously want to load and test them.

Using the C-SPY® macro system __4

Macro functions that have been registered using the dialog box will be deactivated when
you exit the debug session, and will not automatically be registered at the next debug
session.

Macro Configuration BE
Look in: Ia tutaor j - I‘j‘ v

1 Debug

[settings
Setupadvanced. mac
SetupSimple. mac

File name: ISetupSimpIe.mac j
Files of type: IMacro Filez [*.mac] j
Selected Macro Files: Add |

C:hprojectshtutorS etupSimple. mac Add Al |
Remove |
Remave Al |

— Registered Macro .
Regist
(o] User € System ﬂl

Parameters | File

_canceldlinterrupts] - Spstem Macro -
__cancellnterupt int] - Spstem Macro -
_clearBreak [id) - Spstem Macro -
__clozeFile [file] - Spstem Macro - — ol
- ose |
__dizablelnterrupts Il - Spstem Macro -
__driverType [ztring] - Spstem Macro - LI Help |

Figure 55: Macro Configuration dialog box

For reference information about this dialog box, see Macro Configuration dialog box,
page 376.

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence,
especially if you have several ready-made macro functions. C-SPY can then execute the
macros before main is reached. You achieve this by specifying a macro file which you
load before starting the debugger. Your macro functions will be automatically registered
each time you start C-SPY.

If you define the macro functions by using the setup macro function names you can
define exactly at which stage you want the macro function to be executed.

Part 4. Debugging 153

Using C-SPY macros

154

IAR Embedded Workbench® IDE
User Guide

Follow these steps:
Create a new text file where you can define your macro function.
For example:

execUserSetup ()

{

_ _registerMacroFile ("MyMacroUtils.mac") ;
_ _registerMacroFile("MyDeviceSimulation.mac") ;

}

This macro function registers the macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the
execUserSetup function name, it will be executed directly after your application has
been downloaded.

Save the file using the filename extension mac.

Before you start C-SPY, choose Project>Options and click the Setup tab in the
Debugger category. Select the check box Use Setup file and choose the macro file you
just created.

The interrupt macro will now be loaded during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window—available from the View menu—Iets you watch the value

of any variables or expressions and evaluate them. For macros, the Quick Watch window
is especially useful because it is a method which lets you dynamically choose when to
execute a macro function.

Consider the following simple macro function which checks the status of a watchdog
timer interrupt enable bit:

WDTstatus ()
{
if (#WD_SR & 0x01 != 0) /* Checks the status of WDOVF */
return "Watchdog triggered"; /* C-SPY macro string used */
else
return "Watchdog not triggered"; /* C-SPY macro string used*/

}
Save the macro function using the filename extension mac. Keep the file open.

To register the macro file, choose Debug>Macros. The Macro Configuration dialog
box appears. Locate the file, click Add and then Register. The macro function appears
in the list of registered macros.

Using the C-SPY® macro system __4

3 In the macro file editor window, select the macro function name WDTstatus.
Right-click, and choose Quick Watch from the context menu that appears.

Quick Watch B
| Expression | Yalue | Location | Type |
WTDstatus() "Watchdog nottriggered” macro string

Figure 56: Quick Watch window
The macro will automatically be displayed in the Quick Watch window.

Click Close to close the window.

EXECUTING A MACRO BY CONNECTINGITTO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed at the time
when the breakpoint is triggered. The advantage is that you can stop the execution at
locations of particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers changes. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

For an example of how to create a log macro and connect it to a breakpoint, follow these
steps:

I Assume this skeleton of a C function in your application source code:

int fact(int x)

{

}
2 Create a simple log macro function like this example:

logfact ()

{

__message "fact(" ,x, ")";
}

The __message statement will log messages to the Log window.

Save the macro function in a macro file, with the filename extension mac.

Part 4. Debugging 155

Using C-SPY macros

156

IAR Embedded Workbench® IDE
User Guide

Before you can execute the macro it must be registered. Open the Macro
Configuration dialog box—available by choosing Debug>Macros—and add your
macro file to the list Selected Macro Files. Click Register and your macro function
will appear in the list Registered Macros. Close the dialog box.

Next, you should toggle a code breakpoint—using the Toggle Breakpoint button—on
the first statement within the function fact in your application source code. Open the
Breakpoint dialog box—available by choosing Edit>Breakpoints—your breakpoint
will appear in the list of breakpoints at the bottom of the dialog box. Select the
breakpoint.

Connect the log macro function to the breakpoint by typing the name of the macro
function, logfact (), in the Action field and clicking Apply. Close the dialog box.

Now you can execute your application source code. When the breakpoint has been
triggered, the macro function will be executed. You can see the result in the Log
window.

You can easily enhance the log macro function by, for instance, using the __ fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 462.

For a complete example where a serial port input buffer is simulated using the method
of connecting a macro to a breakpoint, see the chapter Simulating an interrupt in Part
2. Tutorials.

Analyzing your application

Itis important to locate an application’s bottle-necks and to verify that all parts
of an application have been tested. This chapter presents facilities available in
the IAR C-SPY® Debugger for analyzing your application so that you can
efficiently spend time and effort on optimizations.

Code coverage and profiling are not supported by all C-SPY drivers. For
information about the driver you are using, see the driver-specific
documentation. Code coverage and profiling are supported by the C-SPY
Simulator.

Function-level profiling

The profiler will help you find the functions where most time is spent during execution,
for a given stimulus. Those functions are the parts you should focus on when spending
time and effort on optimizing your code. A simple method of optimizing a function is to
compile it using speed optimization. Alternatively, you can move the function into the
memory which uses the most efficient addressing mode. For detailed information about
efficient memory usage, see the /AR C/C++ Development Guide for ARM®.

The Profiling window displays profiling information, that is, timing information for the
functions in an application. Profiling must be turned on explicitly using a button on the
window’s toolbar, and will stay active until it is turned off.

The profiler measures the time between the entry and return of a function. This means
that time consumed in a function is not added until the function returns or another
function is called. You will only notice this if you are stepping into a function.

For reference information about the Profiling window, see Profiling window, page 368.

Part 4. Debugging

157

Function-level profiling

158

IAR Embedded Workbench® IDE
User Guide

USING THE PROFILER

Before you can use the Profiling window, you must build your application using the
following options:

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Output>Include debug information in output
Debugger Plugins>Profiling

Table 15: Project options for enabling profiling

After you have built your application and started C-SPY, choose View>Profiling to
open the window, and click the Activate button to turn on the profiler.

Click the Clear button, alternatively use the context menu available by right-clicking in
the window, when you want to start a new sampling.

Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button.

[0 §|F|= ¢l

Function | Calls | Flat Tirne (cycles) | Flat Time (%) | Accumulated Tim. | Accumulated Tim..
Outsicle main 0 207 4.8 207 4.8
__putchar 24 72 1.49 72 1.49
_exit 0 o 0.0o o 0.0o
dio_foregrouncd_p... 10 280 79 3980 g2.23
exit 1 3 0.06 3 0.06
get_fib 26 390 8.06 390 8.06
init_fily 1 248 512 488 10,08
main 1 159 3.29 4827 95.60
next_counter 10 70 1.45 70 1.45
put_fila 1 3336 68.93 3480 71.90
putchar 24 72 1.49 144 2.98

Figure 57: Profiling window
Profiling information is displayed in the window.

Viewing the figures
Clicking on a column header sorts the entire list according to that column.

A dimmed item in the list indicates that the function has been called by a function which
does not contain source code (compiled without debug information). When a function
is called by functions that do not have their source code available, such as library
functions, no measurement in time is made.

There is always an item in the list called Outside main. This is time that cannot be placed
in any of the functions in the list. That is, code compiled without debug information, for
instance, all startup and exit code, and C/C++ library code.

Analyzing your application __¢

Clicking the Graph button toggles the percentage columns to be displayed either as

numbers or as bar charts.

[0 ofF = c| o

Function | Calls | Flat Time (cycles) | Flat Tirne (36) | Accumulated Tim...| Accurnulated Tim |
Outside rain 0 5 5

__puichar 24 72 I 72 |

_exit 0 1] 0

do_foregraund_p... 10 280 [| 3980 |]
exit 1 3 3

get_fib 26 350 | | 380 u

init_fib 1 248 1 BLili] |

main 0 159 1 4627 |
hext_counter 10 70 | 70

put_fib 10 3336] 3480 |
putchar 24 72 I 144 1

Figure 58: Graphs in Profiling window

Clicking the Show details button displays more detailed information about the function
selected in the list. A window is opened showing information about callers and callees

for the selected function:

ng - Function details

Function: put_fib

Flat time 795 cycles, Accumulated time 5432 cycles.
Callers:

Total: 10

Figure 59: Function details window

Producing reports

To produce a report, right-click in the window and choose the Save As command on the
context menu. The contents of the Profiling window will be saved to a file.

Part 4. Debugging 159

Code coverage

160

Code coverage

IAR Embedded Workbench® IDE
User Guide

The code coverage functionality helps you verify whether all parts of your code have
been executed. This is useful when you design your test procedure to make sure that all
parts of the code have been executed. It also helps you identify parts of your code that
are not reachable.

USING CODE COVERAGE

The Code Coverage window—available from the View menu—reports the status of the
current code coverage analysis, that is, what parts of the code have been executed at least
once since the start of the analysis. The compiler generates detailed stepping
information in the form of step points at each statement, as well as at each function call.
The report includes information about all modules and functions. It reports the amount
of all step points, in percentage, that have been executed and lists all step points that have
not been executed up to the point where the application has been stopped. The coverage
will continue until turned off.

For reference information about the Code Coverage window, see Code Coverage
window, page 366.

Before using the Code Coverage window you must build your application using the
following options:

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Output>Include debug information in output
Debugger Plugins>Code Coverage

Table 16: Project options for enabling code coverage

Analyzing your application __¢

After you have built your application and started C-SPY, choose View>Code Coverage
to open the Code Coverage window and click Activate to switch on the code coverage
analyzer. The following window will be displayed:

Code Coverage B

[5]clo
=% project] 91.18%
=% Tutor 100.00%
: 4 do_foreground_pracess 100.00%
% main 100.00%
@ next_counter 100.00%
Elc Ltilities 86.96%%
&9 get_fib 65.57%

@ init_fib 100.00%

& @ put_fib §462%

Figure 60: Code Coverage window

Viewing the figures

The code coverage information is displayed in a tree structure, showing the program,
module, function and step point levels. The plus sign and minus sign icons allow you to
expand and collapse the structure.

The following icons are used to give you an overview of the current status on all levels:

o A red diamond signifies that 0% of the code has been executed

e A green diamond signifies that 100% of the code has been executed

o A red and green diamond signifies that some of the code has been executed
o A yellow diamond signifies a step point that has not been executed.

The percentage displayed at the end of every program, module and function line shows
the amount of code that has been covered so far, that is, the number of executed step
points divided with the total number of step points.

For step point lines, the information displayed is the column number range and the row
number of the step point in the source window, followed by the address of the step point.

<column start>-<column end>:row.

A step point is considered to be executed when one of its instructions has been executed.
When a step point has been executed, it is removed from the window.

Part 4. Debugging

161

Code coverage

162

IAR Embedded Workbench® IDE
User Guide

Double-clicking a step point or a function in the Code Coverage window displays that
step point or function as the current position in the source window, which becomes the
active window. Double-clicking a module on the program level expands or collapses the
tree structure.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window needs to be refreshed because the displayed information is
no longer up to date. To update the information, use the Refresh command.

What parts of the code are displayed?

The window displays only statements that have been compiled with debug information.
Thus, startup code, exit code and library code will not be displayed in the window.
Furthermore, coverage information for statements in inlined functions will not be
displayed. Only the statement containing the inlined function call will be marked as
executed.

Producing reports

To produce a report, right-click in the window and choose the Save As command on the
context menu. The contents of the Code Coverage window will be saved to a file.

Part 5. The C-SPY®
Simulator

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

o Simulator-specific debugging

e Simulating interrupts.

.hmuhhhhi

163

AAARRIE

164

Simulator-specific
debugging

In addition to the general C-SPY® features, the C-SPY Simulator provides
some simulator-specific features, which are described in this chapter.

You will get reference information, as well as information about driver-specific
characteristics, such as memory access checking and breakpoints.

The C-SPY Simulator introduction

The C-SPY Simulator simulates the functions of the target processor entirely in
software, which means the program logic can be debugged long before any hardware is
available. As no hardware is required, it is also the most cost-effective solution for many
applications.

FEATURES

In addition to the general features listed in the chapter Product introduction, the C-SPY
Simulator also provides:

Instruction-accurate simulated execution

Memory configuration and validation

Interrupt simulation

Immediate breakpoints with resume functionality

Peripheral simulation (using the C-SPY macro system).

SELECTING THE SIMULATOR DRIVER

Before starting C-SPY, you must choose the simulator driver. In the IDE, choose
Project>Options and click the Setup tab in the Debugger category. Choose Simulator
from the Driver drop-down list.

Part 5. IAR C-SPY Simulator 165

Simulator-specific menus

166

Simulator-specific menus
When you use the simulator driver, the Simulator menu is added in the menu bar.

IAR Embedded Workbench® IDE
User Guide

SIMULATOR MENU

Run In Pipeline Mode
Fipeline Trace Window

Iemary Sccess Configuration, ..

v Interrupt Setup. ..
Forced Interrupt
Inkerrupk Log
Memoary Access Setup..,

Trace
Function Trace

Breakpoint Usage

Figure 61: Simulator menu

The Simulator menu contains the following commands:

Menu command

Description

Run in Pipeline Mode

Pipeline Trace Window

Memory Access
Configuration

Interrupt Setup

Forced Interrupts

Interrupt Log

Toggles pipeline mode on or off. When the simulator runs in pipeline
mode, it performs a cycle accurate simulation of the
ARM7TDMI/ARM9TDMI pipeline. If you switch from pipeline mode to
normal mode, the switch is not completely performed until the pipeline
is flushed, which happens when a branch instruction is executed.

Displays the Pipeline Trace window which shows the stages in the
pipeline for each clock cycle and the assembler instruction handled in
each stage; see Pipeline Trace window, page |167. This window is only
available when C-SPY is running in pipeline mode.

Displays the Memory Access Configuration window where you can
specify the number of clock cycles needed to access a specific part of the
memory; see Memory Access Configuration, page 168. This window is only
available when C-SPY is running in pipeline mode.

Displays a dialog box to allow you to configure C-SPY interrupt
simulation; see Interrupt Setup dialog box, page 189.

Displays a window from which you can trigger an interrupt; see Forced
interrupt window, page 192.

Displays a window which shows the status of all defined interrupts; see
Interrupt Log window, page |194.

Table 17: Description of Simulator menu commands

Menu command

Simulator-specific debugging ___o

Description

Memory Access Setup

Displays a dialog box to simulate memory access checking by specifying

memory areas with different access types; see Memory Access setup dialog
box, page 177.

Trace Opens the Trace window with the recorded trace data; see Trace window,

page 170.

Function Trace Opens the Function Trace window with the trace data for which
functions were called or returned from; see Function Trace window, page

172.

Breakpoint Usage Displays the Breakpoint Usage dialog box which lists all active

breakpoints; see Breakpoint Usage dialog box, page 184.

Table 17: Description of Simulator menu commands

PIPELINE TRACE WINDOW

The Pipeline Trace window—available from the Simulator menu—shows the stages in
the ARM core pipeline for each clock cycle and the assembler instruction handled in
each stage. This allows accurate simulation of each instruction and of the pipeline flow.
Simulation in pipeline mode is supported for ARM architecture 4 cores.

The Pipeline Trace window is only available when C-SPY is running in pipeline mode,
and the information is only displayed when C-SPY is single-stepping in disassembly
mode. To enable the Pipeline Trace window, choose Simulator>Run In Pipeline
Mode. If you switch from pipeline mode to normal mode, the switch is not completely
performed until the pipeline is flushed, which happens when a branch instruction is
executed.

= Pipeline Trace [_ (O] %]

Stage Address | Opcode Mnemonic | Operands Comments -

MEM: —
Ex: 0000s636 1264 AD0 R4, R4, #1

I 00008638 1ESZ SUB RZ, RZ, #1

IF: 000086, 2400 CMP RZ, #0

Cyile 9593

WE:

MEM:

Ex: 00008638 1ESZ SUB RZ, RZ, #1

I 000086, 2400 CMP RZ, #0

IF: 0oo0sé... DiFS EME 0008630

Cyile 9597

WE:

MEM:

Ex: 000086, 2400 CMP RZ, #0

I 0oo0sé... DiFS EME 0008630

IF: 0000863 BC10 POP {R4}

Cyele 9500 x|

Figure 62: Pipeline Trace window

Part 5. IAR C-SPY Simulator

167

Simulator-specific menus

168

IAR Embedded Workbench® IDE
User Guide

The Pipeline window shows:

Column Description

Stage The stages for each clock cycle.

Address The address where the assembler instruction originates.
Opcode Operation code for the assembler instruction.
Mnemonic The mnemonic for the assembler instruction.

Operands Operands for the instruction.

Comments The absolute address of a jump.

Table 18: Pipeline window information

Note that simulation in pipeline mode slows down the simulation speed.

MEMORY ACCESS CONFIGURATION

The Memory Access Configuration window—available from the Simulator menu—Ilets
you specify the number of clock cycles needed to access a specific region of the address
space. This is used in pipeline mode to customize a memory configuration by specifying
access times and bus width. The Memory Access Configuration window is only

available when C-SPY is running in pipeline mode.

When a jump instruction is executed, some already fetched and decoded instructions
will be removed from the pipeline.

i Memory Access Configuration []

|Zone | Start addr. | End addr. | Seq.Head| Seq.Write| NSeq.Head| M5eq.wiite | Busw
1 1 2 2

[Default cost]
: Memary [l OFFFFFFFE

| | i

™ Use default cost only
™ ‘wam about unspecified accesses

ok I
Cancel |

Add...

Modify... |
Remove |
Remave Al |

Figure 63: Memory Access Configuration window

Simulator-specific debugging ___o

The option Use default cost only disables all specified access costs and uses the default
cost. Select the option Warn about unspecified accesses to make the debugger issue
the warning Address without a specified cost was accessed for any memory
access to an address outside specified access costs. This option is disabled when the Use
default cost only option is selected.

To define a memory access region, click Add. This will open the Memory access costs
dialog box.

MEMORY ACCESS COSTS DIALOG BOX

In the Memory access costs dialog box—available from the Memory Access
Configuration window—you can define memory access regions.

Memory access cosks E

~Memory range—————— Buswidh—————
Zone

IMemory 'l " 3hits Cancel |

Start address: End address: © 1Bbis

[00 [OFFFFFFFE 32 bits
— Cycle cost

Sequential Mon-gequential

Read: ik Read: ik

[[T [z [z

Figure 64: Memory access costs dialog box

Specify memory Zone, Start address and End address. Then set the number of read
and write cycles required for memory access in the Cycle costs text boxes. You can
choose between:

Sequential The access time for succeeding consecutive accesses, for example
access to byte 2,3,4 of a word access to byte-wide memory.

Non-sequential The access time for access to a random location within this memory
range.

Finally, specify the Bus width and click OK to save the changes.

To edit an existing memory access region, select it in the list and click Modify to display
or edit its settings, or Remove to delete it. To remove all memory access regions, click
Remove All

Part 5. IAR C-SPY Simulator 169

Using the trace system in the simulator

170

Using the trace system in the simulator

IAR Embedded Workbench® IDE
User Guide

In the C-SPY Simulator, a trace is a recorded sequence of executed machine
instructions. In addition, you can record the values of C-SPY expressions by selecting
the expressions in the Trace Expressions window. The Function Trace window only
shows trace data corresponding to calls to and returns from functions, whereas the Trace
window displays all instructions.

For more detailed information about using the common features in the trace system, see
Using the trace system, page 131.
TRACE WINDOW

The Trace window—available from the Simulator menu—displays a recorded
sequence of executed machine instructions. In addition, the window can display trace
data for expressions.

Trace =]
OXBEASYH i

| Trace | i |L|
257 0000B13E CMP R4, #10 2

258 00008140 EBELT 0x008124 2

259 00008124 LSL RO, R4, #0 2

260 00008126 ; pre BL/ELX 2

261 00008128 BL get_fib ... —

Next label is a Thumb label
get_fib:
262 0000814C PUSH {LE} - Z‘
Trace | Trace Expressions | Function Trace

X

Figure 65: Trace window
C-SPY generates trace information based on the location of the program counter.

The Trace window contains the following columns:

Trace window column Description

A serial number for each row in the trace buffer. Simplifies the
navigation within the buffer.

Trace The recorded sequence of executed machine instructions.
Optionally, the corresponding source code can also be displayed.

Table 19: Trace window columns

Simulator-specific debugging o

Trace window column Description

Expression Each expression you have defined to be displayed appears in a
separate column. Each entry in the expression column displays the
value dfter executing the instruction on the same row. You specify
the expressions for which you want to record trace information in
the Trace Expressions window; see Trace Expressions window, page
173.

Table 19: Trace window columns (Continued)

For more information about using the trace system, see Using the trace system, page
131.

TRACE TOOLBAR

The Trace toolbar is available in the Trace window and in the Function trace window:

Enable/Disable Find
Toggle Source Edit Settings

IEXIEQI%EHS:H

Clear traceldata Browse Save Edit Expressions

Figure 66: Trace toolbar

The following function buttons are available on the toolbar:

Toolbar button Description

Enable/Disable Enables and disables tracing. This button is not available in the
Function trace window.

Clear trace data Clears the trace buffer. Both the Trace window and the Function
trace window are cleared.

Toggle Source Toggles the Trace column between showing only disassembly or
disassembly together with corresponding source code.

Browse Toggles browse mode on and off for a selected item in the Trace
column. For more information about browse mode, see The Trace
window and its browse mode, page 132.

Find Opens the Find In Trace dialog box where you can perform a
search; see Find in Trace dialog box, page 175.

Save Opens a standard Save dialog box where you can save the
recorded trace information to a text file, with tab-separated
columns.

Edit Settings This button is not enabled in the C-SPY Simulator.

Table 20: Trace toolbar commands

Part 5. IAR C-SPY Simulator

171

Using the trace system in the simulator

172

IAR Embedded Workbench® IDE
User Guide

Toolbar button Description

Edit Expressions Opens the Trace Expressions window; see Trace Expressions
window, page 173.

Table 20: Trace toolbar commands (Continued)

FUNCTION TRACE WINDOW

The Function Trace window—available from the Simulator menu—displays a subset
of the trace data displayed in the Trace window. Instead of displaying all rows, the
Function Trace window only shows trace data corresponding to calls to and returns from
functions.

Function Trace =]
XASYHE A

| Trace | call_count |;|
2699 Memory: 0x002D4: put f£ib + 50 2

2711 Memory:0x00114: ?C PUTCHAR 2

2713 Memory:0x00313: put f£ib + 107 2

2717 Memory:0x00214: do foreground process... 2

27158 Memory:0x0023E: main + 41 2

2721 Memory:0x00145: 251 CHMP LOZ 2

2735 Memory:0x00247: main + 50 2

2737 Memory:0x00205: do foreground process 2

2738 Memory: 0x00200: next counter 2 j
Function Trace ITrace | Trace Expressions =

Figure 67: Function Trace window

For information about the toolbar, see Trace toolbar, page 171.

For more information about using the trace system, see Using the trace system, page
131.

Simulator-specific debugging o

TRACE EXPRESSIONS WINDOW

In the Trace Expressions window—available from the Trace window toolbar—you can
specify specific expressions for which you want to record trace information.

Trace Expressions B
+ 3

Expression | Format

i Default

unckion Trace: Trace Expressions

Figure 68: Trace Expressions window

In the Expression column, you specify any expression you want to be recorded. You can
specify any expression that can be evaluated, such as variables and registers.

The Format column shows which display format is used for each expression.
Each row in this window will appear as an extra column in the Trace window.

For more information about using the trace system, see Using the trace system, page
131.

Use the toolbar buttons to change the order between the expressions:

Toolbar button Description
Arrow up Moves the selected row up
Arrow down Moves the selected row down

Table 21: Toolbar buttons in the Trace Expressions window

Part 5. IAR C-SPY Simulator 173

Using the trace system in the simulator

174

IAR Embedded Workbench® IDE
User Guide

FIND IN TRACE WINDOW

The Find In Trace window—available from the View>Messages menu—displays the
result of searches in the trace data.

Find In Trace B

T

008led CHP R4, #10 2

Find In Trace

Figure 69: Find In Trace window

The Find in Trace window looks like the Trace window, showing the same columns and
data, but only those rows that match the specified search criteria. Double-clicking an
item in the Find in Trace window brings up the same item in the Trace window.

You specify the search criteria in the Find In Trace dialog box. For information about
how to open this dialog box, see Find in Trace dialog box, page 175.

For more information about using the trace system, see Using the trace system, page
131.

Simulator-specific debugging ___o

FIND IN TRACE DIALOG BOX

Use the Find in Trace dialog box—available by choosing Edit>Find and
Replace>Find or from the Trace window toolbar—to specify the search criteria for
advanced searches in the trace data. Note that the Edit>Find and Replace>Find
command is context-dependent. It displays the Find in Trace dialog box if the Trace
window is the current window or the Find dialog box if the editor window is the current
window.

Find in Trace E
IV Text Search Find I
| = |
Cancel

™ Makch Case
™ Makch whale word

™ Only search in one column

ITrace j

™ address Range

[e gk

Figure 70: Find in Trace dialog box

The search results are displayed in the Find In Trace window—available by choosing
the View>Messages command, see Find In Trace window, page 174.

In the Find in Trace dialog box, you specify the search criteria with the following
settings:
Text search

A text field where you type the string you want to search for. Use the following options
to fine-tune the search:

Match Case Searches only for occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word.
Otherwise int will also find print, sprintf and so on.

Only search in one Searches only in the column you selected from the drop-down menu.
column

Part 5. IAR C-SPY Simulator 175

Memory access checking

176

Address Range

Use the text fields to specify an address range. The trace data within the address range
is displayed. If you also have specied a text string in the Text search field, the text string
will be searched for within the address range.

For more information about using the trace system, see Using the trace system, page
131.

Memory access checking

IAR Embedded Workbench® IDE
User Guide

C-SPY can simulate different memory access types of the target hardware and detect
illegal accesses, for example a read access to write-only memory. If a memory access
occurs that does not agree with the access type specified for the specific memory area,
C-SPY will regard this as an illegal access. The purpose of memory access checking is
to help you to identify any memory access violations.

The memory areas can either be the zones predefined in the device description file, or
memory areas based on the section information available in the debug file. In addition
to these, you can define your own memory areas. The access type can be read and write,
read only, or write only. It is not possible to map two different access types to the same
memory area. You can choose between checking access type violation or checking
accesses to unspecified ranges. Any violations are logged in the Debug Log window.
You can also choose to have the execution halted.

Choose Simulator>Memory Access Setup to open the Memory Access Setup dialog
box.

Simulator-specific debugging o

MEMORY ACCESS SETUP DIALOG BOX

The Memory Access Setup dialog box—available from the Simulator menu—Iists all
defined memory areas, where each column in the list specifies the properties of the area.
In other words, the dialog box displays the memory access setup that will be used during
the simulation.

Memory Access Setup

™ Use ranges based on

% Deyvice description file

| Debug file segment information [anly shovwn while debugging) Cancel
Zone | Start Addr | End Addr | Accesz Type |
Memory 0x0 0x1FF R

Memory 0200 0x9FF R
Memory 01000 0«10FF R
Memory 0x1100 0«FFFF R

™ Use manual ranges
Zone | Start Addr| End Addr| Accesz Type | e

Exdit....

Delete

[elete &l

i

Memony aczess checking
Check far: Schor:
¥ Access bype violation € Log violations
¥ Access tounspeciied ranges % [Log and stop execution

Figure 71: Memory Access Setup dialog box
Note: If you enable both the Use ranges based on and the Use manual ranges option,

memory accesses will be checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 179.

Use ranges based on

Use the Use ranges based on option to choose any of the predefined alternatives for the
memory access setup. You can choose between:

o Device description file, which means the properties will be loaded from the device
description file

o Debug file segment information, which means the properties will be based on the
section information available in the debug file. This information is only available

Part 5. IAR C-SPY Simulator 177

Memory access checking

178

IAR Embedded Workbench® IDE
User Guide

while debugging. The advantage of using this option, is that the simulator can catch
memory accesses outside the linked application.

Use manual ranges

Use the Use manual ranges option to specify your own ranges manually via the Edit
Memory Access dialog box. To open this dialog box, choose New to specify a new
memory range, or select a memory zone and choose Edit to modify it. For more details,
see Edit Memory Access dialog box, page 179.

The ranges you define manually are saved between debug sessions.

Memory access checking

Use the Check for options to specify what to check for. Choose between:

® Access type violation

® Access to unspecified ranges.

Use the Action options to specify the action to be performed if there is an access
violation. Choose between:

e Log violations

e Log and stop execution.

Any violations are logged in the Debug Log window.

Buttons

The Memory Access Setup dialog box contains the following buttons:

Button Description

OK Standard OK.

Cancel Standard Cancel.

New Opens the Edit Memory Access dialog box, where you can specify a
new memory range and attach an access type to it; see Edit Memory
Access dialog box, page 179.

Edit Opens the Edit Memory Access dialog box, where you can edit the
selected memory area. See Edit Memory Access dialog box, page 179.

Delete Deletes the selected memory area definition.

Delete All Deletes all defined memory area definitions.

Table 22: Function buttons in the Memory Access Setup dialog box

Note: Except for the OK and Cancel buttons, buttons are only available when the
option Use manual ranges is selected.

Simulator-specific debugging ___o

EDIT MEMORY ACCESS DIALOG BOX

In the Edit Memory Access dialog box—available from the Memory Access Setup
dialog box—you can specify the memory ranges, and assign an access type to each
memory range, for which you want to detect illegal accesses during the simulation.

Edit Memory Access E
- Memoy range

Zone:

I Memory - l Cancel |

Start address: End address:
Jo [1FFF

—Access lype
 Fead and write

' Fead only
© Wfrite anly

Figure 72: Edit Memory Access dialog box

For each memory range you can define the following properties:

Memory range

Use these settings to define the memory area for which you want to check the memory

accesses:

Zone The memory zone; see Memory addressing, page 143.

Start address The start address for the address range, in hexadecimal notation.
End address The end address for the address range, in hexadecimal notation.

Access type

Use one of these options to assign an access type to the memory range; the access type
can be one of Read and write, Read only, or Write only. It is not possible to assign two
different access types to the same memory area.

Using breakpoints in the simulator

Using the C-SPY Simulator, you can set an unlimited amount of breakpoints. For code
and data breakpoints you can define a size attribute, that is, you can set the breakpoint
on a range. You can also set immediate breakpoints.

Part 5. IAR C-SPY Simulator 179

Using breakpoints in the simulator

180

IAR Embedded Workbench® IDE
User Guide

For information about the breakpoint system, see the chapter Using breakpoints in this
guide. For detailed information about code breakpoints, see Code breakpoints dialog
box, page 283.

DATA BREAKPOINTS

Data breakpoints are triggered when data is accessed at the specified location. Data
breakpoints are primarily useful for variables that have a fixed address in memory. If you
set a breakpoint on an accessible local variable, the breakpoint will be set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. The execution will usually stop directly after the instruction that
accessed the data has been executed.

You can set a data breakpoint in various ways; by using:

e A dialog box, see Data breakpoints dialog box, page 180

® A system macro, see __setDataBreak, page 485

o The Memory window, see Setting a breakpoint in the Memory window, page 137
o The editor window, see Editor window, page 274.

Data breakpoints dialog box

The options for setting data breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Data to set a new breakpoint. Alternatively, to modify an existing
breakpoint, select a breakpoint in the Breakpoint window and choose Edit on the
context menu.

Simulator-specific debugging o

The Data breakpoints dialog box appears.

’ [rata |

Break &f:

| [

5

—Access Type e
& Feadfwiite & buto |1—
 Read Manual
7 wirite - Action
Expression: I
r— Condition:
Expression:

% Condition true Skip count; I 0

" Condition changed

Figure 73: Data breakpoints dialog box

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 287.

Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data or immediate breakpoints.

Memory Access type Description

Read/Write Read or write from location.
Read Read from location.
Write Write to location.

Table 23: Memory Access types

Note: Data breakpoints never stop execution within a single instruction. They are
recorded and reported after the instruction is executed. (Immediate breakpoints do not
stop execution at all, they only suspend it temporarily. See Immediate breakpoints, page
182.)

Part 5. IAR C-SPY Simulator 181

Using breakpoints in the simulator

182

IAR Embedded Workbench® IDE
User Guide

Size

Optionally, you can specify a size—in practice, a range of locations. Each read and write
access to the specified memory range will trigger the breakpoint. For data breakpoints,
this can be useful if you want the breakpoint to be triggered on accesses to data
structures, such as arrays, structs, and unions.

There are two different ways the size can be specified:

® Auto, the size will automatically be based on the type of expression the breakpoint
is set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes

o Manual, you specify the size of the breakpoint manually in the Size text box.

Action

You can optionally connect an action to a breakpoint. You specify an expression, for
instance a C-SPY macro function, which is evaluated when the breakpoint is triggered
and the condition is true.

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.
Condition changed The breakpoint is triggered if the value of the expression has changed

since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Table 24: Breakpoint conditions

IMMEDIATE BREAKPOINTS

In addition to generic breakpoints, the C-SPY Simulator lets you set immediate
breakpoints, which will halt instruction execution only temporarily. This allows a
C-SPY macro function to be called when the processor is about to read data from a
location or immediately after it has written data. Instruction execution will resume after
the action.

Simulator-specific debugging o

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

The two different methods of setting an immediate breakpoint are by using:

o A dialog box, see Immediate breakpoints dialog box, page 183

® A system macro, see __setSimBreak, page 486.

Immediate breakpoints dialog box

The options for setting immediate breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Immediate to set a new breakpoint. Alternatively, to modify an
existing breakpoint, select a breakpoint in the Breakpoint window and choose Edit on
the context menu.

The Immediate breakpoints dialog box appears.

’ Immediate |

Break &f:

| [

Accesz Type Action
’7 Expression:

% Read
 Wiite

Figure 74: Immediate breakpoints page

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 287.

Part 5. IAR C-SPY Simulator

183

Using breakpoints in the simulator

184

IAR Embedded Workbench® IDE
User Guide

Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data or immediate breakpoints.

Memory Access type Description

Read Read from location.

Write Write to location.

Table 25: Memory Access types

Note: Immediate breakpoints do not stop execution at all; they only suspend it
temporarily. See Using breakpoints in the simulator, page 179.

Action

You should connect an action to the breakpoint. Specify an expression, for instance a
C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.

BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from the Simulator menu—Ilists all
active breakpoints.

Breakpoint Usage [%]

[Fetch
-SSP Terminal 140 & libsupport module

Figure 75: Breakpoint Usage dialog box

In addition to listing all breakpoints that you have defined, this dialog box also lists the
internal breakpoints that the debugger is using.

For each breakpoint in the list the address and access type are shown. Each breakpoint
in the list can also be expanded to show its originator.

For more information, see Viewing all breakpoints, page 139.

Simulating interrupts

By being able to simulate interrupts, you can debug the program logic long
before any hardware is available. This chapter contains detailed information
about the C-SPY® interrupt simulation system and how to configure the
simulated interrupts to make them reflect the interrupts of your target
hardware. Finally, reference information about each interrupt system macro is
provided.

For information about the interrupt-specific facilities useful when writing
interrupt service routines, see the IAR C/C++ Development Guide for ARM®.

The C-SPY interrupt simulation system

The C-SPY Simulator includes an interrupt simulation system that allows you to
simulate the execution of interrupts during debugging. It is possible to configure the
interrupt simulation system so that it resembles your hardware interrupt system. By
using simulated interrupts in conjunction with C-SPY macros and breakpoints, you can
compose a complex simulation of, for instance, interrupt-driven peripheral devices.
Having simulated interrupts also lets you test the logic of your interrupt service routines.

The interrupt system has the following features:

Simulated interrupt support for the ARM core

Single-occasion or periodical interrupts based on the cycle counter
Predefined interrupts for different devices

Configuration of hold time, probability, and timing variation

State information for locating timing problems

Two interfaces for configuring the simulated interrupts—a dialog box and a C-SPY
system macro—that is, one interactive and one automating interface

e Activation of interrupts either instantly or based on parameters you define

o A log window which continuously displays the status for each defined interrupt.
The interrupt system is activated by default, but if it is not required it can be turned off
to speed up the simulation. You can turn the interrupt system on or off as required either
in the Interrupt Setup dialog box, or by using a system macro. Defined interrupts will

be preserved until you remove them. All interrupts you define using the Interrupt
Setup dialog box are preserved between debug sessions.

Part 5. IAR C-SPY Simulator 185

The C-SPY interrupt simulation system

Activation
signal

time
[cycles]

IAR Embedded Workbench® IDE

186 User Guide

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, and a variance.

H H H

-

T

*
EY +V +y +V
A A+R A+2R A+3R

* If probability is less than 100%, some interrupts may be omitted.

A = Activation time
R = Repeat interval
H =Hold time

V =Variance

Figure 76: Simulated interrupt configuration

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options
probability—the probability, in percent, that the interrupt will actually appear in a
period—and variance—a time variation range as a percentage of the repeat interval.
These options make it possible to randomize the interrupt simulation. You can also
specify a hold time which describes how long the interrupt remains pending until
removed if it has not been processed. If the hold time is set to infinite, the corresponding
pending bit will be set until the interrupt is acknowledged or removed.

Simulating interrupts ___o

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that can be used for locating
timing problems in your application. The Interrupt Setup dialog box displays the
available status information. For an interrupt, the following statuses can be displayed:
Idle, Pending, Executing, Executed, Removed, or Expired.

Status Description
Idle Interrupt activation signal is low (deactivated).
Pending Interrupt activation signal is active, but the interrupt has not been

acknowledged yet by the interrupt handler.

Executing The interrupt is currently being serviced, that is the interrupt handler
function is executing.

Executed This is a single-occasion interrupt and it has been serviced.

Removed The interrupt has been removed by the user, but because the interrupt is
currently executing it is visible in the Interrupt Setup dialog box until
it is finished.

Expired This is a single-occasion interrupt which was not serviced while the

interrupt activation signal was active.

Table 26: Interrupt statuses

For a repeatable interrupt that has a specified repeat interval which is longer than the
execution time, the status information at different times can look like this:
Hold time
>

T I T
I I I
Interrupt A | B 1 € D, E F oG H
activation — | : : : L __
signal | | |
e———| le—
Execution time for
interrupt handler Time Status
A Idle
B Pending
CD Executing
E Idle
F Pending
GH Executing

Figure 77: Simulation states - example 1

Part 5. IAR C-SPY Simulator 187

Using the interrupt simulation system

188

Note: The interrupt activation signal—also known as the pending bit—will be
automatically deactivated the moment the interrupt is acknowledged by the interrupt
handler.

If the interrupt repeat interval is shorter than the execution time, and the interrupt is
re-entrant (or non-maskable), the status information at different times can look like this:

Hold time
B S EE—
T I
[1
Interrupt A |B1 € D E, F G
activation — : ! L
signal | L
' Execution time for ! —
interrupt invocation (1) .Executlon' time f‘?r
interrupt invocation (2)
Time Status
A Idle
B Pending
CDE Executing
FG Executing
(1 unfinished)

Figure 78: Simulation states - example 2

In this case, the execution time of the interrupt handler is too long compared to the repeat
interval, which might indicate that you should rewrite your interrupt handler and make
it faster, or that you should specify a longer repeat interval for the interrupt simulation
system.

Using the interrupt simulation system

IAR Embedded Workbench® IDE
User Guide

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using, and know how to use:

o The Forced Interrupt window

o The Interrupts and Interrupt Setup dialog boxes

o The C-SPY system macros for interrupts
°

The Interrupt Log window.

Simulating interrupts ___o

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.

To be able to perform these actions for various derivatives, the interrupt system must
have detailed information about each available interrupt. Except for default settings, this
information is provided in the device description files.You can find preconfigured dd £
files in the arm\config directory. The default settings will be used if no device
description file has been specified.

To load a device description file before you start C-SPY, choose Project>Options and
click the Setup tab of the Debugger category.

Choose a device description file that suits your target.

Note: In case you do not find a preconfigured device description file that resembles
your device, you can define one according to your needs. For details of device
description files, see Device description file, page 118 .

INTERRUPT SETUP DIALOG BOX

The Interrupt Setup dialog box—available by choosing Simulator>Interrupt
Setup—lists all defined interrupts.

Interrupt Setup E

Interupt | Type | Statuz | Mext Activation |
RO Fepeat 4000

Cancel

Ef:..

[Velete

b i

Delete &l

Figure 79: Interrupt Setup dialog box

The option Enable interrupt simulation enables or disables interrupt simulation. If the
interrupt simulation is disabled, the definitions remain but no interrupts will be
generated. You can also enable and disable installed interrupts individually by using the
check box to the left of the interrupt name in the list of installed interrupts.

Part 5. IAR C-SPY Simulator 189

Using the interrupt simulation system

IAR Embedded Workbench® IDE

190 User Guide

The columns contain the following information:

Interrupt Lists all interrupts.

Type Shows the type of the interrupt. The type can be Forced, Single,
or Repeat.

Status Shows the status of the interrupt. The status can be Idle, Removed,

Pending, Executing, or Expired.

Next Activation Shows the next activation time in cycles.

Note: For repeatable interrupts there might be additional information in the Type
column about how many interrupts of the same type that is simultaneously executing
(n executing). If nis larger than one, there is a reentrant interrupt in your interrupt
simulation system that never finishes executing, which might indicate that there is a
problem in your application.

Only non-forced interrupts may be edited or removed.

Click New or Edit to open the Edit Interrupt dialog box.

EDIT INTERRUPT DIALOG BOX

Use the Edit Interrupt dialog box—available from the Interrupt Setup dialog box—to
add and modify interrupts. This dialog box provides you with a graphical interface

where you can interactively fine-tune the interrupt simulation parameters. You can add
the parameters and quickly test that the interrupt is generated according to your needs.

Interrupt:
fr =]
Drescription: Eariee] |
[10:16 CPSRLI
First activatior: :
2000 Hold tirne
& Infirite
Fiepeat interval:
r
[2000 r
Wariance [%]: Probability [%]:

[= N =

Figure 80: Edit Interrupt dialog box

Simulating interrupts ___o

For each interrupt you can set the following options:

Interrupt A drop-down list containing all available interrupts. Your
selection will automatically update the Description box. The
list is populated with entries from the device description file
that you have selected.

Description Contains the description of the selected interrupt, if available.
The description is retrieved from the selected device
description file and consists of a string describing the vector
address, priority, enable bit, and pending bit, separated by
space characters. For interrupts specified using the system
macro __orderInterrupt, the Description box will be
empty.

First activation The value of the cycle counter after which the specified type
of interrupt will be generated.

Repeat interval The periodicity of the interrupt in cycles.

Variance % A timing variation range, as a percentage of the repeat
interval, in which the interrupt may occur for a period. For
example, if the repeat interval is 100 and the variance 5%, the
interrupt might occur anywhere between T=95 and T=105, to
simulate a variation in the timing.

Hold time Describes how long, in cycles, the interrupt remains pending
until removed if it has not been processed. If you select
Infinite, the corresponding pending bit will be set until the
interrupt is acknowledged or removed.

Probability % The probability, in percent, that the interrupt will actually
occur within the specified period.

Part 5. IAR C-SPY Simulator 191

Using the interrupt simulation system

192

IAR Embedded Workbench® IDE
User Guide

FORCED INTERRUPT WINDOW

From the Forced Interrupt window—available from the Simulator menu—you can
force an interrupt instantly. This is useful when you want to check your interrupt
logistics and interrupt routines.

Trigger |
Interrupt | Description |
RO 10«18 CPER
FIC 2 01T CPSRF

Figure 81: Forced Interrupt window
To force an interrupt, the interrupt simulation system must be enabled. To enable the
interrupt simulation system, see Interrupt Setup dialog box, page 189.

The Forced Interrupt window lists all available interrupts and their definitions. The
description field consists of a string describing the vector address, priority, enable bit,
and pending bit, separated by space characters.

By selecting an interrupt and clicking the Trigger button, an interrupt of the selected
type is generated.

A triggered interrupt will have the following characteristics:

Characteristics Settings

First Activation As soon as possible (0)
Repeat interval 0

Hold time Infinite

Variance 0%

Probability 100%

Table 27: Characteristics of a forced interrupt

C-SPY SYSTEM MACROS FOR INTERRUPTS

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. By writing a macro function containing
definitions for the simulated interrupts you can automatically execute the functions
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

Simulating interrupts ___o

The C-SPY Simulator provides a set of predefined system macros for the interrupt
simulation system. The advantage of using the system macros for specifying the
simulated interrupts is that it lets you automate the procedure.

These are the available system macros related to interrupts:
__enableInterrupts

__disablelInterrupts

__orderInterrupt

__cancelInterrupt

__cancelAllInterrupts

__popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interrupts dialog box. To read more about how to use the
__popSimulatorInterruptExecutingStack macro, see Interrupt simulation in a
multi-task system, page 193.

For detailed reference information about each macro, see Description of C-SPY system
macros, page 467.

Defining simulated interrupts at C-SPY startup using a setup file

If you want to use a setup file to define simulated interrupts at C-SPY startup, follow the
procedure described in Registering and executing using setup macros and setup files,
page 153.

Interrupt simulation in a multi-task system

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Setup dialog box might not look as you expect. If there are
too many interrupts executing simultaneously, a warning might be issued.

To avoid these problems, you can use the
__popSimulatorInterruptExecutingStack macro to inform the interrupt
simulation system that the interrupt handler has finished executing, as if the normal
instruction used for returning from an interrupt handler was executed. You can use the
following procedure:

Set a code breakpoint on the instruction that returns from the interrupt function.

Specify the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

Part 5. IAR C-SPY Simulator 193

Using the interrupt simulation system

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

INTERRUPT LOG WINDOW

The Interrupt Log window—available from the Simulator menu—displays runtime
information about the interrupts that you have activated in the Interrupts dialog box or
forced via the Forced Interrupt window. The information is useful for debugging the
interrupt handling in the target system.

Interrupt Log Window B
Cyiles | FC | Interrupt | Murnber | Status |
205 03104 RO 1 Forced
3066 0xG1F4 Fla 2 Forced

Figure 82: Interrupt Log window

The columns contain the following information:

Column Description

Cycles The point in time, measured in cycles, when the event occurred.
PC The value of the program counter when the event occurred.
Interrupt The interrupt as defined in the device description file.

Number A unique number assigned to the interrupt. The number is used for

distinguishing between different interrupts of the same type.

Status Shows the status of the interrupt, which can be Triggered, Forced,
Executing, Finished, or Expired.
* Triggered: The interrupt has passed its activation time.
* Forced: The same as Triggered, but the interrupt has been forced from
the Forced Interrupt window.
* Executing: The interrupt is currently executing.
* Finished: The interrupt has been executed.
* Expired: The interrupt hold time has expired without the interrupt
being executed.

Table 28: Description of the Interrupt Log window

When the Interrupt Log window is open it will be updated continuously during runtime.

Note: If the window becomes full of entries, the first entries will be erased.

IAR Embedded Workbench® IDE
194 User Guide

Simulating interrupts ___o

Simulating a simple interrupt

In this example you will simulate a system timer interrupt for OKI ML674001.
However, the procedure can also be used for other types of interrupts.

This simple application contains an IRQ handler routine that handles system timer
interrupts. It increments a tick variable. The main function sets the necessary status
registers. The application exits when 100 interrupts have been generated.

/* Enables use of extended keywords */
#pragma language=extended

#include <intrinsics.h>
#include <arm_interrupt.h>
#include <oki/ioml674001.h>
#include <stdio.h>

unsigned int ticks = 0;

/* Installs the function 'function' at the vector address
'vector'. A branch instruction to the function will be placed
at the vector address, the old contents at the vector location
will be returned by install_handler and can be used to chain
another handler.*/

unsigned int install_handler (unsigned int *vector,

unsigned int function)

{
unsigned int vec, old_vec;
vec = ((function - (unsigned int)vector - 8) >> 2);
old_vec = *vector;
vec |= 0xea000000; /* add opcode for B instruction */
*vector = vec;
old_vec &= ~0xeal000000;
old_vec = (old_vec << 2) + (unsigned int)vector + 8;

return(old_vec);

/* IRQ handler */
_irg __arm void irgHandler (void)

/* We use only system timer interrupts, so we do not need
to check the interrupt source. */

ticks += 1;

TMOVFR_bit.OVF = 1; /* Clear system timer overflow flag */

Part 5. IAR C-SPY Simulator 195

Simulating a simple interrupt

196

IAR Embedded Workbench® IDE
User Guide

int main(void)

{
/* IRQ setup code */
install_handler (irgvec, (unsigned int)irqgHandler) ;
__enable_interrupt();
/* Timer setup code */
ILCO_bit.ILRO = 4; /* System timer interrupt priority */
TMRLR_bit.TMRLR = 1E5; /* System timer reload value */
TMEN_bit.TCEN = 1; /* Enable system timer */
while (ticks < 100);
printf ("Done\n") ;

}
To simulate and debug an interrupt, perform the following steps:

Add your interrupt service routine to your application source code and add the file to
your project.

Build your project and start the simulator.

Choose Simulator>Interrupt Setup to open the Interrupts Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. For the TimerInterrupt example, verify the
following settings:

Option Settings
Interrupt IRQ
First Activation 4000
Repeat interval 2000
Hold time 0
Probability % 100
Variance % 0

Table 29: Timer interrupt settings

Click OK.

Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

o Generate an interrupt when the cycle counter has passed 4000

o Continuously repeat the interrupt after approximately 2000 cycles.

Part 6. C-SPY hardware
debugger systems

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

e Introduction to C-SPY® hardware debugger systems
e Hardware-specific debugging

o Using flash loaders.

.hmuhhhhi

197

AAARRIE

198

Introduction to C-SPY®
hardware debugger
systems

This chapter introduces you to the IAR C-SPY hardware debugger systems
and how they differ from the IAR C-SPY Simulator.

The chapters specific to C-SPY debugger systems assume that you already
have some working knowledge of the target system you are using, as well as
of the IAR C-SPY Debugger. For a quick introduction, see Part 2. Tutorials.

Please note that additional features may have been added to the software after
this guide was printed. The release notes contain the latest information.

The IAR C-SPY hardware debugger systems

The IAR C-SPY Debugger consists of both a general part which provides a basic set of
C-SPY features, and a driver. The C-SPY driver is the part that provides communication
with and control of the target system. The driver also provides a user interface—special
menus, windows, and dialog boxes—to the functions provided by the target system, for
instance special breakpoints.

At the time of writing this guide, the IAR C-SPY Debugger for the ARM core is
available with drivers for the following target systems:

Simulator

RDI (Remote Debug Interface)

J-Link/J-Trace JTAG interface

GDB Server

Macraigor JTAG interface

Angel debug monitor

IAR ROM-monitor for Analog Devices ADuC7xxx boards, IAR Kickstart Card for
Philips LPC210x, and OKI evaluation boards

o Luminary FTDI JTAG interface (for Cortex devices only).

Part 6. C-SPY® hardware debugger systems 199

The IAR C-SPY hardware debugger systems

200

IAR Embedded Workbench® IDE
User Guide

For further details about the concepts that are related to the IAR C-SPY Debugger, see
Debugger concepts, page 111.

DIFFERENCES BETWEEN THE C-SPY DRIVERS

The following table summarizes the key differences between the C-SPY drivers:

GDB IAR ROM- J-Link/ LMl Mac-
Feature Simulator Angel RDI
Server monitor J-Trace FTDI raigor

Data breakpoints X x 2) x4) x2)

Code breakpoints X X X X x 2) x4) x2) X
Execution in real time X X x x X x x
Zero memory footprint x x X X X

Simulated interrupts X

Real interrupts X X X X X X X

Live Watch X x 6)

Cycle counter X

Code coverage X x 5)

Data coverage X

Profiling X x1l) x1)3) x1) x1)3) x1)3) x1)3) x1)3)

Table 30: Differences between available C-SPY drivers

1) Cycle counter statistics are not available.

2) Limited number, implemented using the ARM EmbeddedICE™ macrocell.

3) Profiling works provided that enough breakpoints are available. That is, the application is exe-
cuted in RAM.

4) Limited number, implemented using the Data watchpoint and trigger unit (for data break-
points) and the Flash patch and breakpoint unit (for code breakpoints).

5) Supported by J-Trace only. For detailed information about code coverage, see Code coverage,
page 160.

6) Supported by Cortex devices. For ARM7/9 devices Live Watch is supported if you add a DCC
handler to your application. See Live watch and use of DCC, page 228.

Contact your software distributor or AR representative for information about available
C-SPY drivers. Below are general descriptions of the different drivers.

Introduction to C-SPY® hardware debugger systems __¢

Getting started

The following documents containing information about how to set up various debugging
systems are available in the arm\doc subdirectory:

File Debugger system

rdi_quickstart.htm Quickstart reference for RDI-controlled JTAG debug interfaces

gdbserver_quickstart.htm Quickstart reference for a GDB Server using OpenOCD together
with STR9-comStick

angel_quickstart.htm Quickstart reference for Angel ROM-monitors and JTAG interfaces

iar_rom_quickstart.htm Quickstart reference for IAR and OK|I ROM-monitor

Table 31: Available quickstart reference information

The IAR C-SPY Angel debug monitor driver

Using the C-SPY Angel debug monitor driver, C-SPY can connect to any devices
conforming to the Angel debug monitor protocol. In most cases these are evaluation
boards. However, the EPI JEENI JTAG interface also uses this protocol.

The rest of this section assumes the Angel connection is made to an evaluation board.

The evaluation board contains firmware (the Angel debug monitor itself) that runs in
parallel with your application software. The firmware receives commands from the AR
C-SPY debugger over a serial port or Ethernet connection, and controls the execution of
your application.

Part 6. C-SPY® hardware debugger systems 201

The IAR C-SPY Angel debug monitor driver

Except for the EPI JEENI JTAG interface, all the parts of your code that you want to
debug must be located in RAM. The only way you can set breakpoints and step in your
application code is to download it into RAM.

Host computer

IAR C-SPY Debugger
C-SPY Angel driver

Serial, or Ethernet connection

Angel debug monitor Non-volatile
memory

Reserved User

for Angel | application RAM*

monitor

Evaluation board

* For the EPI JEENI JTAG interface, the user application can be located in flash memory.

Figure 83: C-SPY Angel debug monitor communication overview

For further information, see the angel_quickstart.htm file, or refer to the
manufacturer’s documentation.

IAR Embedded Workbench® IDE
202 User Guide

Introduction to C-SPY® hardware debugger systems __¢

The IAR C-SPY GDB Server driver

Using the IAR GDB Server driver, C-SPY can connect to any of the GDB Server-based
JTAG solutions available, currently Open OCD with STR9-comStick. JTAG is a
standard on-chip debug connection available on most ARM processors.

To use any of the GDB server-based JTAG solutions, you must configure the hardware
and the software drivers involved; see Configuring the OpenOCD Server, page 204.

Starting a debug session with the C-SPY GDB Server driver will add the GDB Server
menu to the debugger menu bar. For further information about the menu commands, see
The GDB Server menu, page 218.

The C-SPY GDB Server driver communicates with the GDB Server via an Ethernet
connection, and the GDB Server communicates with the JTAG interface module over a
USB connection. The JTAG interface module, in turn, communicates with the JTAG
module on the hardware.

Host computer

C-SPY
Debugger

C-SPY GDB Server driver

‘ Ethernet connection

Host computer or other PC
GDB Server

USB connection

JTAG
interface

JTAG connection

ARM
Embedded
ICE™
macrocell

FLASH RAM

CPU

Target board

Figure 84: C-SPY GDB Server communication overview

Part 6. C-SPY® hardware debugger systems 203

The IAR C-SPY ROM-monitor driver

204

CONFIGURING THE OPENOCD SERVER
Follow these instructions to configure the OpenOCD Server:
Install IAR Embedded Workbench for ARM.

Download OpenOCD (Open On-Chip Debugger) from http: //www.yagarto.de or
http://openocd.berlios.de/web and install the package.

Insert the STR9-comStick device into a USB port on your host computer. Windows will
find the new hardware and ask for its driver. The USB driver is avaialble in the
ARM\drivers\STComstickFTDI directory in your IAR Embedded Workbench
installation.

Start the OpenOCD server from a command line window and specify the configuration
file str912_comStick.cfg, available in the ARM\ examples\ST\STR9-comStick
directory in your JAR Embedded Workbench installation. For example:

"C:\Program Files\openocd-2007re204\bin\openocd-ftd2xx" --file
"C:\Program Files\IAR Systems\Embedded Workbench
5.0\arm\examples\ST\STRI1x\STR9-comStick\str912_comStick.cfg"

Start the IAR Embedded Workbench IDE and open the USB demo example project for
STR9-comStick, usb . eww.

Choose Project>Options>Debugger>GDB Server and specify the location of the
OpenOCD server. If the server is located on the host computer, specify localhost
with port 3333, otherwise specify the host name or IP address.

Start the debug session and click the Run button when downloading has finished. The
example application emulates a USB mouse. By connecting the secondary USB
connector to a PC, the mouse pointer on the PC screen will start moving.

The IAR C-SPY ROM-monitor driver

IAR Embedded Workbench® IDE
User Guide

Using the C-SPY ROM-monitor driver, C-SPY can connect to the IAR Kickstart Card
for Philips LPC210x and for Analog Devices ADuC7xxx, and to OKI evaluation
boards. The evaluation board contains firmware (the ROM-monitor itself) that runs in
parallel with your application software. The firmware receives commands from the IAR
C-SPY debugger over a serial port or USB connection (for OKI evaluation boards only),
and controls the execution of your application.

Introduction to C-SPY® hardware debugger systems __¢

Most ROM-monitors require that the code that you want to debug is located in RAM,
because the only way you can set breakpoints and step in your application code is to
download it to RAM. For some ROM-monitors, for example for Analog Devices
ADuC7xxx, the code that you want to debug can be located in flash memory. To
maintain debug functionality, the ROM-monitor may simulate some instructions, for
example when single stepping.

Host computer

IAR C-SPY Debugger
ROM-monitor driver

Serial, or USB connection

IAR ROM-monitor «——— Non-volatile
memory
| Reserved User
for ROM- | application * RAM*
monitor

Evaluation board

* For some ROM-monitors, the user application can be located in flash memory.

Figure 85: C-SPY ROM-monitor communication overview

For further information, see the iar_rom_guickstart.htm file, or refer to the
manufacturer’s documentation.

The IAR C-SPY J-Link/J-Trace drivers

Using the ARM IAR J-Link driver, C-SPY can connect to the IAR J-Link JTAG
interface and the IAR J-Trace JTAG interface. JTAG is a standard on-chip debug
connection available on most ARM processors.

Part 6. C-SPY® hardware debugger systems 205

The IAR C-SPY J-Link/)-Trace drivers

206

IAR Embedded Workbench® IDE
User Guide

Before you can use the J-Link/J-Trace JTAG interface over the USB port, the Segger
J-Link/J-Trace USB driver must be installed; see Installing the J-Link USB driver, page
206. You can find the driver on the IAR Embedded Workbench for ARM installation
CD.

Starting a debug session with the J-Link driver will add the J-Link menu to the debugger
menu bar. For further information about the menu commands, see The J-Link menu,
page 225.

The C-SPY J-Link driver communicates with the JTAG interface module over a USB
connection. The JTAG interface module, in turn, communicates with the JTAG module
on the hardware.

Host computer

C-SPY
Debugger

C-SPY J-Link driver
J-Link USB driver

USB connection

JTAG
interface

JTAG connection

ARM

Embedded
ICE™ CPU

macrocell
FLASH RAM

Target board

Figure 86: C-SPY J-Link communication overview

INSTALLING THE J-LINK USB DRIVER

Before you can use the J-Link JTAG interface over the USB port, the Segger J-Link USB
driver must be installed.

Install IAR Embedded Workbench for ARM.

Use the USB cable to connect the computer and J-Link. Do not connect J-Link to the
target-board yet. The green LED on the front panel of J-Link will blink for a few
seconds while Windows searches for a USB driver.

Introduction to C-SPY® hardware debugger systems __¢

Because this is the first time J-Link and the computer are connected, Windows will open
a dialog box and ask you to locate the USB driver. The USB driver can be found in the
product installation in the arm\drivers\JLink directory:

jlink.inf, jlinkx64.inf
jlink.sys, jlinkx64.sys

Once the initial setup is completed, you will not have to install the driver again.

Note that J-Link will continuously blink until the USB driver has established contact
with the J-Link interface. When contact has been established, J-Link will start with a
slower blink to indicate that it is alive.

The IAR C-SPY LMI FTDI driver
Using the IAR C-SPY LMI FTDI driver, C-SPY can connect to the Luminary FTDI
onboard JTAG interface for Cortex devices.

Before you can use the FTDI JTAG interface over the USB port, the FTDI USB driver
must be installed. You can find the driver on the IAR Embedded Workbench for ARM
installation CD.

Part 6. C-SPY® hardware debugger systems 207

The IAR C-SPY Macraigor driver

208

Starting a debug session with the FTDI driver will add the LMI FTDI menu to the
debugger menu bar. For further information about the menu commands, see The LMI
FTDI menu, page 230.

Host computer

C-SPY
Debugger

C-SPY LMI FTDI driver
FTDI USB driver

USB connection
FTDI JTAG
interface
ARM
Embedded
ICE™ CPU
macrocell
FLASH RAM
Target board

INSTALLING THE FTDI USB DRIVER

Before you can use the LMI FTDI JTAG interface over the USB port, the FTDI USB
driver must be installed.

| Install IAR Embedded Workbench for ARM.
2 Use the USB cable to connect the computer to the Luminary board.

Because this is the first time FTDI and the computer are connected, Windows will open
a dialog box and ask you to locate the USB driver. The USB driver can be found in the
product installation in the arm\drivers\FTDI directory.

Once the initial setup is completed, you will not have to install the driver again.

The IAR C-SPY Macraigor driver

Using the IAR Macraigor driver, C-SPY can connect to the Macraigor RAVEN,
WIGGLER, mpDemon, USB2 Demon, and USB2 Sprite JTAG interfaces. JTAG is a
standard on-chip debug connection available on most ARM processors.

IAR Embedded Workbench® IDE
User Guide

Introduction to C-SPY® hardware debugger systems __¢

Before you can use Macraigor JTAG interfaces over the parallel port or the USB port,
the Macraigor OCDemon drivers must be installed. You can find the drivers on the [AR
Embedded Workbench CD for ARM. This is not needed for serial and Ethernet
connections.

Starting a debug session with the Macraigor driver will add the JTAG menu to the
debugger menu bar. This menu provides commands for configuring JTAG watchpoints,
and setting breakpoints on exception vectors (also known as vector catch). For further
information about the menu commands, see The Macraigor JTAG menu, page 233.

The C-SPY Macraigor driver communicates with the JTAG interface module over a
parallel, serial, or Ethernet connection. The JTAG interface module, in turn,
communicates with the JTAG module on the hardware.

Host computer

C-SPY
Debugger

C-SPY Macraigor driver
Macraigor drivers

Parallel, serial, USB, or
Ethernet connection

JTAG
interface

JTAG connection

ARM

Embedded
ICE™ CPU

macrocell
FLASH RAM

Target board

Figure 87: C-SPY Macraigor communication overview

The IAR C-SPY RDI driver

Using the C-SPY RDI driver, C-SPY can connect to an RDI-compliant debug system.
This can be a simulator, a ROM-monitor, a JTAG interface, or an emulator. For the
remainder of this section, an RDI-based connection to a JTAG interface is assumed.
JTAG is a standard on-chip debug connection available on most ARM processors.

Part 6. C-SPY® hardware debugger systems 209

The IAR C-SPY RDI driver

Before you can use an RDI-based JTAG interface, you must install the RDI driver DLL

provided by the JTAG interface vendor.

In the Embedded Workbench IDE, you must then locate the RDI driver DLL file. To do
this, choose Project>Options and select the C-SPY Debugger category. On the Setup
page, choose RDI from the Driver drop-down list. On the RDI page, locate the RDI
driver DLL file using the Manufacturer RDI Driver browse button. For more
information about the other options available, see Debugging using the RDI driver, page
233. When you have loaded the RDI driver DLL, the RDI menu will appear on the
Embedded Workbench IDE menu bar. This menu provides a configuration dialog box
associated with the selected RDI driver DLL. Note that this dialog box is unique to each

RDI driver DLL.

The RDI driver DLL communicates with the JTAG interface module over a parallel,
serial, Ethernet, or USB connection. The JTAG interface module, in turn, communicates

with the JTAG module on the hardware.

Host computer

C-SPY
Debugger

C-SPY RDI driver

JTAG interface RDI driver DLL|

Parallel, serial, Ethernet,
or USB connection

JTAG

interface

JTAG connection

ARM
Embedded
ICE™
macrocell

CPU

FLASH

RAM

Target board

Figure 88: C-SPY RDI communication overview

For further information, see the rdi_quickstart.htm file, or refer to the

manufacturer’s documentation.

IAR Embedded Workbench® IDE
210 User Guide

Introduction to C-SPY® hardware debugger systems __¢

An overview of the debugger startup

To make it easier to understand and follow the startup flow, the following figures show
the flow of actions performed by the C-SPY debugger, and by the target hardware, as
well as the execution of any predefined C-SPY setup macros. There is one figure for
debugging code located in flash and one for debugging code located in RAM.

To read more about C-SPY system macros, see the chapters Using the C-SPY® macro
system and C-SPY® macros reference available in this guide.

DEBUGGING CODE IN FLASH

C-SPY Debugger C-SPY Setup Macro Target Hardware

Debugger start

JTAG speed is set to —
the specified frequency, CPU reset |
or very low (typically — __|
32 kHz) if auto speed is

selected CPU halted

T

execUserFlashInit () |

[If the option for auto- | —
| speed is selected, JTAG r

speed is set to the maxi- |
| mum reliable speed |

L]

T ______ Target flash loader
Flash loader loaded to ——>| execUserFlashReset () b executes form RAM
target RAM S — — and loads application
image form host and
writes it to flash

| Ifthe option | [exchserFlashExit()"%\
Verify download | b -
| is selected, the flash Ny - - - -
| memory is verified for ™5 execUserPreLoad () | ——
Lorectcoment K] Lo | U reset |
™ L

execUserReset () |
L N j
Thedebuggerisreadyto | | | — — — — = = | CPU halted

work with the application

- T T

| = Optional

Figure 89: Debugger startup when debugging code in flash

Part 6. C-SPY® hardware debugger systems 211

An overview of the debugger startup

212

IAR Embedded Workbench® IDE
User Guide

DEBUGGING CODE IN RAM

C-SPY Debugger

C-SPY Setup Macro

Target Hardware

Debugger start

JTAG speed is set to

! CPUreset |

the specified frequency,
or very low (typically

32 kHz) if auto speed is
selected

| If the option for auto-

| speed is selected, JTAG
speed is set to the maxi- |

| mum reliable speed |

L__T___

The application image is
loaded to target RAM

|‘Ifrﬁeo;tion_ o
Verify download |

il

is selected, theRAM —1_ |

execUserPreload () |‘/

CPU halted

| memory is verified for | | execUserReset () |

correct content B | TEEEES——
 corecteonent | !

! execUserSetup() |

Thedebuggerisreadyto fer— |
work with the application
r— - - =)
e = Optional

Figure 90: Debugger startup when debugging code in RAM

Hardware-specific
debugging

This chapter describes the options and settings needed for using the C-SPY
hardware debugger systems. You will also get information about how to use
the JTAG watchpoints and information about the trace system and
breakpoints. This chapter contains the following sections:

e C-SPY options for debugging using hardware systems
e Debugging using the Angel debug monitor driver

e Debugging using the IAR C-SPY ROM-monitor driver
o Debugging using the IAR C-SPY GDB Server driver

e Debugging using the IAR C-SPY J-Link/J-Trace driver
e Debugging using the IAR C-SPY LMI FTDI driver

e Debugging using the IAR C-SPY Macraigor driver

e Debugging using the RDI driver

e Debugging using third-party drivers

e Using the trace system in hardware debugger systems

e Using breakpoints in the hardware debugger systems.

C-SPY options for debugging using hardware systems

Before you start any C-SPY hardware debugger you must set some options for the
debugger system—both C-SPY generic options and options required for the hardware
system (C-SPY driver-specific options). Follow this procedure:

To open the Options dialog box, choose Project>Options.

Part 6. C-SPY® hardware debugger systems

213

C-SPY options for debugging using hardware systems

214

IAR Embedded Workbench® IDE
User Guide

2 To set C-SPY generic options and select a C-SPY driver:

Select Debugger from the Category list
On the Setup page, select the appropriate C-SPY driver from the Driver list.

For information about the settings Setup macros, Run to, and Device descriptions, as
well as for information about the pages Extra Options and Plugins, see Debugger
options, page 429.

Note that a default device description file and linker configuration file is automatically
selected depending on your selection of a device on the General Options>Target page.

3 To set the driver-specific options, select the appropriate driver from the Category list.
Depending on which C-SPY driver you are using, different sets of available option
pages appears.

For details about each page, see:

Download, page 215

Angel, page 216

GDB Server, page 218

IAR ROM-monitor, page 219

For J-Link/J-Trace, see Setup, page 221 and Connection, page 224
Macraigor, page 231

RDI, page 233

Third-Party Driver, page 236.

4 When you have set all the required options, click OK in the Options dialog box.

Hardware-specific debugging ___o

DOWNLOAD

By default, C-SPY downloads the application into RAM or flash when a debug session
starts. The Download options lets you modify the behavior of the download.

D ownload
™ Attach to program

™ Werify download
™ Suppress download
™ Use flash loader(z]

Figure 91: C-SPY Download options

Attach to program

Use this option to make the debugger attach to a running application at its current
location, without resetting and halting (for J-Link only) the target system. To avoid
unexpected behavior when using this option, the Debugger>Setup option Run to
should be deselected.

Verify download

Use this option to verify that the downloaded code image can be read back from target
memory with the correct contents.

Suppress download

Use this option to debug an application that already resides in target memory. When this
option is selected, the code download is disabled, while preserving the present content
of the flash.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
program.

Note: It is important that the image that resides in target memory is linked consistently
with how you use C-SPY for debugging. For example, if you first link your application
using an output format without debug information, such as Intel-hex, and then load the
application separately from C-SPY. If you then use C-SPY only for debugging, you

Part 6. C-SPY® hardware debugger systems 215

Debugging using the Angel debug monitor driver

cannot build the debugged application with the linker option With runtime control
modules as that would add extra code, resulting in two different code images.

Use flash loader(s)

Use the Use flash loader(s) option to use one or several flash loaders for downloading
your application to flash memory. If a flash loader is available for the selected chip, it
will be used as default. Press the Edit button to open the Flash Loader Overview dialog
box.

To read more about flash loaders, see Using flash loaders, page 255.

Debugging using the Angel debug monitor driver

For detailed information about the Angel debug monitor interface and how to get started,
see the angel_gquickstart.htm file, available in the arm\doc subdirectory.

Using the Angel protocol, C-SPY can connect to a target system equipped with an Angel
boot flash. This is an inexpensive solution to debug a target, because only a serial cable
is needed.

The Angel protocol is also used by certain ICE hardware. For example, the EPI JEENI
JTAG interface uses the Angel protocol.
ANGEL

This section describes the options that specify the C-SPY Angel debug monitor
interface. In the IAR Embedded Workbench IDE, choose Project>Options and click
the Angel tab in the Debugger category.

Angel |

r— Communication
¥ Send heartbeat = TCPAP

% Serial R5232

= TICRAP
Iaaa.bbb.ccc.ddd

— Serial port settings

Port ICD'\"VI 'l
Baud rate ISBDD VI
™ Log communication

[$TOOLKIT_DIRg espyzommlog J

Figure 92: C-SPY Angel options

IAR Embedded Workbench® IDE
216 User Guide

Hardware-specific debugging ___o

Send heartbeat

Use this option to make C-SPY poll the target system periodically while your
application is running. That way, the debugger can detect if the target application is still
running or has terminated abnormally. Enabling the heartbeat will consume some extra
CPU cycles from the running program.

Communication
Use this option to select the Angel communication link. RS232 serial port connection
and TCP/IP via an Ethernet connection are supported.

TCP/IP

Type the IP address of the target device in the text box.

Serial port settings

Use the Port drop-down list to select which serial port on the host computer to use as
the Angel communication link, and set the communication speed using the Baud rate
combo box.

The initial Angel serial speed is always 9600 baud. After the initial handshake, the link
speed is changed to the specified speed. Communication problems can occur at very
high speeds; some Angel-based evaluation boards will not work above 38,400 baud.

Log communication

Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, a detailed knowledge of the Angel monitor protocol is required.

Debugging using the IAR C-SPY GDB Server driver

To use C-SPY for the GDB Server, you should be familiar with the following details:

o The C-SPY options specific to the GDB Server, see GDB Server, page 218,
o Using breakpoints in the hardware debugger systems, page 243
o The GDB Server menu, page 218.

Part 6. C-SPY® hardware debugger systems 217

Debugging using the IAR C-SPY GDB Server driver

GDB SERVER

This section describes the options that specify the GDB Server. In the AR Embedded
Workbench IDE, choose Project>Options, select the GDB Server category, and click
the GDB Server tab.

GDB Server

TCPAP address or hostname [port]
a3a.bbb.coe.ddd

™ Log communication

| o

Figure 93: GDB Server options

TCP/IP address or hostname

Use the text box to specify the IP address and port number of a GDB server; by default
the port number 3333 is used. The TCP/IP connection is used for connecting to a J-Link
Server running on a remote computer.

Log communication

Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, detailed knowledge of the JTAG interface is required.

THE GDB SERVER MENU

When you are using the C-SPY GDB Server driver, the additional menu GDB Server
appears in C-SPY.

Breakpoint Usage

Figure 94: The GDB Server menu

IAR Embedded Workbench® IDE
218 User Guide

Hardware-specific debugging ___o

The following commands are available on the GDB Server menu:

Menu command Description

Breakpoint Usage Opens the Breakpoint Usage dialog box to list all active breakpoints; see
Breakpoint Usage dialog box, page 250.

Table 32: Commands on the GDB Server menu

Debugging using the IAR C-SPY ROM-monitor driver

For detailed information about the IAR ROM-monitor interface and how to get started
using it together with the IAR Kickstart Card for Philips LPC210x or for Analog
Devices ADuC7xxx, see the documentation that comes with the Kickstart product
package.

For detailed information about the IAR ROM-monitor interface and how to get started
using it together with the OKI JOB671000 evaluation board, see the
iar_rom_guickstart.htm file, available in the arm\doc subdirectory.

The ROM-monitor protocol is an IAR Systems proprietary protocol used by some
ARM-based evaluation boards.

IAR ROM-MONITOR

This section describes the options that specify the C-SPY IAR ROM-monitor interface.
In the IAR Embedded Workbench IDE, choose Project>Options and click the IAR
ROM-monitor tab in the Debugger category.

&R ROM-monitor |
L Senial port seftings
Communication
* LSE Fart IEDM1 vl
 Cai
sel 5232 Baudrate [15200 ~

™ Log communication
[$TOOLKIT_DIRg espyzommlog J

Figure 95: IAR C-SPY ROM-monitor options

Part 6. C-SPY® hardware debugger systems 219

Debugging using the IAR C-SPY J-Link/J-Trace driver

Communication

Use this option to select the ROM-monitor communication link. RS232 serial port
connection and USB connection are supported.

Serial port settings

Use the Port combo box to select which serial port on the host computer to use as the
ROM-monitor communication link, and set the communication speed using the Baud
rate combo box. The serial port communication link speed must match the speed
selected on the target board.

Log communication

Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, a detailed knowledge of the ROM-monitor protocol is required.

Debugging using the IAR C-SPY }-Link/J-Trace driver
To use C-SPY for the J-Link/J-Trace JTAG interface, you should be familiar with the
following details:

o The C-SPY options specific to the J-Link/J-Trace JTAG interface, see Setup, page
221, Connection, page 224, and Using breakpoints in the hardware debugger
systems, page 243

The J-Link menu, page 225

Using the trace system in hardware debugger systems, page 237
Live watch and use of DCC, page 228

Using breakpoints in the hardware debugger systems, page 243

Using JTAG watchpoints, page 251.

IAR Embedded Workbench® IDE
220 User Guide

Hardware-specific debugging ___o

SETUP

This section describes the options that specify the J-Link/J-Trace interface. In the IAR
Embedded Workbench IDE, choose Project>Options, select the J-Link/J-Trace
category, and click the Setup tab.

Setup

Reset

Software j |

JTAG/SWD speed

* Auta I~ r
Iritial |32 kHz || [r

I~

E
Fixed -

" Adaptive r

Figure 96: C-SPY J-Link/J-Trace Setup options

Reset

Use this option to select the reset strategy to be used when the debugger starts. Note that
Cortex-M uses a different set of strategies than other devices.

For Cortex-M devices, choose between these strategies:

Normal (default) Tries to reset the core via the reset strategy Core and
peripherals first. If this fails, the reset strategy Core only is
used. It is recommended that you use this strategy to reset the
target.

Core only The core is reset via the VECTRESET bit; the peripheral units
are not affected.

Core and peripherals J-Link pulls its RESET pin low to reset the core and the
peripheral units. Normally, this causes the CPU RESET pin of
the target device to go low as well, which results in a reset of
both the CPU and the peripheral units.

All of these strategies are available for both the JTAG and the SWD interface, and all
strategies halt the CPU after the reset.

Part 6. C-SPY® hardware debugger systems 221

Debugging using the IAR C-SPY J-Link/J-Trace driver

For other cores, choose between these strategies:

Hardware, halt after delay (ms) Hardware reset. Use the text box to specify the delay
between the hardware reset and the halt of the
processor. This is used for making sure that the chip is in
a fully operational state when C-SPY starts to access it.
By default, the delay is set to zero to halt the processor
as quickly as possible.

Hardware, halt using Breakpoint Hardware reset. After reset, J-Link continuously tries to
halt the CPU using a breakpoint. Typically, this halts the
CPU shortly after reset; the CPU can in most systems
execute some instructions before it is halted.

Hardware, halt at 0 Hardware reset. The processor is halted by placing a
breakpoint at zero. Note that this is not supported by
all ARM microcontrollers.

Hardware, halt using DBGRQ Hardware reset. After reset, J-Link continuously tries to
halt the CPU using DBGRQ. Typically, this halts the CPU
shortly after reset; the CPU can in most systems
execute some instructions before it is halted.

Software Software reset. Sets PC to the program entry address.

Software, Analog devices Software reset. Uses a reset sequence specific for the
Analog Devices ADuC7xxx family. This strategy is only
available if you have selected such a device from the
Device drop-down list on the General
Options>Target page.

Hardware, NXP LPC Hardware reset specific to NXP LPC devices. This
strategy is only available if you have selected such a
device from the Device drop-down list on the
General Options>Target page.

Hardware, Atmel AT91SAM7 Hardware reset specific for the Atmel AT9I1SAM7
family. This strategy is only available if you have selected
such a device from the Device drop-down list on the
General Options>Target page.

For more details about the different reset strategies, see the J-Link / J-Trace User s
Guide.

IAR Embedded Workbench® IDE
222 User Guide

Hardware-specific debugging ___o

A software reset of the target does not change the settings of the target system; it only
resets the program counter and the mode register CPSR to its reset state. Normally, a
C-SPY reset is a software reset only. If you use the Hardware reset option, C-SPY will
generate an initial hardware reset when the debugger is started. This is performed once
before download, and if the option Flash download is selected, also once after flash
download, see Figure 89, Debugger startup when debugging code in flash, page 211,
and Figure 90, Debugger startup when debugging code in RAM, page 212.

Hardware resets can be a problem if the low-level setup of your application is not
complete. If the low-level setup does not set up memory configuration and clocks, the
application will not work after a hardware reset. To handle this in C-SPY, the setup
macro function execUserReset () is suitable. For a similar example where
execUserPreload () is used, see Remapping memory, page 119.

JTAG speed
Use the JTAG speed options to set the JTAG communication speed in kHz.

Auto

If you use the Auto option, the J-Link interface will automatically use the highest
possible frequency for reliable operation. The initial speed is the fixed frequency used
until the highest possible frequency is found. The default initial frequency—32
kHz—can normally be used, but in cases where it is necessary to halt the CPU after the
initial reset, in as short time as possible, the initial frequency should be increased.

A high initial speed is necessary, for example, when the CPU starts to execute unwanted
instructions—for example power down instructions—from flash or RAM after a reset.
A high initial speed would in such cases ensure that the debugger can quickly halt the

CPU after the reset.

The initial value must be in the range 1-12000 kHz.

Fixed

Use the Fixed text box to set the JTAG communication speed in kHz. The value must
be in the range 1-12000 kHz.

If there are JTAG communication problems or problems in writing to target memory (for
example during program download), these problems may be avoided if the speed is set
to a lower frequency.

Adaptive

The adaptive speed only works with ARM devices that have the RTCK JTAG signal
available. For more information about adaptive speed, see the J-Link / J-Trace User's
Guide.

Part 6. C-SPY® hardware debugger systems 223

Debugging using the IAR C-SPY J-Link/J-Trace driver

Catch exceptions

For details about this option, see Breakpoints on vectors, page 250.

CONNECTION

In the IAR Embedded Workbench IDE, choose Project>Options, select the
J-Link/J-Trace category, and click the Connection tab.

Connection

Communication

* LSE Device -
" TCPAP

Interface JTAG scan chain
™ JTAG scan chain with multiple targets

& JTAG ,—
" 8wD r
,_

™ Log communication

| o

Figure 97: C-SPY J-Link/J-Trace Connection options

Communication

Use this option to select the communication link. Choose between USB and TCP/IP. If
you choose TCP/IP, use the text box to specify the IP address of a J-Link server. The
TCP/IP connection is used for connecting to a J-Link server running on a remote
computer.

Interface

Use this option to specify communication interface between the J-Link debug probe and
the target system. Choose between:

o JTAG (default)

o SWD; uses fewer pins than JTAG. Select SWD if you want to use the serial-wire
output (SWO) communication channel. Note that if you select stdout/stderr via
SWO on the General Options>Library Configuration page, SWD is selected
automatically. For more information about SWO settings, see SWO Setup dialog
box, page 226.

IAR Embedded Workbench® IDE
224 User Guide

Hardware-specific debugging ___o

JTAG scan chain

If there are more than one device on the JTAG scan chain, enable the JTAG scan chain
with multiple targets option, and specify TAP number option, which is the TAP (Test
Access Port) position of the device you want to connect to. The TAP numbers start from
zero.

For JTAG scan chains that mix ARM devices with other devices like, for example,
FPGA, enable the Scan chain contains non-ARM devices option and specify the
number of IR bits before the ARM device to be debugged in the Preceding bits text
field.

Log communication

Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, detailed knowledge of the JTAG interface is required.

THE J-LINK MENU

When you are using the C-SPY J-Link driver, the additional menu J-Link appears in
C-SPY.

Trace Window

SWO Setup

Breakpoint Usage ...
Figure 98: The J-Link menu

The following commands are available on the J-Link menu:

Menu command Description

Watchpoints Opens a dialog box for setting watchpoints, see JTAG watchpoints dialog
box, page 252.

Vector Catch Opens a dialog box for setting a breakpoint directly on a vector in the
interrupt vector table, see Breakpoints on vectors, page 250. Note that
this command is not available for all ARM cores.

Trace Setup Opens the Trace Setup dialog box to configure capturing trace
information; see Trace Setup dialog box, page 238.

Table 33: Commands on the J-Link menu

Part 6. C-SPY® hardware debugger systems 225

Debugging using the IAR C-SPY J-Link/J-Trace driver

Menu command

Description

Trace Save

Trace Window

Function Trace
Window

SWO Setup

Breakpoint Usage

Opens the Trace Save dialog box to save the captured trace data to a file;
see Trace Save dialog box, page 240.

Opens the Trace window to display the captured trace data; see Trace
window, page 240.

Opens the Function Trace window to display a subset of the trace data
displayed in the Trace window; see Function Trace window, page 172.

Opens the SWO Setup dialog box; see SWO Setup dialog box, page 226.

Opens the Breakpoint Usage dialog box to list all active breakpoints; see
Breakpoint Usage dialog box, page 250. Note that this command is only
available when the SWD interface is used.

226

IAR Embedded Workbench® IDE
User Guide

Table 33: Commands on the J-Link menu (Continued)

SWO SETUP DIALOG BOX

Use the SWO Setup dialog box—available from the J-Link menu—to set up the

serial-wire output communication channel.

SWO Setup PIX

Clock Setup
Swil clock
CPU clock: BB MHz Wi ¥ Autodetect
kHz
Cancel
Actual: RO0 kHz 4
Hwf Trace
[~ Enable Trace Events
Timestamps F
I Resolution [cycles): r
PL Sampling ||:
I Bate [samples/s]: r
ITH Stirulus Ports
il 24 23 16 15 g8 7 1]
Enabled parts: Frrrrrrrrrrrrrrrr rerrrrrrr IrrTrrrrriv
il 24 23 16 15 g8 7 1]
To Terminal 1/0 Window: Frrrrrrrrrrrrrrrr rerrrrrrr IrrTrrrrriv
) il 24 23 16 15 g8 7 1]
Ta Lag File: FTTrTrrrrr rrrrrrrr rrTrrrrrT T rrTrrrTTd
[$PROJ_DIRSATM log []

Figure 99: SWO Setup dialog box

Note: This dialog box requires the SWD interface between the J-Link debug probe and

the target system, see Interface, page 224.

Hardware-specific debugging ___o

CPU clock

Use this option to specify the clock frequency of the internal processor clock, HCLK,
given in MHz. The value can have decimals.

SWO clock

Use this option to specify the clock frequency of the SWO communication channel in
kHz. Choose between these options:

Autodetect Automatically uses the highest possible frequency that the J-Link
debug probe can handle.

Wanted Manually selects the frequency to be used. The value can have
decimals.

The clock frequency actually used is displayed in the Actual text box.

HW Trace

Use this option to specify the hardware trace information to be displayed in the Trace
window. Choose between:

Timestamps Enables timestamps for every ITM stimulus or HW trace packet,
or group of packets, that is sent over the SWO communication
channel. Use the resolution drop-down list to choose the
resolution of the timestamp value.

PC Sampling Enables sampling of the program counter register, PC, at regular
intervals. Use the drop-down list to choose the sampling rate, that
is, the number of samples per second. The highest possible
sampling rate depends on the SWO clock value and on how much
other data that is sent over the SWO communication channel. The
higher values in the list will probably not work because the SWO
communication channel is not fast enough to handle that much
data.

Trace Events Enables exception tracing or cycle counters that can be used for
special types of profiling. Some of these events can overflow the
SWO communication channel and thus do not work if the SWO
frequency is too low. For more information about trace events,
see the Cortex-M documentation from ARM Ltd.

Part 6. C-SPY® hardware debugger systems 227

Debugging using the IAR C-SPY J-Link/J-Trace driver

ITM Stimulus Ports

The ITM Stimulus Ports are used for sending data from your application to the debugger
host without stopping program execution. There are 32 such ports.

Use the check boxes to select which ports you want to redirect and to where:

Enabled ports Enables the ports to be used. Only enabled ports will actually

send any data over the SWO communication channel to the
debugger.

To Terminal I/O window Specifies which ports that will send data to the Terminal I/O
window.

To Log File Specifies which ports that will send data to a log file. To use a

different log file than the default one, use the browse button.

@ The stdout and stderr of your application can be rerouted via SWO and this means
that stdout/stderr will appear in the C-SPY Terminal I/O window. To achieve this,
choose Project>Options>General Options>Library Configuration>Library
low-level interface implementation>stdout/stderr>Via SWO.

This can be disabled if you deselect the port settings in the Enabled ports and To
Terminal I/0 options.

LIVE WATCH AND USE OF DCC

The following possibilities for using live watch apply:

For Cortex-3

Access to memory or setting breakpoints is always possible during execution. DCC is
not available.

For ARMxxx-S devices

Setting hardware breakpoints is always possible during execution.

For ARM7/ARM9 devices, including ARMxxx-S

Memory accesses must be made by your application. By adding a small program that
communicates with the debugger through the DCC unit to your application, memory can
be read/written during execution. Software breakpoints can also be set by the DCC
handler.

Just add the files DCC_Process.c and DCC_HandleDataAbort. s located in
arm\src\debugger\dcc to your project and call the bcC_Process function
regularly, for example every millisecond.

IAR Embedded Workbench® IDE
228 User Guide

Hardware-specific debugging ___o

In your local copy of the cstartup file, modify the interrupt vector table so that data
aborts will call the bcC_HandleDataAbort handler.

Debugging using the IAR C-SPY LMI FTDI driver
To use C-SPY for the FTDI JTAG interface, you should be familiar with the following
details:
o The C-SPY options specific to the Luminary FTDI JTAG interface, see Setup, page
221 and Breakpoints options, page 243
o The LMI FTDI menu, see The LMI FTDI menu, page 230

e The breakpoint system, see Using breakpoints in the hardware debugger systems,
page 243.

SETUP

This section describes the options that specify the J-Link/J-Trace interface. In the IAR
Embedded Workbench IDE, choose Project>Options, select the LMI FTDI category,

and click the Setup tab.
Setup
JTAG zpeed
500 kHz

™ Log communication

| o

Figure 100: C-SPY LMI FTDI Setup options

JTAG speed
Use the JTAG speed option to set the JTAG communication speed in kHz.

Log communication

Use this option to log the communication between C-SPY and the target system to a file.

Part 6. C-SPY® hardware debugger systems 229

Debugging using the IAR C-SPY Macraigor driver

THE LMI FTDI MENU

When you are using the C-SPY LMI FTDI driver, the additional menu LMI FTDI
appears in C-SPY.

LMIFDTI

Breakpoint Uzage ...
Figure 101: The LMI FTDI menu

The following commands are available on the LMI FTDI menu:

Menu command Description

Breakpoint Usage Opens the Breakpoint Usage dialog box to list all active breakpoints; see
Breakpoint Usage dialog box, page 250.

Table 34: Commands on the RDI menu

Debugging using the IAR C-SPY Macraigor driver

To use C-SPY for the Macraigor JTAG interface, you should be familiar with the

following details:

o The C-SPY options specific to the Macraigor JTAG interface, see Macraigor, page
231 and Breakpoints options, page 243
The Macraigor JTAG menu, page 233
Using breakpoints in the hardware debugger systems, page 243

o Using JTAG watchpoints, page 251.

IAR Embedded Workbench® IDE
230 User Guide

Hardware-specific debugging ___o

MACRAIGOR

In the IAR Embedded Workbench IDE, choose Project>Options and click the
Macraigor tab in the Debugger category.

Macraigor |

OCD interface device JTAG zpeed

IHaven 'l |1_

™ Hardware resst
[relay after reset [ms]; TCRAP

[~ JTAG scan chain with multiple targets Iaaa.bbb.ccc.ddd
IU@AHM?TDMI
Port ILPT1 vl
[ebug handler address

Baud rate |1 15200 - l
IDxDDSDDDDD

™ Log communication
[$TOOLKIT_DIRg espyzommlog J

Figure 102: C-SPY Macraigor options

OCD interface device

Select the device corresponding to the hardware interface you are using. Supported
Macraigor JTAG interfaces are Macraigor Raven,Wiggler, and mpDemon.
JTAG speed

This option sets the JTAG speed between the JTAG interface and the ARM JTAG ICE
port. The number must be in the range 1-8 and sets the factor by which the ITAG
interface clock is divided when generating the scan clock.

The speed setting 1 usually works fine on Wiggler and Raven. The mpDemon interface
may require a higher setting such as 2 or 3, that is, a lower speed.

TCP/IP

Use this option to set the IP address of a JTAG interface connected to the Ethernet/LAN
port.

Port

Use the Port drop-down list to select which serial port or parallel port on the host
computer to use as communication link. Select the host port to which the JTAG interface
is connected.

Part 6. C-SPY® hardware debugger systems 231

Debugging using the IAR C-SPY Macraigor driver

In the case of parallel ports, you should normally use LPT1 if the computer is equipped
with a single parallel port. Note that a laptop computer may in some cases map its single
parallel port to LPT2 or LPT3. If possible, configure the parallel port in EPP mode since
this mode is fastest; bidirectional and compatible modes will work but are slower.

Baud rate

Set the serial communication speed using the Baud rate drop-down list.

Hardware reset

A software reset of the target does not change the settings of the target system; it only
resets the program counter to its reset state. Normally, a C-SPY reset is a software reset
only. If you use the Hardware reset option, C-SPY will generate an initial hardware
reset when the debugger is started. This is performed once before download, and if the
option Flash download is selected, also once after flash download, see Figure 89,
Debugger startup when debugging code in flash, page 211, and Figure 90, Debugger
startup when debugging code in RAM, page 212.

@ Hardware resets can be a problem if the low-level setup of your application is not
complete. If low-level setup does not set up memory configuration and clocks, the
application will not work after a hardware reset. To handle this in C-SPY, the setup
macro function execUserReset () is suitable. For a similar example where
execUserPreload () is used, see Remapping memory, page 119.

JTAG scan chain with multiple targets

If there is more than one device on the JTAG scan chain, each device has to be defined,
and you have to state which device you want to connect to. The syntax is:

<0>@dev0, devl,dev2,dev3, ...

where 0 is the TAP# of the device to connect to, and dev0 is the nearest TDO pin on the
Macraigor JTAG interface.

Debug handler address

Use this option to specify the location—the memory address—of the debug handler
used by Intel XScale devices. To save memory space, you should specify an address
where a small portion of cache RAM can be mapped, which means the location should
not contain any physical memory. Preferably, find an unused area in the lower 16-Mbyte
memory and place the handler address there.

Log communication

Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, detailed knowledge of the JTAG interface is required.

IAR Embedded Workbench® IDE
232 User Guide

Hardware-specific debugging ___o

THE MACRAIGOR JTAG MENU
When you are using the Macraigor driver, the additional menu JTAG appears in C-SPY.

Watchpoints ..
Wector Catch ...
Figure 103: The Macraigor JTAG menu

The following commands are available on the JTAG menu:

Menu command Description

Watchpoints Opens a dialog box for setting watchpoints, see JTAG watchpoints dialog
box, page 252.
Vector Catch Opens a dialog box for setting a breakpoint directly on a vector in the

interrupt vector table, see Breakpoints on vectors, page 250. Note that
this command is not available for all ARM cores.

Table 35: Commands on the JTAG menu

Debugging using the RDI driver
To use C-SPY for the RDI interface, you should be familiar with the following details:
o The C-SPY options that specify the RDI interface, see RDI, page 233
o The RDI menu, see RDI menu, page 236

o The ETM trace mechanism, see Using the trace system in hardware debugger
systems, page 237.

For detailed information about the RDI interface and how to get started, see the
rdi_guickstart.htm file, available in the arm\doc subdirectory.

RDI

To set RDI options, choose Project>Options and click the RDI tab in the Debugger
category.

Part 6. C-SPY® hardware debugger systems 233

Debugging using the RDI driver

234

IAR Embedded Workbench® IDE
User Guide

With the options on the RDI page you can use JTAG interfaces compliant with the ARM
Ltd. RDI 1.5.1 specification. One example of such an interface is the ARM MultilCE
JTAG interface.

RDI |

Manufacturer RDI driver
IBrowse to wour RO driver J
 Mote

I Allows hardware reset Uze the RDI menu to specify

additional driver gettings. [Thiz
menu is available after the RDI
[ETH trace driver haz been located)

— Catch exceptions—————————
[Reset [T Data [FlO
" Undef I Frefetch
Cswl T IRQ

™ Log RDI communication
[$TOOLKIT_DIRg espyzommlog J

Figure 104: C-SPY RDI options

Manufacturer RDI driver
This is the file path to the RDI driver DLL file provided with the JTAG pod.

Allow hardware reset

A software reset of the target does not change the settings of the target system; it only
resets the program counter to its reset state.

Use the Allow Hardware Reset option to allow the emulator to perform a hardware
reset of the target.

You should only allow hardware resets if the low-level setup of your application is
complete. If the low-level setup does not set up memory configuration and clocks, the
application will not work after a hardware reset. To handle this in C-SPY, the setup
macro function execUserReset () is suitable. For a similar example where
execUserPreload () is used, see Remapping memory, page 119.

Note: To use this option requires that hardware resets are supported by the RDI driver
you are using.

Hardware-specific debugging ___o

ETM trace

Use this option to enable the debugger to use and display ETM trace. When the option
is selected, the debugger will check that the connected JTAG interface supports RDI
ETM and that the target processor supports ETM. If the connected hardware supports
ETM, the RDI menu will contain the following commands:

o Trace Window, see Trace window, page 240

o Trace Setup, see Trace Setup dialog box, page 238

o Trace Save, see Trace Save dialog box, page 240.

Catch exceptions

Enabling the catch of an exception will cause the exception to be treated as a breakpoint.
Instead of handling the exception as defined by the running program, the debugger will
stop.

The ARM core exceptions that can be caught are:

Exception Description

Reset Reset

Undef Undefined instruction

SWiI Software interrupt

Prefetch Prefetch abort (instruction fetch memory fault)
Data Data abort (data access memory fault)

IRQ Normal interrupt

FIQ Fast interrupt

Table 36: Catching exceptions

Log RDI communication

Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, detailed knowledge of the RDI interface is required.

Part 6. C-SPY® hardware debugger systems 235

Debugging using third-party drivers

236

RDI MENU

When you are using the C-SPY J-Link driver, the additional menu RDI appears in
C-SPY.

Configure. ..

ETM Trace Wwindow
Trace Setup...
Trace Save...

Breakpoint Uzage...
Figure 105: The RDI menu

The following commands are available on the RDI menu:

Menu command Description

Configure Opens a dialog box that originates from the RDI driver vendor. For
information about details in this dialog box, refer to the driver
documentation.

ETM Trace Window Opens the Trace window to display the captured trace data; see Trace
window, page 240.

Trace Setup Opens the Trace Setup dialog box to configure the ETM trace; see
Trace Setup dialog box, page 238.

Trace Save Opens the Trace Save dialog box to save the captured trace data to a file;
see Trace Save dialog box, page 240.

Breakpoint Usage Opens the Breakpoint Usage dialog box to list all active breakpoints; see
Breakpoint Usage dialog box, page 250.

Table 37: Commands on the RDI menu

Note: To get the default settings in the configuration dialog box, it is for some RDI
drivers necessary to just open and close the dialog box even though you do no need any
specific settings for your project.

Debugging using third-party drivers

IAR Embedded Workbench® IDE
User Guide

It is possible to load other debugger drivers than those supplied with IAR Embedded
Workbench.
THIRD-PARTY DRIVER

To set options for the third-party driver, choose Project>Options and click the
Third-party Driver tab in the Debugger category.

Hardware-specific debugging ___o

The Third-Party Driver options are used for loading any driver plugin provided by a
third-party vendor. These drivers must be compatible with the IAR debugger driver

specification.
Third-Party Driver |
|1&F debugger driver plugin
Browse ta your third-party driver J
™ Log communication
[$TOOLKIT_DIRg espyzommlog [

Figure 106: C-SPY Third-Party Driver options

IAR debugger driver plugin

Type or paste the file path to the third-party driver plugin DLL file in this text box, or
browse to the driver DLL file using the browse button.

Log communication

Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, detailed knowledge of the interface is required.

Using the trace system in hardware debugger systems

The Trace system is supported by the J-Trace driver, the J-Link driver for devices that
have support for ETB (Embedded Trace Buffer), and RDI drivers where the connected
hardware supports ETM.

Note: All trace features described here can be used by both of these systems, unless
otherwise specifically noted.

This section describes the:

o Trace Setup dialog box, page 238
o Trace Save dialog box, page 240

o Trace window, page 240

Part 6. C-SPY® hardware debugger systems 237

Using the trace system in hardware debugger systems

238

IAR Embedded Workbench® IDE
User Guide

o Trace toolbar, page 242.

For more detailed information about using the common features in the trace system, see
Using the trace system, page 131.

TRACE SETUP DIALOG BOX

Use the Trace Setup dialog box—available from the driver-specific menu—to
configure the trace system.

Trace Setup

Trace port width

K
r Cycle accurate tracing
' 4 Bits

[]
™ Broadeast all branch addresses |

Cancel
[stall processar on FIFO Full

15 Eits

! 16 Bits
™ show timestamp
Trace port mode Trace port {CPU core) speed

INormaIJ Full-rate clocking j I 1000000 Hz

Trace buffer size

I 000010000

Figure 107: Trace Setup dialog box
Note: This dialog box looks slightly different for the RDI drivers.

Trace port width

The trace bus width can be set to 4, 8, or 16 bits. The value must correspond with what
is supported by the hardware.

Trace port mode

Use these options to set the trace clock rate; choose between:
Normal, full-rate clocking

Normal, half-rate clocking

Multiplexed

Demultiplexed

Demultiplexed, half-rate clocking.

Note: For RDI drivers, only the two first alternatives are available. For the J-Trace
driver, alternatives are available depending on support for them on the device.

Hardware-specific debugging ___o

Trace buffer size

Use the text box to specify the size of the trace buffer. By default, the size of trace frames
is 64 Kbytes and the maximum size is 1 Mbyte.

One trace frame corresponds to 2 bytes of the J-Trace buffer size.

Note: The Trace buffer size option is only available for the J-Trace driver.

Cycle accurate tracing

Select this option to emit trace frames synchronous to the processor clock even when no
trace data is available. This makes it possible to use the trace data for real-time timing
calculations. However, if you select this option, the risk for FIFO buffer overflow will
increase.

Broadcast all branch addresses
Use this option to make the processor send more detailed address trace information.
However, if you select this option, the risk for FIFO buffer overflow will increase.

Stall processor on FIFO full

The trace FIFO buffer might in some situations get full—FIFO bufter overflow—which
means trace data will be lost. If you use this option, the processor will be stalled in case
the FIFO buffer gets full.

Show timestamp

Use this option to make the Trace window display seconds instead of cycles in the Index
column. To make this possible you must also specity the appropriate speed for your CPU
in the Trace port (CPU core) speed text field.

Note: The Show timestamp option is only available for the J-Trace driver.

Part 6. C-SPY® hardware debugger systems 239

Using the trace system in hardware debugger systems

240

TRACE SAVE DIALOG BOX

Use the Trace Save dialog box—available from the driver-specific menu—to save the
captured trace data, as it is displayed in the Trace Window, to a file.

Trace Save

[]
Frame Range———
Start ID Cancel |

End |32?88

™ Append ta file

File ITraceIog.txt |

Figure 108: Trace Save dialog box

Frame Range

To save a range of frames to a file, specify a start frame and an end frame.

Append to file

Appends the trace data to an existing file.
File
Use this text box to locate a file for the trace data.

TRACE WINDOW

The Trace window—available from the driver-specific menu—displays the captured
trace data.

Trace (=]
oXpa yHE| &

Index | Frame | Address | Opcode | Trace | Comment |
aooono aooono Ezecution =stopped-sta. ..
nooool nooool 0x08000000 ES9FFO18 LDE BPC. [PC. #+2. ..

nooooz nooo1l 0x08000044 E10FO0000 HES RO, CPSR

aoooosz noools 0x08000045 E3C0001F BIC RO, RO, #0=lF

noooo4 nooole 0x0800004AC E3800012 ORR RO, RO, #0=l12

noooaos nooo1z? 0x080000BO0 E121F000 HER CPSRE_c. RO

nooooe noools 0x080000B4 EG9FDO14 LDE SP. [PC. #+2. ..

aoooa? noools9 0x080000BS8 E3C0O001F BIC RO, RO, #0=lF

noooog nooozo 0x080000BC E380001F ORR RO, RO, #0=lF

aoooo9 nooozi 0x080000C0 E121F000 HER CPSRE_c. RO

nooolo nooozz 0x080000C4 ELS9FDOOS LDE SPE. [PC. #+8. ..

ooooll noooz3 0x080000C8 ES9FO0008 LDE RO, [PC, #+8. ..

IAR Embedded Workbench® IDE

User Guide

Figure 109: ETM Trace View window

Hardware-specific debugging ___o

Note: For RDI drivers, you must select the ETM trace option available on the RDI
options page to display this window. For RDI drivers, this window looks slightly
different.

The Trace window contains the following columns:

Trace window column Description

Index A serial number for each row in the trace buffer. Simplifies the
navigation within the buffer.

Frame The position in the number of trace data frames that have been
displayed. When tracing in cycle accurate mode, the value
corresponds to the number of elapsed cycles. This column is only
available for the J-Trace driver.

Time When tracing in non-cycle accurate mode, the value displays the
time instead of cycles.This column is only available for the J-Trace
driver and when the option Show timestamp is selected.

Address The address of the executed instruction.
Opcode The operation code of the executed instruction.
Trace The recorded sequence of executed machine instructions.

Optionally, the corresponding source code can also be displayed.

Comment This column is only available for the J-Trace driver.

Table 38: Trace window columns

J-Link/)-Trace specials

If you are using the SWD interface between the J-Link debug probe and the target
system, you can use the serial-wire output (SWO) communication channel for trace
data. For information about how to set up for trace data over the SWO channel, see SWO
Setup dialog box, page 226.

In that case, the Trace window will display trace information in these columns:

Trace window column Description

Index An index number for each row in the trace buffer. Simplifies the
navigation within the buffer.

SWO Packet The contents of the captured SWO packet.

Cycles The approximate number of cycles from the start of the execution
until the event.

Event The type of the event for the captured SWO packet.

Value The event value, if any.

Table 39: Trace window columns when using SWO

Part 6. C-SPY® hardware debugger systems 241

Using the trace system in hardware debugger systems

Trace window column Description

Trace The recorded sequence of executed machine instructions.
Optionally, the corresponding source code can also be displayed. If
the event is a PC value, the instruction is displayed in the Trace
column.

Comment Complementary information.

Table 39: Trace window columns when using SWO (Continued)

TRACE TOOLBAR

The following toolbar is available in the Trace window:

Enable/Disable Save
Browse

| [
IEXIEQ%»E'IIS: F

| [
Toggle Source Find Function Trace

Edit Expression

Figure 110: Trace toolbar

The following function buttons are available on the toolbar:

Toolbar button Description
Enable/Disable Enables and disables tracing.
Toggle Source Toggles the Trace column between showing only disassembly or

disassembly together with corresponding source code.

Browse Toggles browse mode on and off for a selected item in the Trace
column. For more information about browse mode, see The Trace
window and its browse mode, page 132.

Find Opens the Find In Trace dialog box where you can perform a
search; see Find In Trace window, page |174.

Save Opens a standard Save dialog box where you can save the recorded
trace information to a text file, with tab-separated columns.

Function Trace Opens the Function Trace window, see Function Trace window, page
172. This button is not available for the RDI driver.

Edit Expressions Opens the Trace Setup dialog box, see Trace Setup dialog box,
page 238. This button is not available for the RDI driver.

Table 40: Trace toolbar commands

IAR Embedded Workbench® IDE
242 User Guide

Hardware-specific debugging ___o

Using breakpoints in the hardware debugger systems
This section provides details about breakpoints that are specific to the different C-SPY
drivers. The following is described:

Available number of breakpoints, page 243

Breakpoints options, page 243

Code breakpoints dialog box, page 245

Data breakpoints dialog box, page 246

Breakpoint Usage dialog box, page 250

Breakpoints on vectors, page 250

Setting breakpoints in __ramfunc declared functions, page 251.

For information about the different methods for setting breakpoints and the facilities for
monitoring breakpoints, see Using breakpoints, page 135.

AVAILABLE NUMBER OF BREAKPOINTS

Normally when you set a breakpoint, C-SPY sets two breakpoints for internal use. This
can be unacceptable if you debug on hardware where a limited number of hardware
breakpoints are available. For more information about breakpoint consumers, see
Breakpoint consumers, page 141.

Note: Cortex devices support additional hardware breakpoints.

Exceeding the number of available hardware breakpoints will cause the debugger to
single step. This will significantly reduce the execution speed.

You can prevent the debugger from using breakpoints in these situations. In the first
case, by deselecting the C-SPY option Run to. In the second case, you can deselect the
Semihosted or the IAR breakpoint option.

When you use the Stack window, it requires one hardware breakpoint in some situations,
see Stack pointer(s) not valid until reaching, page 331.
BREAKPOINTS OPTIONS

For the following hardware debugger systems it is possible to set some driver-specific
breakpoint options:

e GDB Server
o J-Link/J-Trace JTAG interface
o Macraigor JTAG interface.

Part 6. C-SPY® hardware debugger systems 243

Using breakpoints in the hardware debugger systems

In the IAR Embedded Workbench IDE, choose Project>Options, select the category
specific to the debugger system you are using, and click the Breakpoints tab.

Breakpoints |

Default breakpaint type
* Auto
 Hardware

7 Software

™ Restore software breakpoints at Imain

Figure 111: Breakpoints options

Default breakpoint type

Use this option to select the type of breakpoint resource to be used when setting a
breakpoint. Choose between:

Auto The C-SPY debugger will use a software breakpoint; if this is not
possible, a hardware breakpoint will be used. The debugger will
use read/write sequences to test for RAM; in that case, a software
breakpoint will be used.

Hardware Hardware breakpoints will be used. If it is not possible to use a
hardware breakpoint, no breakpoint will be set.

Software Software breakpoints will be used. If it is not possible to use a
software breakpoint, no breakpoint will be set.

The Auto option works for most applications. However, there are cases when the
performed read/write sequence will make the flash memory malfunction. In that case,
use the Hardware option.

Restore software breakpoints at

Use this option to restore automatically any breakpoints that were destroyed during
system startup.

IAR Embedded Workbench® IDE
244 User Guide

Hardware-specific debugging ___o

This can be useful if you have an application that is copied to RAM during startup and
is then executing in RAM. This can, for example, be the case if youuse the initialize
by copy for code in the linker configuration file or if you have any __ramfunc
declared functions in your application.

In this case, all breakpoints will be destroyed during the RAM copying when the C-SPY
debugger starts. By using the Restore software breakpoints at option, C-SPY will
restore the destroyed breakpoints.

Use the text field to specify the location in your application at which point you want
C-SPY to restore the breakpoints.

CODE BREAKPOINTS DIALOG BOX

Code breakpoints are triggered when an instruction is fetched from the specified
location. If you have set the breakpoint on a specific machine instruction, the breakpoint
will be triggered and the execution will stop, before the instruction is executed.

To set a code breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>Log on the context menu. To modify an existing breakpoint, select it in the
Breakpoints window and choose Edit on the context menu.

The Code breakpoints dialog box appears.

Mew Breakpoint [%]
& Code |
Break &t

Imain Edi... |

— Breakpoint type
™ Overide default

&) Softivare .
Action
= Herdiarne ’7

Expression:

— Condition:
Expression:

' Condition true Skip count; I i

" Condition changed

()8 I Cancel

Figure 112: Code breakpoints page

Part 6. C-SPY® hardware debugger systems 245

Using breakpoints in the hardware debugger systems

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 287.

Breakpoint type

Use the Breakpoint type options to override the default breakpoint type. Select the
Override default check box and choose between the Software and Hardware options.

You can specify the breakpoint type for these C-SPY drivers:

e GDB Server
o J-Link/J-Trace JTAG interface
o Macraigor JTAG interface.

Action

You can optionally connect an action to a breakpoint. Specify an expression, for instance
a C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.
Condition changed The breakpoint is triggered if the value of the expression has changed

since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Table 41: Breakpoint conditions

DATA BREAKPOINTS DIALOG BOX

The options for setting data breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Log to set a new breakpoint. Alternatively, to modify an existing
breakpoint, select a breakpoint in the Breakpoint window and choose Edit on the
context menu.

IAR Embedded Workbench® IDE
246 User Guide

Hardware-specific debugging ___o

The Data breakpoints dialog box appears.

Edit Breakpoint [%]
Diata |
Break &t

IMyStruct Edit...l

Accesz Type
& Feadfwiite

™ Estended tigger range

Original address range

" Read 0400000044 - 0x00000045

© Wiite

Effective trigger address range

IDRDDDDDDM - 000000045

()8 I Cancel |

Figure 113: Data breakpoints dialog box

Note: Setting data breakpoints is possible for the:

GDB Server

J-Link/J-Trace JTAG interface
Macraigor JTAG interface
Luminary FTDI JTAG interface
RDI drivers.

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 287.

Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data breakpoints.

Memory Access type Description

Read/Write Read or write from location.

Table 42: Memory Access types

Part 6. C-SPY® hardware debugger systems 247

Using breakpoints in the hardware debugger systems

248

IAR Embedded Workbench® IDE
User Guide

Memory Access type Description

Read Read from location.

Write Write to location.

Table 42: Memory Access types (Continued)

Note: Data breakpoints never stop execution within a single instruction. They are
recorded and reported after the instruction is executed.

Extended trigger range

For data structures that do not fit the size of the possible breakpoint ranges supplied by
the hardware breakpoint unit, for example three bytes, the breakpoint range will not
cover the whole data structure. In this case, use this option to make the breakpoint be
extended so that the whole data structure is covered. Note that the breakpoint range will
be extended beyond the size of the data structure.

DATA LOG BREAKPOINTS DIALOG BOX

Data Log breakpoints are triggered when data is accessed at the specified location. If
you have set a log on a specific address or a range, a log message will be printed in the
Trace window for each access to that location. However, this requires that you have set
up for trace data in the SWO Setup dialog box, see SWO Setup dialog box, page 226.

The options for setting data log breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window or in the Memory window. On
the context menu, choose New Breakpoint>Data Log to set a new breakpoint.
Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoint
window and choose Edit on the context menu.

Hardware-specific debugging ___o

The Data Log breakpoints dialog box appears.

’ [rata Log |
Break &f:

Itest3 Edit |

" Estended tigger range
Original address range

IDx2DDD1 0C0 - 0x200010C3

Effective trigger address range

IDx2DDD1 0C0 - 0x200010C3

()3 I Cancel |

Figure 114: Data Log breakpoints dialog box

Note: Setting Data Log breakpoints is possible only for Cortex-M with SWO using the
J-Link debug probe.

Extended trigger range

For data structures that do not fit the size of the possible breakpoint ranges supplied by
the hardware breakpoint unit, for example three bytes, the breakpoint range will not
cover the whole data structure. In this case, use this option to make the breakpoint be
extended so that the whole data structure is covered. Note that the breakpoint range will
be extended beyond the size of the data structure.

Part 6. C-SPY® hardware debugger systems 249

Using breakpoints in the hardware debugger systems

BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from the driver-specific menu—Ilists all
active breakpoints.

Breakpoint Usage [%]

[Fetch

-SSP Terminal 140 & libsupport module

Figure 115: Breakpoint Usage dialog box

In addition to listing all breakpoints that you have defined, this dialog box also lists the
internal breakpoints that the debugger is using.

For each breakpoint in the list, the address and access type are shown. Each breakpoint
in the list can also be expanded to show its originator.

For more information, see Viewing all breakpoints, page 139.

BREAKPOINTS ON VECTORS

For ARMO devices, it is possible to set a breakpoint directly on a vector in the interrupt
vector table, without using a hardware breakpoint. First, you must select the correct
device. Before starting C-SPY, choose Project>Options and select the General
Options category. Choose the appropriate device from the Processor variant
drop-down list available on the Target page. Start C-SPY.

IAR Embedded Workbench® IDE
250 User Guide

Hardware-specific debugging ___o

To set the breakpoint directly on a vector in the interrupt vector table, choose the Vector
Catch command from the J-Link menu.

Yector Catch [%]

— Stop at beginning of exception: —
™ Reset

I Undet Cancel |
[~ 5w

™ Prefetch Abort
™ Diatasbort
" IRD

[FIg

Figure 116: The Vector Catch dialog box

Select the vector you want to set a breakpoint on, and click OK. The breakpoint will
only be triggered at the beginning of the exception.

Note: The Vector Catch dialog box is only available for the:

o J-Link/J-Trace JTAG interface
o Macraigor JTAG interface.

Note: For the J-Link/J-Trace driver and for RDI drivers, it is also possible to set
breakpoints directly on a vector already in the options dialog box, see Setup, page 221
and RDI, page 233.

SETTING BREAKPOINTS IN __ RAMFUNC DECLARED
FUNCTIONS

To set a breakpointina __ramfunc declared function, the program execution must have
reached the main function. The system startup code moves all __ramfunc declared
functions from their stored location—normally flash memory—to their RAM location,
which means the __ramfunc declared functions are not in their proper place and
breakpoints cannot be set until you have executed up to the main function.

In addition, breakpoints in __ramfunc declared functions added from the editor have
to be disabled prior to invoking C-SPY and disabled prior to exiting a debug session.

Using JTAG watchpoints

The C-SPY J-Link/J-Trace driver and the C-SPY Macraigor driver can take advantage
of the JTAG watchpoint mechanism in ARM7/9 cores. The watchpoints are defined
using the J-Link>Watchpoints and the JTAG>Watchpoints menu commands,
respectively.

Part 6. C-SPY® hardware debugger systems 251

Using JTAG watchpoints

252

IAR Embedded Workbench® IDE
User Guide

THE WATCHPOINT MECHANISM

The watchpoints are implemented using the functionality provided by the ARM
EmbeddedICE™ macrocell. The macrocell is part of every ARM core that supports the
JTAG interface.

The EmbeddedICE watchpoint comparator compares the address bus, data bus, CPU
control signals and external input signals with the defined watchpoint in real time. When
all defined conditions are true the program will break.

The watchpoints are implicitly used by C-SPY to set code breakpoints in the application.
When setting breakpoints in read/write memory, only one watchpoint is needed by the
debugger. When setting breakpoints in read-only memory one watchpoint is needed for
each breakpoint. Because the macrocell only implements two hardware watchpoints, the
maximum number of breakpoints in read-only memory is two.

For a more detailed description of the ARM JTAG watchpoint mechanism, refer to the
following documents from Advanced RISC Machines Ltd:

® ARM7TDMI (rev 3) Technical Reference Manual: chapter 5, Debug Interface, and
appendix B, Debug in Depth

o Application Note 28, The ARM7TDMI Debug Architecture.

JTAG WATCHPOINTS DIALOG BOX
The JTAG Watchpoints dialog box is opened from the driver-specific menu:

JTAG Watchpoints [%]

Break Condition
& Nomal: 'Watchpoint 0 OF ‘W atchpoint 1

" Range: “Watchpoint 0 AMD NOT YWatchpoint 1
" Chain: Watchpoint 1 AND THEN ‘W atchpoint 0

Cancel |

V' ‘watchpoint 0

— Addre: —dccess Type— —Data Extern [0]; — Mode
Value: [main -] by © AnySize vae [La0000000 |
& opFetch | & by |G Any
Mask IDxFFFFFFFF -] ¢ Read " Halfword Mask IDRDDDDDDDD -|| co ' User
. wiord 1
Address Bus Pattem O it ['ata Bus Pattemn € Non User
IDDDDDD1DDDDDDDDDDDDDD1D1D11DDDDD C Rl :
— Addre: —dccess Type— —Data Extern [1]; -~ Mode
Value [0:00000000 ~ & fny ; :”P 52 \ae [D:00000000 <[
I O O
E10pFeich [l k| |Gy
Mask IDxFFFFFFFF VI € Fead pe ARG b gl IDxFFFFFFFF vl 0 (ke
o
Address Bus Pattem)it Diata Bus Pattemn g 1 o ser
IDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD LGN ETe 00000000000000000000000000000000

Figure 117: JTAG Watchpoints dialog box

Hardware-specific debugging ___o

The JTAG Watchpoints dialog box makes it possible to directly control the two
hardware watchpoint units. If the number of needed watchpoints (including implicit
watchpoints used by the breakpoint system) exceeds two, an error message will be
displayed when you click the OK button. This check is also performed for the C-SPY
GO button.

Address

Use these options to specify the address to watch for. In the Value text box, enter an
address or a C-SPY expression that evaluates to an address. Alternatively, you can select
an address you have previously watched for from the drop-down list. For detailed
information about C-SPY expressions, see C-SPY expressions, page 127.

Use the Mask box to qualify each bit in the value. A zero bit in the mask will cause the
corresponding bit in the value to be ignored in the comparison.

The Address Bus Pattern field shows the bit pattern to be used by the address
comparator. Ignored bits as specified in the mask are shown as x.

To match any address, enter 0 in the mask. Note that the mask values are inverted with
respect to the notation used in the ARM hardware manuals.
Access Type

Use these options to define the access type of the data to watch for:

Type Description

Any Matches any access type

OP Fetch Operation code (instruction) fetch
Read Data read

Write Data write

R/W Data read or write

Table 43: Data access types

Data

Use these options to specify the data to watch for. Data accesses can be made as Byte,
Halfword or Word. If the Any Size option is used the mask should be set in the interval
0 to 0xFF since higher bits on the data bus may contain random data depending on the
instruction.

Enter a value or a C-SPY expression in the Value box. Alternatively, you can select a
value you have previously watched for from the drop-down list. For detailed information
about C-SPY expressions, see C-SPY expressions, page 127.

Part 6. C-SPY® hardware debugger systems 253

Using JTAG watchpoints

254

IAR Embedded Workbench® IDE
User Guide

Use the Mask box to qualify each bit in the value. A zero bit in the mask will cause the
corresponding bit in the value to be ignored in the comparison.

The Data Bus Pattern field shows the bit pattern to be used by the data comparator.
Ignored bits as specified in the mask are shown as x.

To match any address, enter 0 in the mask. Note that the mask values are inverted with
respect to the notation used in the ARM hardware manuals.

Extern

Use these options to define the state of the external input. Any means that the state is
ignored.

Mode

Use these options to define the CPU mode that must be active for a match:

Mode Description

User The CPU must run in USER mode

Non User The CPU must run in one of the SYSTEM SVC, UND, ABORT, IRQ or
FIQ modes

Any The CPU mode is ignored

Table 44: CPU modes

Break Condition

Use these options to specify how to use the defined watchpoints:

Break condition Description
Normal The two watchpoints are used individually (OR).
Range Both watchpoints are combined to cover a range where watchpoint 0

defines the start of the range and watchpoint | the end of the range.
Selectable ranges are restricted to being powers of 2.

Chain A trigger of watchpoint | will arm watchpoint 0. A program break will
then occur when watchpoint 0 is triggered.

Table 45: Break conditions

For example, to cause a trigger for accesses in the range 0x20-0xFF:
Set Break Condition to Range.

Set watchpoint 0’s address value to 0 and mask to 0xFF.

Set watchpoint 1’s address value to 0 and mask to 0x1F.

Using flash loaders

This chapter describes the flash loader, what it is and how to use it.

The flash loader

A flash loader is an agent that is downloaded to the target. It fetches your application
from the C-SPY debugger and programs it into flash memory. The flash loader uses the
file I/O mechanism to read the application program from the host. You can select one or
several flash loaders, where each flash loader loads a selected part of your application.
This means that you can use different flash loaders for loading different parts of your
application.

A set of flash loaders for various microcontrollers is provided with JAR Embedded
Workbench for ARM. In addition to these, more flash loaders are provided by chip
manufacturers and third-party vendors. The flash loader API, documentation, and
several implementation examples are available to make it possible for you to implement
your own flash loader.

SETTING UP THE FLASH LOADER(S)
To use a flash loader for downloading your application:
I Choose Project>Options.
Choose the Debugger category and click the Download tab.

Select the Use Flash loader(s) option, and click the Edit button.

H W N

The Flash Loader Overview dialog box lists all currently available flash loaders; see
Flash Loader Overview dialog box, page 257. You can either select a flash loader or
open the Flash Loader Configuration dialog box.

In the Flash Loader Configuration dialog box, you can configure the download. For
reference information about the different flash loader options, see Flash Loader
Configuration dialog box, page 258.

Setting up the target system using a C-SPY macro file

You can use a C-SPY macro to set up the target system before loading the flash loader
to RAM. One example when this is useful is for targets where the RAM is not functional
after reset; the macro is used for setting up the necessary registers for proper RAM
operation.

Part 6. C-SPY® hardware debugger systems 255

The flash loader

256

IAR Embedded Workbench® IDE
User Guide

o U1 A W N

The following criteria must be met for a macro function to be executed before
downloading the flash loader:

The macro file must be loaded in the dame directory as the flash loader
The macro file must have the filename extension mac

The name of the macro file must be the same as the flash loader

The setup macro function execUserFlashInit must be defined in the macro file.
This macro function is called from the debugger before the flash loader is loaded
into RAM. Note that debugging while when the flash loader is running as an
application, the setup macro execUserPreload must be used instead of
execUserFlashInit.

THE FLASH LOADING MECHANISM

When the Use flash loader(s) option is selected and one or several flash loaders have
been configured, the following steps will be performed when the debug session starts:

C-SPY downloads the flash loader into target RAM.

C-SPY starts execution of the flash loader.

The flash loader opens the file holding the application code.

The flash loader reads the application code and programs it into flash memory.
The flash loader terminates.

C-SPY switches context to the user application.

The steps 1 to 5 are performed for each selected flash loader.

BUILD CONSIDERATIONS

When you build an application that will be downloaded to flash, special consideration
is needed. Two output files must be generated. The first is the usual ELF/DWAREF file
(out) that provides the debugger with debug and symbol information. The second file
is a simple-code file (filename extension sim) that will be opened and read by the flash
loader when it downloads the application to flash memory.

The simple-code file must have the same path and name as the ELF/DWAREF file except
for the filename extension. This file is automatically generated by the linker.

Using flash loaders ___4

FLASH LOADER OVERVIEW DIALOG BOX

The Flash Loader Overview dialog box—available from the Debugger>Download
page—Tlists all defined flash loaders. If you have selected a device on the General
Options>Target page for which there is a flash loader, this flash loader is by default
listed in the Flash Loader Overview dialog box.

Flash Loader Dverview x|
Range | Base | Loader Path | Extra Parameters o4 |
({default)
Cancel |
Mew. ..
Edit . |
Pl | | LI [Elete |

Figure 118: Flash Loader Overview dialog box

The following function buttons are available:

Button Description

OK The selected flash loader(s) will be used for downloading your
application to memory.

Cancel Standard cancel.

New Opens the Flash Loader Configuration dialog box where you can
specify what flash loader to use; see Flash Loader Configuration dialog box,
page 258.

Edit Opens the Flash Loader Configuration dialog box where you can

modify the settings for the selected flash loader; see Flash Loader
Configuration dialog box, page 258.

Delete Deletes the selected flash loader configuration.

Table 46: Function buttons in the Flash Loader Overview dialog box

Part 6. C-SPY® hardware debugger systems 257

The flash loader

258

IAR Embedded Workbench® IDE
User Guide

FLASH LOADER CONFIGURATION DIALOG BOX

In the Flash Loader Configuration dialog box—available from the Flash Loader
Overview dialog box—you can configure the download.

Flash Loader Configuration E

Memary range

Ok
& a =
" Start: I End: I Cancel |

™ Relocate

Base address: I
™ override default flash loader path

| L

Extra parameters:

Figure 119: Flash Loader Configuration dialog box

Memory range

Use the Memory range options to specify the part of your application to be downloaded
to flash memory. Choose between:

All The whole application is downloaded using this flash loader.

Start/End The part of the application available in the memory range will be
downloaded. Use the Start and End text fields to specify the memory
range.

Relocate

Use the Relocate option to add an offset to the location of the application as specified
in the linker configuration file. It can sometimes be necessary to override the address and
start flashing at a different location in the address space. This can, for example, be
necessary for devices that remap the location of the flash memory.

Using flash loaders ___4

Use the Offset text box to specify a numeric value for the new base address. You can use
the following numeric formats:

123456 Decimal numbers
0x 123456 Hexadecimal numbers
0123456 Octal numbers

Override default flash loader path

A default flash loader is selected based on your choice of device on the General
Options>Target page. To override the default flash loader, select Override default
flash loader path and specify the path to the flash loader you want to use. A browse
button is available for your convenience.

Extra parameters

Some flash loaders define their own set of specific options. Use this text box to specify
options to control the flash loader. For information about any additional flash loaders
and flash loader options to those described here, see the release notes delivered with
your JAR Embedded Workbench installation.

Atmel AT91EBxx flash loader, Atmel AT9ISAM7AI-Ek, Atmel AT91SAM7A2-Ek

--user Allows programming the flash while the board jumper is in the USER
position (address line A20 inverted). Without this argument, the
board jumper must be in the STD position for proper flash
programming operation.

Freescale MAC7 Ix1 flash loader

--clock value Passes the clock frequency to the flash loader; value is the clock
speed in kHz. The default clock frequency value is 8000 kHz.

Nohau LPC2800 flash loader

--clock value Passes the clock frequency to the flash loader; value is the CKL
speed in Hz. The default clock frequency value is 12 MHz.

Nohau LPC2888 flash loader

--clock value Passes the clock frequency to the flash loader; value is the CKL
speed in Hz. The default clock frequency value is 12 MHz.

Part 6. C-SPY® hardware debugger systems 259

The flash loader

260

IAR Embedded Workbench® IDE
User Guide

NXP LPC flash loader

--clock value Passes the clock frequency to the flash loader; value is the CCLK
speed in kHz. The default clock frequency value is 14,746 kHz.

Olimex LPCH 288x flash loader

--clock value Passes the clock frequency to the flash loader; value is the CKL
speed in Hz. The default clock frequency value is 12000000 Hz.

Phytec LPC3180 flash loader

--nand_verify_dis Speeds up programming speed by skipping Reed—Solomon and
compare error checks.

Texas Instruments TMS470 flash loader

--clock value Passes the clock frequency to the flash loader; value is the CCLK
speed in kHz. The default clock frequency covers 12,000 kHz < x <
14,000 kHz.

The flash keys are located in the memory area 0x1FF0-0x1FFF. There is a set of
arguments for handling this memory area and the keys located there:

--allownewkeys To avoid any keys being accidently overwritten, the flash loader will by
default issue an error whenever there is a write access to the
memory range 0x1FF0-0x1FFF. However, in some situations you
might want to write to this area; use this option to make that
possible.

--flashkey0O value Use these options to unlock a flash memory that has previously been
--flashkeyl value protected with a flash key; value must be the original flash key
--flashkey2 value value.

--flashkey3 value

Part 7. Reference

information

This part of the IAR Embedded Workbench® IDE User Guide contains the

following chapters:

o IAR Embedded Workbench® IDE reference
o C-SPY® reference

e General options

e Compiler options

e Assembler options

e Converter options

e Custom build options

o Build actions options

e Linker options

e Library builder options

e Debugger options

e The C-SPY Command Line Utility—cspybat

o C-SPY® macros reference.

.hmuiuhhhi

261

AAARRIE

262

IAR Embedded
Workbench® IDE
reference

This chapter contains reference information about the windows, menus, menu
commands, and the corresponding components that are found in the IDE.
Information about how to best use the IDE for your purposes can be found in
parts 3 to 7 in this guide. This chapter contains the following sections:

e Windows, page 263
e Menus, page 291.

The IDE is a modular application. Which menus are available depends on
which components are installed.

Windows

The available windows are:

IAR Embedded Workbench IDE window
Workspace window

Editor window

Source Browser window

Breakpoints window

Message windows.

In addition, a set of C-SPY®-specific windows becomes available when you start the
debugger. Reference information about these windows can be found in the chapter
C-SPY® reference in this guide.

Part 7. Reference information 263

Windows

IAR EMBEDDED WORKBENCH IDE WINDOW

The figure shows the main window of the IDE and its different components. The
window might look different depending on which plugin modules you are using.

2 1aR Embedded Workbench IDE

[_[O]x]
Menu bar Fle Edt View Projsct Tools Window Help
Toolbar S IEIEE TR F+%Y %D e 2B RMExES D
A X Uiities.c i
projsct] - Debug - e
Files [Increase the 'call count' variable.
& Blutorials . Get and print the associated Fibonacci number.
Bl project! - Debug | v ||l RS do_foreground process (void) —
| @ & Tutare [
| B Utilities.c wnsigned int fib:
| L@ Caoutpu next_counter():
roject? - Debug v fib = get_fib{ call count):
rojects - Debug v put_fib(£ib)2
rojectd - Debug v ¥
rojectd - Debug v
utor_library- Debug v s
Workspace Main program.
window Prints the Fibonacci mumbers.
=
void main(void)
{
call count = 0:
init £ibi):
while { call count < MAX FIE)
do_foreground process():
i
DOvervisw proect2] proiect 4 [v] | (ol [In
* ‘ Messages
Building configuration: project - Debug
Upcdlating build tree..
Configuration is up-to-cate
Bl | |
Build [Debug Log [Tool Output [Find in Files x
Status bar —— ..y, [tnzs, colzi [wom [

Editor
window

Figure 120: IAR Embedded Workbench IDE window

Each window item is explained in greater detail in the following sections.

Menu bar

Gives access to the IDE menus.

Menu

Description

File

Edit

The File menu provides commands for opening source and project files, saving

and printing, and exiting from the IDE.

The Edit menu provides commands for editing and searching in editor windows
and for enabling and disabling breakpoints in C-SPY.

Table 47:

IAR Embedded Workbench® IDE

264 User Guide

IDE menu bar

IAR Embedded Workbench® IDE reference ___4

Menu Description

View Use the commands on the View menu to open windows and decide which
toolbars to display.

Project The Project menu provides commands for adding files to a project, creating
groups, and running the IAR Systems tools on the current project.

Tools The Tools menu is a user-configurable menu to which you can add tools for use
with the IDE.
Window With the commands on the Window menu you can manipulate the IDE windows

and change their arrangement on the screen.

Help The commands on the Help menu provide help about the IDE.

Table 47: IDE menu bar (Continued)

For reference information for each menu, see Menus, page 291.

Toolbar

The IDE toolbar—available from the View menu——provides buttons for the most useful
commands on the IDE menus, and a text box for typing a string to do a quick search.

You can display a description of any button by pointing to it with the mouse button.
When a command is not available, the corresponding toolbar button will be dimmed,
and you will not be able to click it.

This figure shows the menu commands corresponding to each of the toolbar buttons:

Go to
Open Cut Redo Find Next Bookmark Make Debug without
Downloading
Save All Paste Replace Navigate Forward Toggle
‘ ‘ | | Breakpoint
e & | =l 2 Ee e B AL
Save Copy Quick Search text box Find GoTo | Navigate Backward Stop Build
New Document Print Undo Find Previous Toggle Bookmark Compile Debug

Figure 121: IDE toolbar

b Note: When you start C-SPY, the Download and Debug button will change to a Make
and Debug button and the Debug without Downloading will change to a Restart

B Debugger button.

e

Part 7. Reference information 265

Windows

Status bar

The Status bar at the bottom of the window displays the number of errors and warnings
generated during a build, the position of the insertion point in the editor window, and the
state of the modifier keys. The Status bar is available from the View menu.

As you are editing, the status bar shows the current line and column number containing
the insertion point, and the Caps Lock, Num Lock, and Overwrite status.

[Errors 0, Warnings O |Lm 28, Col 22 [CaP [WuM jovR

Figure 122: IAR Embedded Workbench IDE window status bar

WORKSPACE WINDOW

The Workspace window, available from the View menu, is where you can access your
projects and files during the application development.

Configuration
drop-down menu

=

Project icon (currently Debug -
indicates multi-file
compilation —_____ || Files |‘*: IE3EY
= Elproject] - Debug
] @--ﬂ
= [utilities.c
L@ 3 Output

Indicates that the file
will be rebuilt next

Tabs for choosing time the project is built
workspace display

Owverview project] Iproiect2|

Column containing Column é:ontalnlngl
status information SeUIEs @R @i

about option overrides status information

Figure 123: Workspace window

Toolbar

At the top of the window there is a drop-down list where you can choose a build
configuration to display in the window for a specific project.

IAR Embedded Workbench® IDE
266 User Guide

IAR Embedded Workbench® IDE reference ___¢

The display area
The display area is divided in different columns.

The Files column displays the name of the current workspace and a tree representation
of the projects, groups and files included in the workspace.

The column that contains status information about option overrides can have one of
three icons for each level in the project:

Blank There are no settings/overrides for this file/group
Black check mark There are local settings/overrides for this file/group
Red check mark Include the following sentence for multi-file compile only, in that case,

remove the Ist sentence There are local settings/overrides for this
file/group, but they are either identical with the inherited settings or they
will be ignored because of use of multi-file compilation, which means the
overrides are superfluous.

The column that contains build status information can have one of three icons for each
file in the project:

Blank The file will not be rebuilt next time the project is built
Red star The file will be rebuilt next time the project is built
Gearwheel The file is being rebuilt.

For details about the different source code control icons, see Source code control states,
page 270.

At the bottom of the window you can choose which project to display. Alternatively, you
can choose to display an overview of the entire workspace.

For more information about project management and using the Workspace window, see
the chapter Managing projects in Part 3. Project management and building in this
guide.

Part 7. Reference information 267

Windows

268

IAR Embedded Workbench® IDE
User Guide

Workspace window context menu

Clicking the right mouse button in the Workspace window displays a context menu
which gives you convenient access to several commands.

Options. ..

Make:
L =
Rebuild all
Clean

Shop Build

Add 3
Remave

Source Code Contral »
File Properties. ..

Sefk as fAekive

Figure 124: Workspace window context menu

The following commands are available on the context menu:

Menu command

Description

Options

Make

Compile

Rebuild All

Clean

Stop Build
Add>Add Files
Add>Add "filename"

Add>Add Group

Remove

Source Code Control

Displays a dialog box where you can set options for each build tool on
the selected item in the Workspace window. You can set options on the
entire project, on a group of files, or on an individual file.

Brings the current target up to date by compiling, assembling, and linking
only the files that have changed since the last build.

Compiles or assembles the currently active file as appropriate. You can
choose the file either by selecting it in the Workspace window, or by
selecting the editor window containing the file you want to compile.

Recompiles and relinks all files in the selected build configuration.
Deletes intermediate files.

Stops the current build operation.

Opens a dialog box where you can add files to the project.

Adds the indicated file to the project. This command is only available if
there is an open file in the editor.

Opens a dialog box where you can add new groups to the project.
Removes selected items from the Workspace window.

Opens a submenu with commands for source code control, see Source
Code Control menu, page 269.

Table 48: Workspace window context menu commands

IAR Embedded Workbench® IDE reference ___4

Menu command Description
File Properties Opens a standard File Properties dialog box for the selected file.
Set as Active Sets the selected project in the overview display to be the active project.

It is the active project that will be built when the Make command is
executed.

Table 48: Workspace window context menu commands (Continued)

Source Code Control menu

The Source Code Control menu is available from the Project menu and from the
context menu in the Workspace window. This menu contains some of the most
commonly used commands of external, third-party source code control systems.

Check In...

Check Qut. ..
Undo Checkout
et Lakest Yersion
Compare. ..
History...
Properties...

Refresh

Copneck Project to SCC Project, ..
Disconnect Project from SCC Project...

Figure 125: Source Code Control menu

For more information about interacting with an external source code control system, see
Source code control, page 88.

The following commands are available on the submenu:

Menu command Description

Check In Opens the Check In Files dialog box where you can check in the
selected files; see Check In Files dialog box, page 272. Any changes you
have made in the files will be stored in the archive. This command is
enabled when currently checked-out files are selected in the Workspace
window.

Check Out Checks out the selected file or files. Depending on the SCC system you
are using, a dialog box may appear; see Check Out Files dialog box, page
273. This means you get a local copy of the file(s), which you can edit.
This command is enabled when currently checked-in files are selected in
the Workspace window.

Table 49: Description of source code control commands

Part 7. Reference information 269

Windows

IAR Embedded Workbench® IDE
270 User Guide

Menu command

Description

Undo Check out

Get Latest Version

Compare

History

Properties

Refresh

Connect Project to
SCC Project

Disconnect Project
From SCC Project

The selected files revert to the latest archived version; the files are no
longer checked-out. Any changes you have made to the files will be lost.
This command is enabled when currently checked-out files are selected
in the Workspace window.

Replaces the selected files with the latest archived version.

Displays—in a SCC-specific window—the differences between the local
version and the most recent archived version.

Displays SCC-specific information about the revision history of the
selected file.

Displays information available in the SCC system for the selected file.

Updates the SCC display status for all the files that are part of the
project. This command is always enabled for all projects under SCC.

Opens a dialog box, which originates from the SCC client application, to
let you create a connection between the selected IAR Embedded
Workbench project and an SCC project; the IAR Embedded Workbench
project will then be an SCC-controlled project. After creating this
connection, a special column that contains status information will appear
in the Workspace window.

Removes the connection between the selected IAR Embedded
Workbench project and an SCC project; your project will no longer be a
SCC-controlled project. The column in the Workspace window that
contains SCC status information will no longer be visible for that project.

Table 49: Description of source code control commands (Continued)

Source code control states

Each source code-controlled file can be in one of several states.

SCC state

Description

[
(grey padlock)

(grey padlock)

Checked out to you. The file is editable.
Checked out to you. The file is editable and you have modified the file.
Checked in. In many SCC systems this means that the file is

write-protected.

Checked in. There is a new version available in the archive.

Table 50: Description of source code control states

IAR Embedded Workbench® IDE reference ___4

SCC state Description

(red padlock) Checked out exclusively to another user. In many SCC systems this
means that you cannot check out the file.

Al (red padlock) Checked out exclusively to another user. There is a new version available
in the archive. In many SCC systems this means that you cannot check
out the file.

Table 50: Description of source code control states (Continued)

Note: The source code control in IAR Embedded Workbench depends on the
information provided by the SCC system. If the SCC system provides incorrect or
incomplete information about the states, IAR Embedded Workbench might display
incorrect symbols.

Select Source Code Control Provider dialog box

The Select Source Code Control Provider dialog box is displayed if there are several
SCC systems from different vendors available. Use this dialog box to choose the SCC
system you want to use.

Select Source Code Control Provider E
Cancel |

[Micrasaft Yisual Sourcesate

Figure 126: Select Source Code Control Provider dialog box

Part 7. Reference information 271

Windows

272

IAR Embedded Workbench® IDE
User Guide

Check In Files dialog box

The Check In Files dialog box is available by choosing the Project>Source Code
Control>Check In command, alternatively available from the Workspace window
context menu.

Check In Files E

Comment

K

Cancel

Ik

Advanced. .,
™ Keep checked out

Files

C:hprojectshtutor\Utilities. o

Figure 127: Check In Files dialog box

Comment

A text box in which you can write a comment—typically a description of your
changes—that will be stored in the archive together with the file revision. This text box
is only enabled if the SCC system supports the adding of comments at check-in.

Keep checked out

The file(s) will continue to be checked out after they have been checked in. Typically,
this is useful if you want to make your modifications available to other members in your
project team, without stopping your own work with the file.

Advanced

Opens a dialog box, originating from the SCC client application, that contains advanced
options. This button is only available if the SCC system supports setting advanced
options at check in.

Files

A list of the files that will be checked in. The list will contain all files that were selected
in the Workspace window when this dialog box was opened.

IAR Embedded Workbench® IDE reference ___¢

Check Out Files dialog box

The Check Out File dialog box is available by choosing the Project>Source Code
Control>Check Out command, alternatively available from the Workspace window
context menu. However, this dialog box is only available if the SCC system supports
adding comments at check-out or advanced options.

Check Dut Files E

Comment

K

Cancel

Advanced. .,

Ik

Files
C:hprojectshtutor\Utilities. o

Figure 128: Check Out File dialog box

Comment

A text field in which you can write a comment—typically the reason why the file is
checked out—that will be placed in the archive together with the file revision. This text
box is only enabled if the SCC system supports the adding of comments at check-out.

Advanced

Opens a dialog box, originating from the SCC client application, that contains advanced
options. This button is only available if the SCC system supports setting advanced
options at check out.

Files

A list of files that will be checked out. The list will contain all files that were selected in
the Workspace window when this dialog box was opened.

Part 7. Reference information 273

Windows

274

Window tabs

Breakpoint icon

Bracket matching

EDITOR WINDOW

Source code files and HTML files are displayed in editor windows. You can have one or
several editor windows open at the same time. The editor window is always docked, and
its size and position depends on other currently open windows.

Drop-down menu

Tooltip information listing all open files
Tutar.c v
P E— : " Splitter
a A 2
\;01 it I|C:'|,Pr0gram FilesiIAR SystemsiEmbedded Workbench'l,utilities.cl j control
@ short i = 4s:
root[0] = root[l] = 1;

for [i=z : i<MAX_FIE ; i++)|
root[i] = get_fib{i) + get fih(i-1):
i

/*

Return the Fibonacci mumber 'nr'.
s
unsigned int get_fib({ int nr |

Bookmark
if | inr > 0) && (nr <= MAX FIE))
! return [root[nr-1] J:
ol }| 4 | >|;|
Splitter control | | Go to function Right margin indicating

IAR Embedded Workbench® IDE
User Guide

limit of printing area
Figure 129: Editor window
The name of the open file is displayed on the tab. If a file is read-only, a padlock icon is
visible at the bottom left corner of the editor window. If a file has been modified after it
was last saved, an asterisk appears after the filename on the tab, for example
Utilities.c *. All open files are available from the drop-down menu in the upper
right corner of the editor window.

For information about using the editor, see the chapter Editing, page 99.

HTML files

Use the File>Open command to open HTML documents in the editor window. From an
open HTML document you can navigate to other documents using hyperlinks:
o Alink to an html or htm file works like in normal web browsing

o A link to an eww workspace file opens the workspace in the IDE, and closes any
currently open workspace and the open HTML document.

IAR Embedded Workbench® IDE reference ___¢

Split commands

Use the Window>Split command—or the Splitter controls—to split the editor window
horizontally or vertically into multiple panes.

On the Window menu you also find commands for opening multiple editor windows, as
well as commands for moving files between the different editor windows.

Go to function

With the Go to function button in the bottom left-hand corner of the editor window you
can display all functions in the C or C++ editor window. You can then choose to go
directly to one of them.

Editor window tab context menu

The context menu that appears if you right-click on a tab in the editor window provides
access to commands for saving and closing the file.

Save intermupt.c
Cloze

Figure 130: Editor window tab context menu

Part 7. Reference information

275

Windows

276

IAR Embedded Workbench® IDE
User Guide

Editor window context menu

The context menu available in the editor window provides convenient access to several
commands.

Paste

Complete
Match Brackets
Insert Template 3

Open HeaderfSource File
Go ko definition of do_foreground_process

Toggle Breakpoint {Code)

Toggle Breakpoint {Log)

Enable/disable Ereakpaint

Set Data Breakpoint For 'do_foreground_process'

Set Mext Statement

Quick Watch
Add to Wakch

Move to PC
Run ko Cursor

Options. ..
Figure 131: Editor window context menu

Note: The contents of this menu are dynamic, which means it may contain other
commands than in this figure. All available commands are described in Table 51,
Description of commands on the editor window context menu.

The following commands are available on the editor window context menu:

Menu command Description
Cut, Copy, Paste Standard window commands.
Complete Attempts to complete the word you have begun to type, basing the

guess on the contents of the rest of the editor document.

Match Brackets Selects all text between the brackets immediately surrounding the
insertion point, increases the selection to the next hierarchic pair of
brackets, or beeps if there is no higher bracket hierarchy.

Table 51: Description of commands on the editor window context menu

Menu command

IAR Embedded Workbench® IDE reference ___4

Description

Insert Template

Open "headerh"

Open Header/Source
File

Go to definition

Check In
Check Out
Undo Checkout

Toggle Breakpoint
(Code)

Toggle Breakpoint
(Log)

Enable/disable
Breakpoint

Set Data Breakpoint
for variable

Set Next Statement

Quick Watch

Displays a list in the editor window from which you can choose a code
template to be inserted at the location of the insertion point. If the
code template you choose requires any field input, the Template
dialog box appears; for information about this dialog box, see Template
dialog box, page 301. For information about using code templates, see
Using and adding code templates, page 103.

Opens the header file "headerh" in an editor window. This menu
command is only available if the insertion point is located on an
#include line when you open the context menu.

Jumps from the current file to the corresponding header or source file.
If the destination file is not open when performing the command, the
file will first be opened. This menu command is only available if the
insertion point is located on any line except an #include line when
you open the context menu. This command is also available from the
File>Open menu.

Shows the declaration of the symbol where the insertion point is
placed.

Commands for source code control; for more details, see Source Code
Control menu, page 269. These menu commands are only available if the
current source file in the editor window is SCC-controlled. The file
must also be a member of the current project.

Toggles a code breakpoint at the statement or instruction containing or
close to the cursor in the source window. For information about code
breakpoints, see Code breakpoints dialog box, page 283.

Toggles a log breakpoint at the statement or instruction containing or
close to the cursor in the source window. For information about log
breakpoints, see Log breakpoints dialog box, page 285.

Toggles a breakpoint between being disabled, but not actually
removed—making it available for future use—and being enabled again.
Toggles a data breakpoint on variables with static storage duration.
Requires support in the C-SPY driver you are using.

Sets the PC directly to the selected statement or instruction without
executing any code. Use this menu command with care. This menu
command is only available when you are using the debugger.

Opens the Quick Watch window, see Quick Watch window, page 360.

This menu command is only available when you are using the debugger.

Table 51: Description of commands on the editor window context menu (Continued)

Part 7. Reference information

277

Windows

278

IAR Embedded Workbench® IDE
User Guide

Menu command

Description

Add to Watch

Adds the selected symbol to the Watch window. This menu command

is only available when you are using the debugger.

Move to PC

Moves the insertion point to the current PC position in the editor

window. This menu command is only available when you are using the

debugger.

Run to Cursor

Executes from the current statement or instruction up to a selected

statement or instruction. This menu command is only available when

you are using the debugger.

Options Displays the IDE Options dialog box, see Tools menu, page 313.

Table 51: Description of commands on the editor window context menu (Continued)

Source file paths

The IDE supports relative source file paths to a certain degree.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IDE will use a path relative to the project file when accessing the

source file.

Editor key summary

The following tables summarize the editor’s keyboard commands.

Use the following keys and key combinations for moving the insertion point:

To move the insertion point Press
One character left Arrow left
One character right Arrow right

One word left

One word right

One line up

One line down

To the start of the line
To the end of the line

To the first line in the file

To the last line in the file

Ctrl+Arrow left
Ctrl+Arrow right
Arrow up

Arrow down
Home

End

Ctrl+Home

Ctrl+End

Table 52: Editor keyboard commands for insertion point navigation

IAR Embedded Workbench® IDE reference ___4

Use the following keys and key combinations for scrolling text:

To scroll

Press

Up one line
Down one line
Up one page

Down one page

Ctrl+Arrow up
Ctrl+Arrow down
Page Up

Page Down

Table 53: Editor keyboard commands for scrolling

Use the following key combinations for selecting text:

To select

Press

The character to the left

The character to the right

One word to the left

One word to the right

To the same position on the previous line
To the same position on the next line
To the start of the line

To the end of the line

One screen up

One screen down

To the beginning of the file

To the end of the file

Shift+Arrow left
Shift+Arrow right
Shift+Ctrl+Arrow left
Shift+Ctrl+Arrow right
Shife+Arrow up
Shift+Arrow down
Shift+Home
Shift+End

Shift+Page Up
Shift+Page Down
Shift+Ctrl+Home
Shift+Ctrl+End

Table 54: Editor keyboard commands for selecting text

Part 7. Reference information

279

Windows

SOURCE BROWSER WINDOW

The Source Browser window—available from the View menu—displays an hierarchical
view in alphabetical order of all symbols defined in the active build configuration.

[® [Neme
project] - Debug

< call_count

+ do_foreground_process
get_fib
* init_fib
+* main
4+ next_counter
*
w

put_fib
root

KN — i
Full name: get_fibling)

Symbol type: function

Filename: ChprojectsiUtilities.c

Source Browser

Figure 132: Source Browser window

The window consists of two separate panes. The top pane displays the names of global
symbols and functions defined in the project.

Each row is prefixed with an icon, which corresponds to the Symbol type classification,
see Table 55, Information in Source Browser window. By clicking in the window header,
you can sort the symbols either by name or by symbol type.

In the top pane you can also access a context menu; see Source Browser window context
menu, page 281.

For a symbol selected in the top pane, the bottom pane displays the following
information:

Type of information Description

Full name Displays the unique name of each element, for instance
classname:membername.

Symbol type Displays the symbol type for each element: enumeration, enumeration
constant, class, typedef, union, macro, field or variable, function,

template function, template class, and configuration.

Filename Specifies the path to the file in which the element is defined.

Table 55: Information in Source Browser window

IAR Embedded Workbench® IDE
280 User Guide

IAR Embedded Workbench® IDE reference ___4

For further details about how to use the Source Browser window, see Displaying browse
information, page 87.
Source Browser window context menu

Right-clicking in the Source Browser window displays a context menu with convenient
access to several commands.

5o ko Definition
IMowve to Parent

v Al Symbols
All Functions & Yariables
Mon-Member Functions & ‘ariables
Types
Constants & Macros

Al Files
v Exclude System Includes
Only Project Members

Figure 133: Source Browser window context menu

The following commands are available on the context menu:

Menu command Description
Go to Definition The editor window will display the definition of the selected item.
Move to Parent If the selected element is a member of a class, struct, union,

enumeration, or namespace, this menu command can be used for
moving to its enclosing element.

All Symbols Type filter; all global symbols and functions defined in the project will
be displayed.

All Functions & Variables Type filter; all functions and variables defined in the project will be
displayed.

Non-Member Functions Type filter; all functions and variables that are not members of a class

& Variables will be displayed

Types Type filter; all types such as structures and classes defined in the
project will be displayed.

Constants & Macros Type filter; all constants and macros defined in the project will be
displayed.
All Files File filter; symbols from all files that you have explicitly added to your

project and all files included by them will be displayed.

Table 56: Source Browser window context menu commands

Part 7. Reference information 281

Windows

282

IAR Embedded Workbench® IDE

User Guide

Menu command Description

Exclude System Includes File filter; symbols from all files that you have explicitly added to your
project and all files included by them will be displayed, except the
include files in the IAR Embedded Workbench installation directory.

Only Project Members File filter; symbols from all files that you have explicitly added to your
project will be displayed, but no include files.

Table 56: Source Browser window context menu commands (Continued)

BREAKPOINTS WINDOW

The Breakpoints window—available from the View menu—Ilists all breakpoints. From
the window you can conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

Code @ Tutar.c:46.2

Figure 134: Breakpoints window
All breakpoints you define are displayed in the Breakpoints window.

For more information about the breakpoint system and how to set breakpoints, see the
chapter Using breakpoints in Part 4. Debugging.

Breakpoints window context menu

Right-clicking in the Breakpoints window displays a context menu with several
commands.

G0 to Source
Edit...

Delete
Disable
Enable Al
Disable Al

Mew Breakpoint ¥

Figure 135: Breakpoints window context menu

IAR Embedded Workbench® IDE reference ___4

The following commands are available on the context menu:

Menu command Description

Go to Source Moves the insertion point to the location of the breakpoint, if the
breakpoint has a source location. Double-click a breakpoint in the
Breakpoints window to perform the same command.

Edit Opens the Edit Breakpoint dialog box for the selected breakpoint.

Delete Deletes the selected breakpoint. Press the Delete key to perform the
same command.

Enable Enables the selected breakpoint. The check box at the beginning of the
line will be selected. You can also perform the command by manually
selecting the check box. This command is only available if the selected
breakpoint is disabled.

Disable Disables the selected breakpoint. The check box at the beginning of the
line will be cleared. You can also perform this command by manually
deselecting the check box.This command is only available if the selected
breakpoint is enabled.

Enable All Enables all defined breakpoints.
Disable All Disables all defined breakpoints.
New Breakpoint Displays a submenu where you can open the New Breakpoint dialog

box for the available breakpoint types. All breakpoints you define using
the New Breakpoint dialog box are preserved between debug
sessions. In addition to code and log breakpoints—see Code breakpoints
dialog box, page 283 and —other types of breakpoints might be available
depending on the C-SPY driver you are using. For information about
driver-specific breakpoint types, see the driver-specific debugger
documentation.

Table 57: Breakpoints window context menu commands

Code breakpoints dialog box

Code breakpoints are triggered when an instruction is fetched from the specified
location. If you have set the breakpoint on a specific machine instruction, the breakpoint
will be triggered and the execution will stop, before the instruction is executed.

To set a code breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>Code on the context menu. To modify an existing breakpoint, select it in
the Breakpoints window and choose Edit on the context menu.

Part 7. Reference information 283

Windows

284

IAR Embedded Workbench® IDE
User Guide

The Code breakpoints dialog box appears.

& Code |
Break &f:
| Edit...l
— Size
&+ Auta I_I—
 Marual
— Action
Expression: I
Condition:
Expression:
% Condition true Skip count; I—D
" Condition changed

Figure 136: Code breakpoints page

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 287.

Size

Optionally, you can specify a size—in practice, a range—of locations. Each fetch access
to the specified memory range will trigger the breakpoint. There are two different ways
the size can be specified:

e Auto, the size will be set automatically, typically to 1

o Manual, you specify the size of the breakpoint range manually in the Size text box.

Action

You can optionally connect an action to a breakpoint. Specify an expression, for instance
a C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.

IAR Embedded Workbench® IDE reference ___4

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.
Condition changed The breakpoint is triggered if the value of the expression has changed

since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Table 58: Breakpoint conditions

Log breakpoints dialog box

Log breakpoints are triggered when an instruction is fetched from the specified location.
If you have set the breakpoint on a specific machine instruction, the breakpoint will be
triggered and the execution will temporarily halt and print the specified message in the
C-SPY Debug Log window. This is a convenient way to add trace printouts during the
execution of your application, without having to add any code to the application source
code.

To set a log breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>Log on the context menu. To modify an existing breakpoint, select it in the
Breakpoints window and choose Edit on the context menu.

The Log breakpoints dialog box appears.

8 1o |
Break At

IE:\tutor\Tutor.c.4?.3 Edit;..l

Meszage: [~ CSpymaco"__message” style

I"depth =", call_count

Condition:
Expression:

' Condition true
" Condition changed

Figure 137: Log breakpoints page

Part 7. Reference information 285

Windows

286

IAR Embedded Workbench® IDE
User Guide

The quickest—and typical—way to set a log breakpoint is by choosing Toggle
Breakpoint (Log) from the context menu available by right-clicking in either the editor
or the Disassembly window. For more information about how to set breakpoints, see
Defining breakpoints, page 135.

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit button to open the Enter Location dialog box; see Enter Location dialog box, page
287.

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
" __message' style—a comma-separated list of arguments.

C-SPY macro "__message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 462.

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.
Condition changed The breakpoint is triggered if the value of the expression has changed

since it was last evaluated.

Table 59: Log breakpoint conditions

IAR Embedded Workbench® IDE reference ___4

Enter Location dialog box

Use the Enter Location dialog box—available from a breakpoints dialog box—to
specify the location of the breakpoint.

Enter Location E

Type————— Expression:
' Expression I

7 Absolute address

 Souree location

()3 I Cancel |

Figure 138: Enter Location dialog box
You can choose between these locations and their possible settings:

Location type Description/Examples

Expression Any expression that evaluates to a valid address, such as a function or
variable name. Code breakpoints are set on functions and data
breakpoints are set on variable names. For example, my_var refers to
the location of the variable my_var, and arr [3] refers to the third
element of the array arr.

Absolute Address An absolute location on the form zone: hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory: 0x42.
If you enter a combination of a zone and address that is not valid, C-SPY
will indicate the mismatch.

Source Location A location in the C source code using the syntax:
{file path}.row.column. File specifies the filename and full path.
Row specifies the row in which you want the breakpoint. Column specifies
the column in which you want the breakpoint. Note that the Source
Location type is usually meaningful only for code breakpoints.
For example, {C:\my_projects\Utilities.c}.22.3
sets a breakpoint on the third character position on line 22 in the source
fleUtilities.c.

Table 60: Location types

Part 7. Reference information 287

Windows

288

IAR Embedded Workbench® IDE
User Guide

BUILD WINDOW

The Build window—available by choosing View>Messages—displays the messages
generated when building a build configuration. When opened, this window is by default
grouped together with the other message windows, see Windows, page 263.

| Messages | File | Line |
Tutar.c
A\ Warming[Pe0b4]: declaration does not declare amahing CAProgram File. ATutarc 17
€3 Eror[Pe020] identifier "call_count" is undefined CAProgram File. \Tutorc 24
€3 Eror[Pe020]: identifier "call_count" is undefined CAProgram File. \Tutorc 35
€3 Eror[Pe020] identifier "call_count" is undefined CAProgram File. \Tutorc 45
Dane. 3 errors). 1 warning(s)

Figure 139: Build window (message window)

Double-clicking a message in the Build window opens the appropriate file for editing,
with the insertion point at the correct position.

Right-clicking in the Build window displays a context menu which allows you to copy,
select, and clear the contents of the window.

Gy
Select Al

Clear Al

Options. ..
Figure 140: Build window context menu

The Options command opens the Messages page of the IDE options dialog box. On
this page you can set options related to messages; see Messages options, page 324.

IAR Embedded Workbench® IDE reference ___¢

FIND IN FILES WINDOW

The Find in Files window—available by choosing View>Messages—displays the
output from the Edit>Find and Replace>Find in Files command. When opened, this
window is by default grouped together with the other message windows, see Windows,
page 263.

Find in Files B
Fath | Line | String -
Chprojectsh. ATutorc 4 * Ctutarial. Print the Fibonacci numbers.
Chprojectsh. ATutorc 14 int call_count;

Chprojectsh. ATutor.c 28 Getand printthe associated Fibonacci number.
Chprojectsh. ATutor.c 32 unsigned intfik;

Chprojectsh. ATutor.c 41 Prints the Fibonacci numbers.

Chproject. \Utilities.c 16 unsigned int root[MAx_FIB]:

Chproject. \Utilities.c 23 inti=45;

Chproject. \Utilities.c 35 unsigned int get_fib(intnr) -
« | _>l_I
Call Stack | Debug Lag |Builld Find in Files ITooI Cutput x

Figure 141: Find in Files window (message window)

Double-clicking an entry in the page opens the appropriate file with the insertion point
positioned at the correct location.

Right-clicking in the Find in Files window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Copy
Select Al

Clear Al

Figure 142: Find in Files window context menu

Part 7. Reference information 289

Windows

TOOL OUTPUT WINDOW

The Tool Output window—available by choosing View>Messages—displays any
messages output by user-defined tools in the Tools menu, provided that you have
selected the option Redirect to Output Window in the Configure Tools dialog box;
see Configure Tools dialog box, page 334. When opened, this window is by default
grouped together with the other message windows, see Windows, page 263.

Output |

kot

Figure 143: Tool Output window (message window)
Right-clicking in the Tool Output window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Copy
Select Al

Clear Al

Figure 144: Tool Output window context menu

IAR Embedded Workbench® IDE
290 User Guide

IAR Embedded Workbench® IDE reference ___4

DEBUG LOG WINDOW

The Debug Log window—available by choosing View>Messages—displays debugger
output, such as diagnostic messages and trace information. This output is only available
when C-SPY is running. When opened, this window is by default grouped together with
the other message windows, see Windows, page 263.

Log
Fri Feb 06 10:41:40 2004: Loaded module
Fri Felb 06 10:41:40 2004: Target reset

Debug Log

Figure 145: Debug Log window (message window)

Right-clicking in the Tool Output window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Copy
Select Al

Clear Al

Figure 146: Debug Log window context menu

Menus

The following menus are available in the IDE:

File menu
Edit menu
View menu
Project menu
Tools menu

Window menu

Help menu.

In addition, a set of C-SPY-specific menus become available when you start the
debugger. Reference information about these menus can be found in the chapter
C-SPY® reference, page 343.

Part 7. Reference information 291

Menus

292

B G

IAR Embedded Workbench® IDE

User Guide

FILE MENU

The File menu provides commands for opening workspaces and source files, saving and
printing, and exiting from the IDE.

The menu also includes a numbered list of the most recently opened files and
workspaces to allow you to open one by selecting its name from the menu.

Mew 3
Open 3
Close

Save Workspace
Close Workspace

Save CTRLES
Save fs..,
Save Al

Page Setup...
Print. .. CTRL+P

Recent Files 3
Recent Workspaces 3

Exit

Figure 147: File menu

The following commands are available on the File menu:

Menu command Shortcut

Description

New CTRL+N
Open>File CTRL+O
Open>

Workspace

Open> CTRL+

Header/Source File SHIFT+H

Close

Displays a submenu with commands for creating a new
workspace, or a new text file.

Displays a submenu from which you can select a text file or an
HTML document to open.

Displays a submenu from which you can select a workspace file
to open. Before a new workspace is opened you will be
prompted to save and close any currently open workspaces.

Opens the header file or source file that corresponds to the
current file, and jumps from the current file to the newly
opened file. This command is also available from the context
menu available from the editor window.

Closes the active window. You will be given the opportunity to
save any files that have been modified before closing.

Table 61: File menu commands

IAR Embedded Workbench® IDE reference ___4

Menu command Shortcut Description

Open Workspace Displays a dialog box where you can open a workspace file.
You will be given the opportunity to save and close any
currently open workspace file that has been modified before
opening a new workspace.

Save Workspace Saves the current workspace file.

Close Workspace Closes the current workspace file.

Save CTRL+S Saves the current text file or workspace file.

Save As Displays a dialog box where you can save the current file with a
new name.

Save All Saves all open text documents and workspace files.

Page Setup Displays a dialog box where you can set printer options.

Print CTRL+P Displays a dialog box where you can print a text document.

Recent Files Displays a submenu where you can quickly open the most

Recent Workspaces

Exit

recently opened text documents.

Displays a submenu where you can quickly open the most
recently opened workspace files.

Exits from the IDE. You will be asked whether to save any
changes to text windows before closing them. Changes to the
project are saved automatically.

Table 61: File menu commands (Continued)

Part 7. Reference information

293

Menus

294

Ble = 2l

IAR Embedded Workbench® IDE
User Guide

EDIT MENU

The Edit menu provides several commands for editing and searching.

Unda Chrl+2
Redo CErlH
Uk GErl
Copy Chrl+C
Paste Chrl+y
Paste Special...
Select Al Chrl+a
Find and Replace
Mavigate
Code Templates
Mext ErrorfTag F4
Previous ErrorfTag Shift+F4
Complete Chrl+Space
Match Brackets Chrl+E
Auto Indent Chrl+T
Elock Comment Chrl+k
Elock Unomment Chrl+Shift+k
Toggle Breakpoink F2
Enable/Disable Breakpoint Ctrl+F9
Figure 148: Edit menu
Menu command Shortcut Description
Undo CTRL+Z Undoes the last edit made to the current editor window.
Redo CTRL+Y Redoes the last Undo in the current editor window.
You can undo and redo an unlimited number of edits
independently in each editor window.
Cut CTRL+X The standard Windows command for cutting text in editor
windows and text boxes.
Copy CTRL+C The standard Windows command for copying text in editor
windows and text boxes.
Paste CTRL+V The standard Windows command for pasting text in editor
windows and text boxes.
Paste Special Provides you with a choice of the most recent contents of the
clipboard to choose from when pasting in editor documents.
Select All CTRL+A Selects all text in the active editor window.

Table 62: Edit menu commands

Menu command

Shortcut

IAR Embedded Workbench® IDE reference ___4

Description

% | Find and Replace>Find CTRL+F

hd

¥z

Find and Replace>
Find Next

Find and Replace>
Find Previous

Find and Replace>
Find Next (Selected)

Find and Replace>
Find Previous
(Selected)

Find and Replace>
Replace

Find and Replace>
Find in Files

Find and Replace>
Incremental Search

Navigate>Go To

Navigate>
Toggle Bookmark

Navigate>
Go to Bookmark

F3

SHIFT+F3

CTRL+F3

CTRL+
SHIFT+F3

CTRL+H

CTRL+I

CTRL+G

CTRL+F2

F2

Displays the Find dialog box where you can search for text
within the current editor window. Note that if the insertion
point is located in the Memory window when you choose the
Find command, the dialog box will contain a different set of
options than it would otherwise do. If the insertion point is
located in the Trace window when you choose the Find
command, the Find in Trace dialog box is opened; the
contents of this dialog box depend on the C-SPY driver you
are using, see the driver documentation for more
information.

Finds the next occurrence of the specified string.

Finds the previous occurrence of the specified string.

Searches for the next occurrence of the currently selected
text or the word currently surrounding the insertion point.

Searches for the previous occurrence of the currently
selected text or the word currently surrounding the insertion
point.

Displays a dialog box where you can search for a specified
string and replace each occurrence with another string. Note
that if the insertion point is located in the Memory window
when you choose the Replace command, the dialog box will
contain a different set of options than it would otherwise do.

Displays a dialog box where you can search for a specified
string in multiple text files; see Find in Files dialog box, page
299.

Displays a dialog box where you can gradually fine-tune or
expand the search by continuously changing the search string.

Displays a dialog box where you can move the insertion point
to a specified line and column in the current editor window.

Toggles a bookmark at the line where the insertion point is
located in the active editor window.

Moves the insertion point to the next bookmark that has
been defined with the Toggle Bookmark command.

Table 62: Edit menu commands (Continued)

Part 7. Reference information 295

Menus

296

IAR Embedded Workbench® IDE
User Guide

Menu command

Shortcut

Description

Navigate>
Navigate Backward

Navigate>
Navigate Forward

Navigate>
Go to Definition

Code Templates>
Insert Template

Code Templates>
Edit Templates

Next Error/Tag

Previous Error/Tag

Complete

Auto Indent

ALT+Left
arrow

ALT+Right
arrow

Fl12

CTRL+
SHIFT+
SPACE

F4

SHIFT+F4

CTRL+

SPACE

CTRL+T

Navigates backward in the insertion point history. The
current position of the insertion point is added to the history
by actions like Go to definition and clicking on a result from
the Find in Files command.

Navigates forward in the insertion point history. The current
position of the insertion point is added to the history by
actions like Go to definition and clicking on a result from
the Find in Files command.

Shows the declaration of the selected symbol or the symbol
where the insertion point is placed. This menu command is
available when browse information has been enabled, see
Project options, page 326.

Displays a list in the editor window from which you can
choose a code template to be inserted at the location of the
insertion point. If the code template you choose requires any
field input, the Template dialog box appears; for
information about this dialog box, see Template dialog box,
page 301. For information about using code templates, see
Using and adding code templates, page 103.

Opens the current code template file, where you can modify
existing code templates and add your own code templates.
For information about using code templates, see Using and
adding code templates, page 103.

If there is a list of error messages or the results from a Find
in Files search in the Messages window, this command will
display the next item from that list in the editor window.

If there is a list of error messages or the results from a Find
in Files search in the Messages window, this command will
display the previous item from that list in the editor window.

Attempts to complete the word you have begun to type,
basing the guess on the contents of the rest of the editor
document.

Indents one or several lines you have selected in a C/C++
source file. To configure the indentation, see Configure Auto
Indent dialog box, page 319.

Table 62: Edit menu commands (Continued)

IAR Embedded Workbench® IDE reference ___4

Menu command Shortcut Description

Match Brackets

Selects all text between the brackets immediately
surrounding the insertion point, increases the selection to the
next hierarchic pair of brackets, or beeps if there is no higher
bracket hierarchy.

Block Comment CTRL+K Places the C++ comment character sequence // at the

beginning of the selected lines.

Block Uncomment ~ CTRL+K Removes the C++ comment character sequence // from the

Toggle Breakpoint F9

beginning of the selected lines.

Toggles a breakpoint at the statement or instruction that
contains or is located near the cursor in the source window.
This command is also available as an icon button in the debug
bar.

Enable/Disable CTRL+F9 Toggles a breakpoint between being disabled, but not actually

Breakpoint

removed—making it available for future use—and being
enabled again.

Table 62: Edit menu commands (Continued)

Find dialog box

The Find dialog box is available from the Edit menu. Note that the contents of this
dialog box look different if you search in an editor window compared to if you search

in the Memory window.

Option

Description

Find What
Match Whole Word Only

Match Case

Search as Hex

Find Next
Find Previous

Stop

Selects the text to search for.

Searches the specified text only if it occurs as a separate word.
Otherwise specifying int will also find print, sprintf etc. This
option is only available when you search in an editor window.
Searches only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.
This option is only available when you search in an editor window.
Searches for the specified hexadecimal value. This option is only
available when you search in the Memory window.

Finds the next occurrence of the selected text.
Finds the previous occurrence of the selected text.

Stops an ongoing search. This button is only available during a search
in the Memory window.

Table 63: Find dialog box options

Part 7. Reference information

297

Menus

298

IAR Embedded Workbench® IDE
User Guide

Replace dialog box

The Replace dialog box is available from the Edit menu.

Option Description
Find What Selects the text to search for.
Replace With Selects the text to replace each found occurrence in the Replace

Match Whole Word Only

Match Case

Search as Hex

Find Next
Replace

Replace All

With box.

Searches the specified text only if it occurs as a separate word.
Otherwise int will also find print, sprintf etc. This checkbox
is not available when you perform the search in the Memory window.

Searches only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.
This checkbox is not available when you perform the search in the
Memory window.

Searches for the specified hexadecimal value. This checkbox is only
available when you perform the search in the Memory window.

Searches the next occurrence of the text you have specified.
Replaces the searched text with the specified text.

Replaces all occurrences of the searched text in the current editor
window.

Table 64: Replace dialog box options

IAR Embedded Workbench® IDE reference ___¢

Find in Files dialog box

Use the Find in Files dialog box—available from the Edit menu—to search for a string
in files.

Find in Files [%]

Find what Find |
I j Close |

™ Match case
™ Makch whale word

Look in
& Project files

" Project files and user include files
" Project files and all include Files
" Direckory:

| g2 o

¥ | Lack i subdirectaries

File types

I*.c,'*.cpp;*.cc,'*.h;*.hpp,‘*.s*;*.msa;*.asm j

Figure 149: Find in Files dialog box

The result of the search appears in the Find in Files messages window—available from
the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
messages window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-most
margin indicates the line.

In the Find in Files dialog box, you specify the search criteria with the following
settings.
Find what

A text field in which you type the string you want to search for. There are two options
for fine-tuning the search:

Match case Searches only for occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word.
Otherwise int will also find print, sprintf and so on.

Part 7. Reference information 299

Menus

300

IAR Embedded Workbench® IDE
User Guide

Look in

The options in the Look in area lets you specify which files you want to search in for a
specified string. Choose between:

Project files The search will be performed in all files that you have explicitly added to
your project.

Project files and user The search will be performed in all files that you have explicitly added to
include files your project and all files included by them, except the include files in the
IAR Embedded Workbench installation directory.

Project files and all The search will be performed in all project files that you have explicitly
include files added to your project and all files included by them.

Directory The search will be performed in the directory that you specify. Recent
search locations are saved in the drop-down list. Locate the directory
using the browse button.

Look in The search will be performed in the directory that you have specified
subdirectories and all its subdirectories.
File types

This is a filter for choosing which type of files to search; the filter applies to all options
in the Look in area. Choose the appropriate filter from the drop-down list. Note that the
File types text field is editable, which means that you can add your own filters. Use the
* character to indicate zero or more unknown characters of the filters, and the »
character to indicate one unknown character.

Stop
Stops an ongoing search. This function button is only available during an ongoing
search.

Incremental Search dialog box

The Incremental Search dialog box—available from the Edit menu—Iets you
gradually fine-tune or expand the search string.

Incremental Search x|

Find Wwhat: | =
[T Mateh Cass Cloze |

Figure 150: Incremental Search dialog box

IAR Embedded Workbench® IDE reference ___4

Find What

Type the string to search for. The search will be performed from the location of the
insertion point—the start point. Gradually incrementing the search string will gradually
expand the search criteria. Backspace will remove a character from the search string; the
search will be performed on the remaining string and will start from the start point.

If a word in the editor window is selected when you open the Incremental Search
dialog box, this word will be displayed in the Find What text box.

Match Case

Use this option to find only occurrences that exactly match the case of the specified text.
Otherwise searching for int will also find INT and Int.

Function buttons

Function button Description

Find Next Searches for the next occurrence of the current search string. If the
Find What text box is empty when you click the Find Next button, a
string to search for will automatically be selected from the drop-down
list. To search for this string, click Find Next.

Close Closes this dialog box.

Table 65: Incremental Search function buttons

Template dialog box

Use the Template dialog box to specify any field input that is required by the source
code template you insert. This dialog box appears when you insert a code template that
requires any field input.

Template “for™ E

End Yalue I 10 ok I
‘ariable I i Cancel |

fForfink i =0; i < 10; +-+i)

+

Figure 151: Template dialog box

Note: This figure reflects the default code template that can be used for automatically
inserting code for a for loop.

Part 7. Reference information 301

Menus

The contents of this dialog box match the code template. In other words, which fields
that appear depends on how the code template is defined.

At the bottom of the dialog box, the code that would result from the code template is
displayed.

For more information about using code templates, see Using and adding code templates,
page 103.

VIEW MENU

With the commands on the View menu you can choose what to display in the IAR
Embedded Workbench IDE. During a debug session you can also open
debugger-specific windows from the View menu.

Messages 3

‘Warkspace

Source Browser

Breakpoints

Toolbars 3
v Status Bar

Figure 152: View menu

Menu command Description

Messages Opens a submenu which gives access to the message windows—aBuild,
Find in Files, Tool Output, Debug Log—that display messages and text
output from the IAR Embedded Workbench commands. If the window
you choose from the menu is already open, it becomes the active

window.
Workspace Opens the current Workspace window.
Source Browser Opens the Source Browser window.
Breakpoints Opens the Breakpoints window.
Toolbars The options Main and Debug toggle the two toolbars on and off.
Status bar Toggles the status bar on and off.

Table 66: View menu commands

IAR Embedded Workbench® IDE
302 User Guide

IAR Embedded Workbench® IDE reference ___4

Menu command Description

Debugger windows During a debugging session, the different debugging windows are also
available from the View menu:
Disassembly window
Memory window
Symbolic Memory window
Register window
Watch window
Locals window
Statics window
Auto window
Live Watch window
Quick Watch window
Call Stack window
Terminal I/O window
Code Coverage window
Profiling window
Stack window
For descriptions of these windows, see C-SPY windows, page 343.

Table 66: View menu commands (Continued)

Part 7. Reference information 303

Menus

304

IAR Embedded Workbench® IDE
User Guide

PROJECT MENU

The Project menu provides commands for working with workspaces, projects, groups,
and files, as well as specifying options for the build tools, and running the tools on the

current project.

Add Files. ..
Add Group,..
Edit Configurations. ..

Create Mew Project. .,
Add Existing Project, .,

Options. .. ALT+F?

Source Code Contral

Make F?
Rebuild all

Clean

Batch build. .. F&
Download and Debug CTRL+D

Debug without Downloading

Figure 153: Project menu

Menu Command

Description

Add Files

Add Group

Import File List

Displays a dialog box that where you can select which files to include
to the current project.

Displays a dialog box where you can create a new group. The Group
Name text box specifies the name of the new group. The Add to
Target list selects the targets to which the new group should be
added. By default the group is added to all targets.

Displays a standard Open dialog box where you can import
information about files and groups from projects created using
another IAR tool chain.

To import information from project files which have one of the older
filename extensions pew or prj you must first have exported the
information using the context menu command Export File List
available in your own IAR Embedded Workbench.

Table 67: Project menu commands

Menu Command

IAR Embedded Workbench® IDE reference ___4

Description

Edit Configurations

Remove

Create New Project

Add Existing Project

Options Alt+F7

Source Code Control

Make F7

Comepile Ctrl+F7

Rebuild All
Clean

Batch BuildF8

Stop Build Ctrl+Break

Displays the Configurations for project dialog box, where you can
define new or remove existing build configurations.

In the Workspace window, removes the selected item from the
workspace.

Displays a dialog box where you can create a new project and add it
to the workspace.

Displays a dialog box where you can add an existing project to the
workspace.

Displays the Options for node dialog box, where you can set
options for the build tools on the selected item in the Workspace
window. You can set options on the entire project, on a group of files,
or on an individual file.

Opens a submenu with commands for source code control, see Source
Code Control menu, page 269.

Brings the current build configuration up to date by compiling,
assembling, and linking only the files that have changed since the last
build.

Compiles or assembles the currently selected file, files, or group.
One or more files can be selected in the Workspace window—all files
in the same project, but not necessarily in the same group. You can
also select the editor window containing the file you want to compile.
The Compile command is only enabled if every file in the selection is
individually suitable for the command.

You can also select a group, in which case the command is applied to
each file in the group (including inside nested groups) that can be
compiled, even if the group contains files that cannot be compiled,
such as header files.

If the selected file is part of a multi-file compilation group, the
command will still only affect the selected file.

Rebuilds and relinks all files in the current target.
Removes any intermediate files.

Displays a dialog box where you can configure named batch build
configurations, and build a named batch.

Stops the current build operation.

Table 67: Project menu commands (Continued)

Part 7. Reference information

Menus

306

IAR Embedded Workbench® IDE
User Guide

Menu Command

Description

Download and Debug
Ctrl+D

Debug without
Downloading

Make & Restart Debugger

Restart Debugger

Downloads the application and starts C-SPY so that you can debug
the project object file. If necessary, a make will be performed before
running C-SPY to ensure the project is up to date. This command is
not available during debugging.

Starts C-SPY so that you can debug the project object file. This menu
command is a short cut for the Suppress Download option
available on the Download page. This command is not available
during debugging.

Stops C-SPY, makes the active build configuration, and starts the
debugger again; all in a single command. This command is only
available during debugging.

Stops C-SPY and starts the debugger again; all in a single command.
This command is only available during debugging.

Table 67: Project menu commands (Continued)

Argument variables summary

Variables can be used for paths and arguments. The following argument variables can

be used:

Variable Description
$SCUR_DIRS Current directory
SCUR_LINES Current line

SCONFIG_NAMES

SEW_DIRS

$EXE_DIRS
$FILE_BNAMES
$FILE_BPATHS
$FILE_DIRS
$FILE_FNAMES
$FILE_PATHS
$LIST_DIRS

$SOBJ_DIRS

The name of the current build configuration, for example Debug or
Release.

Top directory of IAR Embedded Workbench, for example
c:\program files\iar systems\embedded workbench
5.n

Directory for executable output

Filename without extension

Full path without extension

Directory of active file, no filename

Filename of active file without path

Full path of active file (in Editor, Project, or Message window)
Directory for list output

Directory for object output

Table 68: Argument variables

Variable

IAR Embedded Workbench® IDE reference ___4

Description

$PROJ_DIRS
$PROJ_FNAMES
$PROJ_PATHS
$TARGET_DIRS
$TARGET_BNAMES
$TARGET_BPATHS
$TARGET_FNAME$
$TARGET_PATHS

STOOLKIT_DIRS

$_ENVVAR_S

Project directory

Project file name without path

Full path of project file

Directory of primary output file

Filename without path of primary output file and without extension
Full path of primary output file without extension

Filename without path of primary output file

Full path of primary output file

Directory of the active product, for example ¢ : \program
files\iar systems\embedded workbench 5.n\arm

The environment variable ENVVAR. Any name within $_ and _$ will
be expanded to that system environment variable.

Table 68: Argument variables (Continued)

Configurations for project dialog box

In the Configuration for project dialog box—available by choosing Project>Edit
Configurations—you can define new build configurations for the selected project;
either entirely new, or based on a previous project.

Configurations for "Project1™

Configurations:

Release

Mew.. |
Remove |

Figure 154: Configurations for project dialog box

The dialog box contains the following:

Operation

Description

Configurations

New

Remove

Lists existing configurations, which can be used as templates for new
configurations.

Opens a dialog box where you can define new build configurations.

Removes the configuration that is selected in the Configurations list.

Table 69: Configurations for project dialog box options

Part 7. Reference information

307

Menus

308

IAR Embedded Workbench® IDE
User Guide

New Configuration dialog box

In the New Configuration dialog box—available by clicking New in the
Configurations for project dialog box—you can define new build configurations;
either entirely new, or based on any currently defined configuration.

New Configuration [%]

M ame:

Tool chain:

(]S |
[Ee |

Cancel

|aRM

Based on configuration:

I [ebug

Factory settings
& Debug
" Felease

Figure 155: New Configuration dialog box

The dialog box contains the following:

Item Description
Name The name of the build configuration.
Tool chain The target to build for. If you have several versions of IAR Embedded

Based on configuration

Factory settings

Workbench for different targets installed on your host computer, the
drop-down list can contain these targets.

A currently defined build configuration that you want the new
configuration to be based on. The new configuration will inherit the
project settings as well as information about the factory settings from
the old configuration. If you select None, the new configuration will have
default factory settings and not be based on an already defined
configuration.

Specifies the default factory settings—either Debug or Release—that
you want to apply to your new build configuration. These factory
settings will be used by your project if you press the Factory Settings
button in the Options dialog box.

Table 70: New Configuration dialog box options

IAR Embedded Workbench® IDE reference ___4

Create New Project dialog box

The Create New Project dialog box is available from the Project menu, and lets you

create a new project based on a template project. There are template projects available
for C/C++ applications, assembler applications, and library projects. You can also create
your own template projects.

Create New Project fgl

Teolchain -

Project templates:

Empty project
+|- asm
+- L+t
+-C
DLIB
Externally built executable

Drescription:

Creates an empty project.

(] 8 | Cancel

Figure 156: Create New Project dialog box

The dialog box contains the following:

Item Description

Tool chain The target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the
drop-down list can contain these targets.

Project templates Lists all available template projects that you can base a new project on.

Table 71: Description of Create New Project dialog box

Part 7. Reference information 309

Menus

310

IAR Embedded Workbench® IDE
User Guide

Options dialog box
The Options dialog box is available from the Project menu.

In the Category list you can select the build tool for which you want to set options. The
options available in the Category list will depend on the tools installed in your IAR
Embedded Workbench IDE, and will typically include the following options:

Category Description

General Options General options

C/C++ Compiler IAR C/C++ Compiler options
Assembler IAR Assembler options

Converter Options for converting ELF output to

Motorola or Intex-standard.

Custom Build Options for extending the tool chain

Build Actions Options for pre-build and post-build actions

Linker IAR ILINK Linker options. This category is
available for application projects.

Library Builder Library builder options. This category is
available for library projects.

Debugger IAR C-SPY Debugger options

Simulator Simulator-specific options

Table 72: Project option categories
Note: Additional debugger categories might be available depending on the debugger
drivers installed.

Selecting a category displays one or more pages of options for that component of the
IDE.

For detailed information about each option, see the option reference chapters:

General options
Compiler options
Assembler options
Converter options
Custom build options
Build actions options
Linker options

Library builder options

Debugger options.

IAR Embedded Workbench® IDE reference ___4

For information about the options related to available hardware debugger systems, see
Part 6. C-SPY hardware debugger systems.
Batch Build dialog box

The Batch Build dialog box—available by choosing Project>Batch build—lists all
defined batches of build configurations.

Batch Build [%]
Batches:
Mew..

Femove

Edit...

Cloze

Cancel

il L

— Build

Make Clean Rebuid Al |

Figure 157: Batch Build dialog box

The dialog box contains the following:

Item Description

Batches Lists all currently defined batches of build configurations.

New Displays the Edit Batch Build dialog box, where you can define new
batches of build configurations.

Remove Removes the selected batch.

Edit Displays the Edit Batch Build dialog box, where you can modify

already defined batches.
Build Consists of the three build commands Make, Clean, and Rebuild All.
Table 73: Description of the Batch Build dialog box

Part 7. Reference information 311

Menus

312

IAR Embedded Workbench® IDE
User Guide

Edit Batch Build dialog box

In the Edit Batch Build dialog box—available from the Batch Build dialog box—you
can create new batches of build configurations, and edit already existing batches.

Edit Batch Build [%]

— Mame

Awailable configurations Configurations to build [drag to order]

project] - Debug
project] - Release 5
project? - Debug

project? - Release

Il

L4+

()3 I Cancel

Figure 158: Edit Batch Build dialog box

The dialog box contains the following:

Item Description

Name The name of the batch.

Available configurations Lists all build configurations that are part of the workspace.

Configurations to build Lists all the build configurations you select to be part of a named
batch.

Table 74: Description of the Edit Batch Build dialog box

To move appropriate build configurations from the Available configurations list to the
Configurations to build list, use the arrow buttons. Note also that you can drag the
build configurations in the Configurations to build field to specify the order between
the build configurations.

IAR Embedded Workbench® IDE reference ___4

TOOLS MENU

The Tools menu provides commands for customizing the environment, such as changing
common fonts and shortcut keys.

It is a user-configurable menu to which you can add tools for use with JAR Embedded
Workbench. Thus, it might look different depending on which tools have been
preconfigured to appear as menu items. See Configure Tools dialog box, page 334.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 159: Tools menu

Tools menu commands

Menu command Description

Options Displays the IDE Options dialog box where you can customize the IDE.
In the left side of the dialog box, select a category and the corresponding
options are displayed in the right side of the dialog box. Which
categories that are available in this dialog box depends on your IDE
configuration, and whether the IDE is in a debugging session or not.

Configure Tools Displays a dialog box where you can set up the interface to use external
tools.

Filename Extensions Displays a set of dialog boxes where you can define the filename
extensions to be accepted by the build tools.

Configure Viewers Displays a dialog box where you can configure viewer applications to
open documents with.

Notepad User-configured. This is an example of a user-configured addition to the
Tools menu.

Table 75: Tools menu commands

Part 7. Reference information 313

Menus

COMMON FONTS OPTIONS

Use the Common Fonts options—available by choosing Tools>Options—for
configuring the fonts used for all project windows except the editor windows.

IDE Options [}
rmon Fonts — Fixed ‘Width Font
Key Bindings —
Editar Fant... I IEouner, size = 10
Messages
Project — Propartional Width Font
Source Code Contral —
Debugger Font... | IMS Sans Serif, size =10
Stack.
- Register Filter
S Terminal 0
QK | Cancel | Apply | Help |

Figure 160: Common Fonts options

With the Font buttons you can change the fixed and proportional width fonts,
respectively.

Any changes to the Fixed Width Font options will apply to the Disassembly, Register,
and Memory windows. Any changes to the Proportional Width Font options will
apply to all other windows.

None of the settings made on this page apply to the editor windows. For information
about how to change the font in the editor windows, see Editor Colors and Fonts
options, page 323.

IAR Embedded Workbench® IDE
314 User Guide

IAR Embedded Workbench® IDE reference ___¢

KEY BINDINGS OPTIONS

Use the Key Bindings options—available by choosing Tools>Options—to customize
the shortcut keys used for the IDE menu commands.

IDE Dptions [%]

Comrmon Fonts

Menu: IFiIe 'l
Eﬂ‘:;:rages Command | Frimary | Alias -
. Mew document CTRL+M
Praject Mew workspace
Source Code Contral Open CTRL+0
Debugger Open ‘Workspace o
Stack. Header/Source File CTRL+5K...
Register Filker glosew .
i ave Workspace
----- Terminal I/ 2 ave o QE" e LI

Prezz shortcut key: Frimary Aliaz

I St Al

[lear | [lear | HesetAIIl

QK I Cancel | Apply | Help |

Figure 161: Key Bindings options

Menu

Use the drop-down list to choose the menu you want to edit. Any currently defined
shortcut keys are shown in the scroll list below.

Command

All commands available on the selected menu are listed in the Commands column.
Select the menu command for which you want to configure your own shortcut keys.
Press shortcut key

Use the text field to type the key combination you want to use as shortcut key. It is not
possible to set or add a shortcut if it is already used by another command.

Primary

The shortcut key will be displayed next to the command on the menu. Click the Set
button to set the combination for the selected command, or the Clear button to delete
the shortcut.

Part 7. Reference information 315

Menus

Alias

The shortcut key will work but not be displayed on the menu. Click either the Add
button to make the key take effect for the selected command, or the Clear button to
delete the shortcut.

Reset All

Reverts all command shortcut keys to the factory settings.

LANGUAGE OPTIONS

Use the Language options—available by choosing Tools>Options—to specify the
language to be used in windows, menus, dialog boxes, etc.

IDE Options

Comrmon Fonts

Key Bindings
Language

Editar

Messages

Project

Source Code Contral
Debugger

Stack.

¥

Language

After changing to a different language,
you must restart the application.

(] 8 | Cancel

Help

Figure 162: Language options

Language

Use the drop-down list to choose the language to be used.

In the IDE, English (United States) and Japanese are available.

Note: If you have IAR Embedded Workbench IDE installed for several different tool
chains in the same directory, the IDE might be in mixed languages if the tool chains are
available in different languages.

IAR Embedded Workbench® IDE
316 User Guide

IAR Embedded Workbench® IDE reference ___¢

EDITOR OPTIONS

Use the Editor options—available by choosing Tools>Options—to configure the
editor.

IDE Dptions [%]

- Cormmon Fonts

-Key Bindings Tab size: lg_ V' Syritax highlighting
d Et::litor | Ed ¥ Autoindsnt
- External Editor Indent size: 2

Sehup Files I Configure. ..

Colors and Fonts Tah Key Function.———— [Show line numbers
Messages " Inzert tab V' Scan for changed files
- Project .

- Source Code Control & Indent with spaces V' Show bookmarks
- Debugger [~ Enable virtual space
. Stack EOL characters: IPC 'l .
ac.) ™ Remove trailing blarks
- Reegister Filter V' Show right margin
- Terminal [fO .
" Printing edge
& Calurnres IW
QK | Cancel | Apply | Help |

Figure 163: Editor options

For more information about the IAR Embedded Workbench IDE Editor and how it can
be used, see Editing, page 99.

Tab Size

Use this option to specify the number of character spaces corresponding to each tab.

Indent Size

Use this option to specify the number of character spaces to be used for indentation.

Tab Key Function
Use this option to specify how the Tab key is used. Choose between:

o Insert tab

o Indent with spaces.

Part 7. Reference information 317

Menus

318

IAR Embedded Workbench® IDE
User Guide

EOL character

Use this option to select the line break character to be used when editor documents are
saved. Choose between:

PC (default) Windows and DOS end of line characters. The PC format is used by
default.

Unix UNIX end of line characters.

Preserve The same end of line character as the file had when it was opened,

either PC or UNIX. If both types or neither type are present in the
opened file, PC end of line characters will be used.

Show right margin

The area of the editor window outside the right-side margin is displayed as a light gray
field. You can choose to set the size of the text field between the left-side margin and the
right-side margin. Choose to set the size based on:

Printing edge Size based on the printable area which is based on general printer
settings.
Columns Size based on number of columns.

Syntax Highlighting
Use this option to make the editor display the syntax of C or C++ applications in
different text styles.

To read more about syntax highlighting, see Editor Colors and Fonts options, page 323,
and Syntax coloring, page 101.

Auto Indent

Use this option to ensure that when you press Return, the new line will automatically be
indented. For C/C++ source files, indentation will be performed as configured in the
Configure Auto Indent dialog box. Click the Configure button to open the dialog box
where you can configure the automatic indentation; see Configure Auto Indent dialog
box, page 319. For all other text files, the new line will have the same indentation as the
previous line.

Show Line Numbers

Use this option to display line numbers in the editor window.

H W N

IAR Embedded Workbench® IDE reference ___¢

Scan for Changed Files

Use this option to check if files have been modified by some other tool. In that case the
files will be automatically reloaded. If a file has been modified in the IDE, you will be
prompted first.

Show Bookmarks

Use this option to display a column on the left side in the editor window, with icons for
compiler errors and warnings, Find in Files results, user bookmarks and breakpoints.
Enable Virtual Space

Use this option to allow the insertion point to move outside the text area.

Remove trailing blanks

Use this option to remove trailing blanks from files when they are saved to disk. Trailing
blanks are blank spaces between the last non-blank character and the end of line
character.

CONFIGURE AUTO INDENT DIALOG BOX

Use the Configure Auto Indent dialog box to configure the automatic indentation
performed by the editor for C/C++ source code. To open the dialog box:

Choose Tools>Options.
Click the Editor tab.
Select the Auto indent option.

Click the Configure button.

Configure Auto Indent [%]
Sample code
(Opening Brace () int fiint x)
|0 al i
] switch (%)
Body (b) al| {
z c case 0O:
] return 1;
Label {c) c defanlt:
ID—] EEetuUrn X:
+
+
[8]4 I Cancel

Figure 164: Configure Auto Indent dialog box

Part 7. Reference information

319

Menus

To read more about indentation, see Automatic text indentation, page 102.

Opening Brace (a)

Use the text box to type the number of spaces used for indenting an opening brace.

Body (b)

Use the text box to type the number of additional spaces used for indenting code after
an opening brace, or a statement that continues onto a second line.

Label (c)

Use the text box to type the number of additional spaces used for indenting a label,
including case labels.

Sample code

This area reflects the settings made in the text boxes for indentation. All indentations are
relative to the preceding line, statement, or other syntactic structures.

EXTERNAL EDITOR OPTIONS

Use the External Editor options—available by choosing Tools>Options—to specify
an external editor of your choice.

- Cormmon Fonts
- Key Bindings ¥ Use External Editor
Editor Type: IDDE j
etup Files Edior [CACW32iond2ese J
i Colors and Fonts Cervice: ICodewright
- Messages
- Praject Command: [System BufE ditFile $FILE_PATHS
- Source Code Contral $FILE_PATH$ MovToline $CUR_LINES
- Debugger
- Stack
- Register Filker
- Terminal IjQ

QK I Cancel | Apply Help

Figure 165: External Editor options

See also Using an external editor, page 106.

IAR Embedded Workbench® IDE
320 User Guide

IAR Embedded Workbench® IDE reference ___¢

Use External Editor

Use this option to enable the use of an external editor.

Type
Use the drop-down list to select the type of interface. Choose between:

e Command Line
o DDE (Windows Dynamic Data Exchange).

Editor

Use the text field to specify the filename and path of your external editor. A browse
button is available for your convenience.

Arguments

Use the text field to specify any arguments to pass to the editor. Only applicable if you
have selected Command Line as the interface type, see Type, page 321.

Service

Use the text field to specify the DDE service name used by the editor. Only applicable
if you have selected DDE as the interface type, see Type, page 321.

The service name depends on the external editor that you are using. Refer to the user
documentation of your external editor to find the appropriate settings.
Command

Use the text field to specify a sequence of command strings to send to the editor. The
command strings should be typed as:

DDE-Topic CommandString
DDE-Topic CommandString

Only applicable if you have selected DDE as the interface type, see Type, page 321.

The command strings depend on the external editor that you are using. Refer to the user
documentation of your external editor to find the appropriate settings.

Note: Variables can be used in arguments. See Argument variables summary, page
306, for information about available argument variables.

Part 7. Reference information 321

Menus

EDITOR SETUP FILES OPTIONS

Use the Editor Setup Files options—available by choosing Tools>Options—to
specify setup files for the editor.

IDE Dptions [%]
Comrmon Fonts
Key Bindings ™ Use Custom Keyword File

Editar I |
-External Editor

V¥ Use Code Templates
Colors and Fonts Iation DatablaR Embedded Warkbench\CodeT emplates.tst _I
- Messages
- Project
- Source Code Control
- Debugger
- Stack
- Register Filker
- Terminal IjQ

QK I Cancel Apply Help

Figure 166: Editor Setup Files options

Use Custom Keyword File

Use this option to specify a text file containing keywords that you want the editor to
highlight. For information about syntax coloring, see Syntax coloring, page 101.
Use Code Templates

Use this option to specify a text file with code templates that you can use for inserting
frequently used code in your source file. For information about using code templates,
see Using and adding code templates, page 103.

IAR Embedded Workbench® IDE
322 User Guide

IAR Embedded Workbench® IDE reference ___4

EDITOR COLORS AND FONTS OPTIONS

Use the Editor Colors and Fonts options—available by choosing Tools>Options—to
specify the colors and fonts used for text in the editor windows.

IDE Options X
Comrmon Fonts Editar Font
Key Bindings
Language Fant... |E0urier Mew, size =9
—|- Editor
External Editor Syt Ciletig
Setup Files
Colors and Fonts Default ~
Messages C KE}'WU'd
Project EE::IQS Type Style:
Source Code Contral Preprocessor
Debugger Integer [dec]
Stack. Integer [oct] Sample

Integer [hex)
Float b
Background Color

QK Cancel Help

Figure 167: Editor Colors and Fonts options

Editor Font

Press the Font button to open the standard Font dialog box where you can choose the
font and its size to be used in editor windows.

Syntax Coloring

Use the Syntax Coloring options to choose color and type style for selected elements.
The elements you can customize are: C or C++, compiler keywords, assembler
keywords, and user-defined keywords. Use the following options:

Scroll-bar list Lists the possible items for which you can specify font and style of
syntax.

Color Provides a list of colors to choose from for the selected element.

Type Style Provides a list of type styles to choose from.

Sample Displays the current setting.

Part 7. Reference information 323

Menus

324

IAR Embedded Workbench® IDE
User Guide

Background Color

window.

Provides a list of background colors to choose from for the editor

The keywords controlling syntax highlighting for assembler and C or C++ source code
are specified in the files syntax_icc.cfg and syntax_asm.cfg, respectively. These
files are located in the config directory.

MESSAGES OPTIONS

Use the Messages options—available by choosing Tools>Options—to choose the
amount of output in the Build messages window.

IDE Options

¥

Comrmon Fonts
Key Bindings
Language
Editar

Project
Source Code Contral
Debugger

Stack.

X

Show build messages:
Log in file
™ Log build messages in file
{v
i

Warnings -

Enable All Dialogs

Some dialog boxes can be suppressed by selecting a "Don't show

again'' check box. Click “"Enable All Dialogs" to enable all
suppreszed dialog boxes again.

[

(] 8 | Cancel

Help

Figure 168: Messages option

Show build messages

Use this drop-down menu to specify the amount of output in the Build messages
window. Choose between:

All
Messages
Woarnings

Errors

Shows all messages, including compiler and linker information.

Shows messages, warnings, and errors.

Shows warnings and errors.

Shows errors only.

IAR Embedded Workbench® IDE reference ___¢

Log File

Use these options to write build messages to a log file. To enable the options, select the
Enable build log file option. Choose between:

Append to end of file Appends the messages at the end of the specified file.

Overwrite old file Replaces the contents in the file you specify.

Type the filename you want to use in the text box. A browse button is available for your
convenience.

Enable All Dialogs
The Enable All Dialogs button enables all suppressed dialog boxes.

Some dialog boxes can be suppressed by selecting a Don’t show again check box, for
example:

IAR Embedded Workbench IDE E

] E This will kerminate the debug session,
-

Ok I Cancel |

" Don't show again

Figure 169: Message dialog box containing a Don't show again option

Part 7. Reference information 325

Menus

PROJECT OPTIONS

Use the Project options—available by choosing Tools>Options—to set options for the
Make and Build commands.

IDE Dptions [%]

Comrmon Fonts
Stop build operation on: INever 'l
Save editor windows before building: IAIways 'l

Save workspace and projects before IAIways vl
building:
Make before debugging: IAIways 'l

™ Reload last workspace at startup

¥ Play a sound after build operations

¥ Generate browss information

QK I Cancel Apply Help

Figure 170: Project options

The following options are available:

Option Description

Stop build operation on Specifies when the build operation should stop.
Never: Do not stop.
Warnings: Stop on warnings and errors.
Errors: Stop on errors.

Save editor windows before Always: Always save before Make or Build.

building Ask: Prompt before saving.
Never: Do not save.

Save workspace and projects Always: Always save before Make or Build.

before building Ask: Prompt before saving.
Never: Do not save.

Make before debugging Always: Always perform the Make command before
debugging.

Ask: Always prompt before performing the Make command.
Never: Do not perform the Make command before
debugging.

Table 76: Project IDE options

IAR Embedded Workbench® IDE
326 User Guide

IAR Embedded Workbench® IDE reference ___¢

Option Description

Reload last workspace at startup ~ Select this option if you want the last active workspace to
load automatically the next time you start IAR Embedded
Workbench.

Play a sound after build operations Plays a sound when the build operations are finished.

Generate browse information Enables the use of the Source Browser window, see Source
Browser window, page 280.

Table 76: Project IDE options (Continued)

SOURCE CODE CONTROL OPTIONS

Use the Source Code Control options—available by choosing Tools>Options—to
configure the interaction between an IAR Embedded Workbench project and an SCC
project.

IDE Dptions [%]

¢+ Common Fanks
i Key Bindings

™ Keep items checked out when checking in

Save editor windows befare perfarming IAIways vl

source code contral commands:

- Register Filter
S Terminal 0

QK I Cancel Apply Help

Figure 171: Source Code Control options

Keep items checked out when checking in

Determines the default setting for the option Keep Checked Out in the Check In Files
dialog box; see Check In Files dialog box, page 272.

Part 7. Reference information

327

Menus

Save editor windows before performing source code control
commands

Specifies whether editor windows should be saved before you perform any source code
control commands. Choose between:

Ask When you perform any source code control commands, you will be asked
about saving editor windows first.

Never Editor windows will never be saved first when you perform any source
code control commands.

Always Editor windows will always be saved first when you perform any source
code control commands.

DEBUGGER OPTIONS

Use the Debugger options—available by choosing Tools>Options—for configuring
the debugger environment.

IDE Dptions [%]
-~ Common Fonts 5 -
o —when zource resolves to multiple function instances
- Key Bindings
= Editor [~ Automatically choose allinstances
- External Editor - R
¥ — Source code color in d bly windo
Setup Files
Colors and Fonts Calar |
- Messages
- Project — Step into functions————— ~ STL container expansion
- Source Code Control & All functi
unctions
Depth: [10
- Stack " Functions with source anly
~ Register Filter — Live watch——————— — Default integer farmat
 Terminal 1/0 Update interval
= 1000 i
[millizeconds]: I IDec:lmaI j

QK I Cancel | Apply | Help |

Figure 172: Debugger options

When source resolves to multiple function instances

Some source code corresponds to multiple code instances, for example template code.
When specifying a source location in such code, for example when setting a source
breakpoint, you can make C-SPY act on all instances or a subset of instances. Use the
Automatically choose all instances option to let C-SPY act on all instances without
asking first.

IAR Embedded Workbench® IDE
328 User Guide

IAR Embedded Workbench® IDE reference ___¢

Source code color in Disassembly window

Use the Color button to select the color of the source code in the Disassembly window.

Step into functions
Use this option to control the behavior of the Step Into command. Choose between:
All functions The debugger will step into all functions.

Functions with source only The debugger will only step into functions for which the
source code is known. This helps you avoid stepping into
library functions or entering disassembly mode debugging.

STL container expansion

The Depth value decides how many elements that are shown initially when a container
value is expanded in, for example, the Watch window. Additional elements can be
shown by clicking the expansion arrow.

Live watch

The Update interval value decides how often the C-SPY Live Watch window is updated
during execution.

Default integer format

Use the drop-down list to set the default integer format in the Watch, Locals, and related
windows.

Part 7. Reference information 329

Menus

STACK OPTIONS

Use the Stack options—available by choosing Tools>Options or from the context
menu in the Memory window—to set options specific to the Stack window.

IDE Dptions [%]

Comrmon Fonts

Key Bindings [V Enable graphical stack display and stack usage tracking
Editor I—SD % stack usage threshold

Messages
Project
Source Code Control [V ‘wam when stack pointer is out of bounds

[V ‘wam when exceeding stack threshold

Debugger [V Stack pointer(z] not valid until program reaches:

Register Filker Imaln
S Terminal 0 Warnings
& Log
" Log and alert
I~ Limit stack display to B2 bytes

QK I Cancel | Apply | Help

Figure 173: Stack options

Enable graphical stack display and stack usage tracking

Use this option to enable the graphical stack bar available at the top of the Stack window.
At the same time, it enables the functionality needed to detect stack overflows. To read
more about the stack bar and the information it provides, see The graphical stack bar,
page 370.

% stack usage threshold

Use this text field to specify the percentage of stack usage above which C-SPY should
issue a warning for stack overflow.

IAR Embedded Workbench® IDE
330 User Guide

IAR Embedded Workbench® IDE reference ___¢

Warn when exceeding stack threshold

Use this option to make C-SPY issue a warning when the stack usage exceeds the
threshold specified in the % stack usage threshold option.

Warn when stack pointer is out of bounds

Use this option to make C-SPY issue a warning when the stack pointer is outside the
stack memory range.

Stack pointer(s) not valid until reaching

Use this option to specify a location in your application code from where you want the
stack display and verification to take place. The Stack window will not display any
information about stack usage until execution has reached this location. By default,
C-SPY will not track the stack usage before the main function. If your application does
not have a main function, for example, if it is an assembler-only project, you should
specify your own start label. If this option is used, after each reset C-SPY keeps a
breakpoint on the given location until it is reached.

Typically, the stack pointer is set up in the system initialization code cstartup, but not
necessarily from the very first instruction. By using this option you can avoid incorrect
warnings or misleading stack display for this part of the application.

Warnings

You can choose to issue warnings using one of the following options:

Log Warnings are issued in the Debug Log window
Log and alert Warnings are issued in the Debug Log window and as alert dialog
boxes.

Limit stack display to

Use this option to limit the amount of memory displayed in the Stack window by
specifying a number, counting from the stack pointer. This can be useful if you have a
big stack or if you are only interested in the topmost part of the stack. Using this option
can improve the Stack window performance, especially if reading memory from the
target system is slow. By default, the Stack window shows the whole stack, or in other
words, from the stack pointer to the bottom of the stack. If the debugger cannot
determine the memory range for the stack, the byte limit is used even if the option is not
selected.

Part 7. Reference information 331

Menus

332

IAR Embedded Workbench® IDE
User Guide

Note: The Stack window does not affect the execution performance of your
application, but it might read a large amount of data to update the displayed information
when the execution stops.

REGISTER FILTER OPTIONS

Use the Register Filter options—available by choosing Tools>Options when the
debugger is running—to display registers in the Register window in groups you have
created yourself. For more information about register groups, see Register groups, page
147.

IDE Dptions [%]

-~ Common Fonts .)
- Key Bindings IV Use register filter Groups:

- Editor [MyFiter i Filter Files...l | |
-~ Messages
Projet & CPU Regsters

Group members:

- Source Code Control
- Debugger

- Stack

- Register Filter

- Terminal If

QK | Cancel | Apply Help

Figure 174: Register Filter options

The following options are available:

Option Description

Use register filter Enables the usage of register filters.

Filter Files Displays a dialog box where you can select or create a new filter file.
Groups Lists available groups in the register filter file, alternatively displays the

new register group.

New Group The name for the new register group.
Group members Lists the registers selected from the register scroll bar window.
Base Changes the default integer base.

Table 77: Register Filter options

IAR Embedded Workbench® IDE reference ___¢

TERMINAL 1/O OPTIONS

Use the Terminal I/O options—available by choosing Tools>Options when the
debugger is running—to configure the C-SPY terminal I/O functionality.

IDE Dptions [%]

- Cormmon Fonts

Key Bindings i ity
Editor & Keyboard
Messages % Buffered
Project: " Direct
Source Code Control §
" File

& Text

| Binary

[(FROI_DIR\TemiDinput st |

Input echaing
’7|7 Log file [~ Teminal /0 windaw ‘

[~ Show target reset in Terminal 10 window
QK I Cancel | Apply | Help |

Figure 175: Terminal 1/0 options

Keyboard

Use the Keyboard option to make the input characters be read from the keyboard.
Choose between:

Buffered Input characters are buffered.
Direct Input characters are not buffered.
File

Use the File option to make the input characters be read from a file. A browse button is
available for locating the file. Choose between:

Text Input characters are read from a text file.

Binary Input characters are read from a binary file.

Input Echoing

Input characters can be echoed either in a log file, or in the C-SPY Terminal I/O window.
To echo input in a file requires that you have enabled the option
Debug>Logging>Enable log file.

Part 7. Reference information 333

Menus

334

IAR Embedded Workbench® IDE
User Guide

Show target reset in Terminal 1/O window

When the target resets, a message is displayed in the C-SPY Terminal I/O window.

CONFIGURE TOOLS DIALOG BOX

In the Configure Tools dialog box—available from the Tools menu—you can specify
a user-defined tool to add to the Tools menu.

Configure Tools

Menu Content:

Cancel

I

Remove
Menu Text:
I&N otepad
Command:
IE:\W’INNT\Notepad.exe Browse... |
Argument:

Initial Directary:

™ Redirect to Output \Window

™ Prampt for Cormand Line

Tool Available:

IAIways j

Figure 176: Configure Tools dialog box

Note: If you intend to add an external tool to the standard build tool chain, see

Extending the tool chain, page 96.

The following options are available:

Option Description

Menu Content

Menu Text

following letter, N in this example, will then appear as the
mnemonic key for this command. The text you type in this field
will be reflected in the Menu Content field.

Lists all available user defined menu commands.

Specifies the text for the menu command. By adding the sign &, the

Table 78: Configure Tools dialog box options

IAR Embedded Workbench® IDE reference ___4

Option Description

Command Specifies the command, and its path, to be run when you choose
the command from the menu. A browse button is available for
your convenience.

Argument Optionally type an argument for the command.
Initial Directory Specifies an initial working directory for the tool.

Redirect to Output window Specifies any console output from the tool to the Tool Output
page in the Messages window. Tools that are launched with this
option cannot receive any user input, for instance input from the
keyboard.

Tools that require user input or make special assumptions regarding
the console that they execute in, will not work at all if launched
with this option.

Prompt for Command Line Displays a prompt for the command line argument when the
command is chosen from the Tools menu.

Tool Available Specifies in which context the tool should be available, only when
debugging or only when not debugging.

Table 78: Configure Tools dialog box options (Continued)

Note: Variables can be used in the arguments, allowing you to set up useful tools such
as interfacing to a command line revision control system, or running an external tool on
the selected file.

You can remove a command from the Tools menu by selecting it in this list and clicking
Remove.

Click OK to confirm the changes you have made to the Tools menu.

The menu items you have specified will then be displayed on the Tools menu.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 177: Customized Tools menu

Part 7. Reference information 335

Menus

336

IAR Embedded Workbench® IDE
User Guide

Specifying command line commands or batch files

Command line commands or batch files need to be run from a command shell, so to add
these to the Tools menu you need to specify an appropriate command shell in the
Command text box. These are the command shells that can be entered as commands:

System Command shell

Windows 2000/XP/Vista cmd.exe (recommended) or command. com

Table 79: Command shells

FILENAME EXTENSIONS DIALOG BOX

In the Filename Extensions dialog box—available from the Tools menu—you can
customize the filename extensions recognized by the build tools. This is useful if you
have many source files that have a different filename extension.

If you have an IAR Embedded Workbench for a different microprocessor installed on
your host computer, it can appear in the Tool Chain box. In that case you should select
the tool chain you want to customize.

Filename Extensions

Taol chain

Cancel
Edit...

Figure 178: Filename Extensions dialog box

P Il

Note the * sign which indicates that there are user-defined overrides. If there is no *
sign, factory settings are used.

Click Edit to open the Filename Extension Overrides dialog box.

IAR Embedded Workbench® IDE reference ___¢

FILENAME EXTENSION OVERRIDES DIALOG BOX

The Filename Extension Overrides dialog box—available by clicking Edit in the
Filename Extensions dialog box—Ilists the available tools in the build chain, their
factory settings for filename extensions, and any defined overrides.

Filename Extension Overrides

Taol | Factaory Setting | Overide ()3 I
C/C++ Compiler .CLCPP.LCC <Niones

Azzembler SN0 ASMLMEA S <hones Cancel |
Browse Info Compiler .cioc.cpp <none

Linker ik <none:

Library Builder i i Edit... |
Browse Info Builder .pbi <none

| | i

Figure 179: Filename Extension Overrides dialog box

Select the tool for which you want to define more recognized filename extensions, and
click Edit to open the Edit Filename Extensions dialog box.

EDIT FILENAME EXTENSIONS DIALOG BOX

The Edit File Extensions dialog box—available by clicking Edit in the Filename
Extension Overrides dialog box—Ilists the filename extensions accepted by default,
and you can also define new filename extensions.

Edit Filename Extensions

Factaory setting
I.c:;.c:c:;.c:pp QK

¥ Overide Cancel |
I.c;.cc;.cpp

Figure 180: Edit Filename Extensions dialog box

Click Override and type the new filename extension you want to be recognized.
Extensions can be separated by commas or semicolons, and should include the leading
period.

Part 7. Reference information 337

Menus

338

IAR Embedded Workbench® IDE
User Guide

CONFIGURE VIEWERS DIALOG BOX

The Configure Viewers dialog box—available from the Tools menu—Iists the
filename extensions of document formats that IAR Embedded Workbench can handle,
and which viewer application that will be used for opening the document type. Explorer
Default in the Action column means that the default application associated with the
specified type in Windows Explorer is used for opening the document type.

Configure Yiewers [%]
Extensions | Ackion | Ok
Explorer Default
.htm Explorer Default Cancel

Mg

Edit...

Remave

g

Figure 181: Configure Viewers dialog box

To specify how to open a new document type or editing the setting for an existing
document type, click New or Edit to open the Edit Viewer Extensions dialog box.

EDIT VIEWER EXTENSIONS DIALOG BOX

Type the filename extension for the document type—including the separating
period (.)—in the Filename extensions box.

Edit Yiewer Extensions [%]
File name extensians:
| bl

Cancel |

Action
€ Buile-in text editor

& st file explorer associations

 Command line

| |

Figure 182: Edit Viewer Extensions dialog box

Then choose one of the Action options:

o Built-in text editor—select this option to open all documents of the specified type
with the IAR Embedded Workbench text editor.

o Use file explorer associations—select this option to open all documents with the
default application associated with the specified type in Windows Explorer.

IAR Embedded Workbench® IDE reference ___4

o Command line—select this option and type or browse your way to the viewer
application, and give any command line options you would like to the tool.

WINDOW MENU

Use the commands on the Window menu to manipulate the IDE windows and change
their arrangement on the screen.

The last section of the Window menu lists the windows currently open on the screen.
Choose the window you want to switch to.

Close Tab
Close Window

Chrl+F4

Split

Mew Vertical Editor Window
Mew Horizontal Editor Window
IMayve Tabs To Mext Windaw

IMave Tabs To Previous Window

Close All Tabs Except Active
Close All Editor Tabs

Figure 183: Window menu

The following commands are available on the Window menu:

Menu command

Description

Close Tab Closes the active tab.
Close Window CTRL+F4 Closes the active editor window.
Split Splits an editor window horizontally or vertically into two,

New Vertical Editor
Window

New Horizontal Editor
Window

Move Tabs To Next
Window

Move Tabs To Previous
Window

Close All Tabs Except
Active

Close All Editor Tabs

or four panes, to allow you to see more parts of a file
simultaneously.

Opens a new empty window next to current editor
window.

Opens a new empty window under current editor window.
Moves all tabs in current window to next window.

Moves all tabs in current window to previous window.

Closes all the tabs except the active tab.

Closes all tabs currently available in editor windows.

Table 80: Window menu commands

Part 7. Reference information 339

Menus

340

IAR Embedded Workbench® IDE
User Guide

HELP MENU

The Help menu provides help about IAR Embedded Workbench and displays the
version numbers of the user interface and of the IDE.

EMBEDDED WORKBENCH STARTUP DIALOG BOX

The Embedded Workbench Startup dialog box—available from the Help
menu—provides easy access to ready-made example workspaces that can be built and
executed out of the box for a smooth development startup.

Embedded Workbench Startup [%]

Create new project in current work space
Add existing project to current work space

Open exigting workspace

El B |Bi

Example applications

Fecent workspaces:

tutorials Open I

™ Do not shaw this window at startup

Cancel |

Figure 184: Embedded Workbench Startup dialog box

Create new project in current workspace

Use this option to create a new project in your current workspace.

Add existing project to current workspace

Use this option to add an existing project to your current workspace.

Open existing workspace

Use this option to open an existing workspace.

IAR Embedded Workbench® IDE reference ___¢

Note: Do not use this option to open an existing workspace which is part of your
product installation, because that might overwrite the original files. Instead, use the
option Example applications.

Example applications

Use this option to open the Example Applications dialog box. In this dialog box you
can choose an example application which is part of your product installation. Click
Open to first choose a destination directory for the project and then to open it. Select Do
not prompt for working copy directory if you do not want to be prompted for a
destination directory. In this case, the example application will be copied to the My
Documents\IAR Embedded Workbench\arm\Example Applications directory.

Recent workspace
In the list of workspaces, select a recently used workspace and click Open to open it. If
this is the first time you open your IAR Embedded Workbench, the list will be empty.

Do not show this window at startup

Use this option if you do no want the Embedded Workbench Startup dialog box to be
automatically displayed when you start IAR Embedded Workbench. If you have
selected this option, you can still open the dialog box from the Help menu.

Do not show the Information Center at startup

Use this option if you do no want the Information Center to be automatically displayed
in the editor window when you start your IAR Embedded Workbench. If you have
selected this option, you can still access the Information Center from the Help menu.

The Information Center provides convenient access to useful information.

Part 7. Reference information 341

Menus

IAR Embedded Workbench® IDE
342 User Guide

C-SPY® reference

This chapter contains reference information about the windows, menus, menu
commands, and the corresponding components that are specific for the IAR
C-SPY Debugger. This chapter contains the following sections:

o C-SPY windows, page 343
o C-SPY menus, page 374.

C-SPY windows

The following windows specific to C-SPY are available:

C-SPY Debugger main window
Disassembly window
Memory window
Symbolic Memory window
Register window

Watch window

Locals window

Auto window

Live Watch window

Quick Watch window
Statics window

Call Stack window
Terminal I/O window
Code Coverage window
Profiling window

Stack window

Symbols window.

Additional windows will be available depending on which C-SPY driver you are using.
For information about driver-specific windows, see the driver-specific documentation.

Part 7. Reference information 343

C-SPY windows

344

IAR Embedded Workbench® IDE
User Guide

EDITING IN C-SPY WINDOWS

You can edit the contents of the Memory, Symbolic Memory, Register, Auto, Watch,
Locals, Statics, Live Watch, and Quick Watch windows.

Use the following keyboard keys to edit the contents of these windows:

Key Description
Enter Makes an item editable and saves the new value.
Esc Cancels a new value.

Table 81: Editing in C-SPY windows

C-SPY DEBUGGER MAIN WINDOW

When you start the debugger, the following debugger-specific items appear in the main
IAR Embedded Workbench IDE window:

e A dedicated debug menu with commands for executing and debugging your
application

o Depending on the C-SPY driver you are using, a driver-specific menu. Typically,
this menu contains menu commands for opening driver-specific windows and dialog
boxes. See the driver-specific documentation for more information

e A special debug toolbar

o Several windows and dialog boxes specific to C-SPY.
The window might look different depending on which components you are using.

Each window item is explained in greater detail in the following sections.

Menu bar

In addition to the menus available in the development environment, the Debug menu is
available when C-SPY is running. The Debug menu provides commands for executing
and debugging the source application. Most of the commands are also available as icon
buttons in the debug toolbar. The following menus are available when C-SPY is running:

Menu Description

Debug The Debug menu provides commands for executing and debugging the source
application. Most of the commands are also available as icon buttons in the debug
toolbar.

Disassembly ~ The Disassembly menu provides commands for controlling the disassembly
processor mode.

Table 82: C-SPY menu

C-SPY® reference __4

Menu Description

Simulator The Simulator menu provides access to the dialog boxes for setting up interrupt
simulation and memory maps. Only available when the C-SPY Simulator is used.

Table 82: C-SPY menu (Continued)

Additional menus might be available, depending on which debugger drivers have been
installed; for information, see the driver-specific documentation.

Debug toolbar

The debug toolbar provides buttons for the most frequently-used commands on the
Debug menu.

You can display a description of any button by pointing to it with the mouse pointer.
When a command is not available the corresponding button will be dimmed and you will
not be able to select it.

The following diagram shows the command corresponding to each button:

Next
Break Step Into Statement

Go
iyl sl ¥

— Lt I'"
iy FAP . T AV S S
Reset Step Over Step Out Run To Stop

Cursor Debugging

Figure 185: C-SPY debug toolbar

Part 7. Reference information

345

C-SPY windows

IAR Embedded Workbench® IDE

346 User Guide

Go to memory
address

Code coverage
information

Current position

DISASSEMBLY WINDOW

The C-SPY Disassembly window—available from the View menu—shows the
application being debugged as disassembled application code.

Zone display
Disassembly =
Goto +| [Mematl =E Toggle embedded
| J | J source mode
Next label is a Thumb label ~
main:
main:
¢ 00008350 EBS500 PUSH {LE}
¢ 00008352 EBOA1 SUE SP, SP, #4
¢ 00008354 4807 LLOR RO, [PC,#0x01C]
¢ 00008358 2100 MoV Rl, #0
¢ 00008358 s001 STR Rl. [RO, #0]
¢ 0000835A F7FF ; pre BL/BLX
¢ 0000835C FF35 EL init_fib
00008360 &RO00 LLOR RO, [RO, #0]
00008362 2804 CMP RO, #10
00008354 DACZ2 BGE Ox00836C hd
< ¥

Figure 186: C-SPY Disassembly window

Note that it is possible to disassemble in different modes, see Disassembly menu, page

379.

Toolbar

At the top of the window you can find a toolbar.

Operation Description

Go to The location you want to view. This can be a memory address, or the
name of a variable, function, or label.

Zone display Lists the available memory zones to display. Read more about Zones in

Toggle Mixed-Mode

the section Memory addressing, page 143.

Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that
the corresponding source file has been compiled with debug information.

Table 83: Disassembly window toolbar

C-SPY® reference __4

The display area

The current position—highlighted in green—indicates the next assembler instruction to
be executed. You can move the cursor to any line in the Disassembly window by clicking
on the line. Alternatively, you can move the cursor using the navigation keys.
Double-click in the gray left-side margin of the window to set a breakpoint, which is
indicated in red. Code that has been executed—code coverage—is indicated with a
green diamond.

To change the default color of the source code in the Disassembly window, choose
Tools>Options>Debugger. Set the default color using the Set source code coloring in
Disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
window and drag it to the Disassembly window.

Disassembly context menu

Clicking the right mouse button in the Disassembly window displays a context menu

which gives you access to some commands.

Move to PC
Run ko Cursor

Code Coverage 3

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)
Enablefdisable Ereakpaoint

Set Mext Statement

Copy Window Contents
v Toggle Mixed-Mode

Figure 187: Disassembly window context menu

The following commands are available on the menu:

Menu command Description
Move to PC Displays code at the current program counter location.
Run to Cursor Executes the application from the current position up to the line

containing the cursor.

Code Coverage Opens a submenu with commands for controlling code coverage.
Enable Enable toggles code coverage on and off.
Show Show toggles between displaying and hiding code coverage. Executed

code is indicated by a green diamond.
Clear Clear clears all code coverage information.

Table 84: Disassembly context menu commands

Part 7. Reference information 347

C-SPY windows

Menu command Description

Toggle Breakpoint (Code) Toggles a code breakpoint. Assembler instructions at which code
breakpoints have been set are highlighted in red. For information
about code breakpoints, see Code breakpoints dialog box, page 283.

Toggle Breakpoint (Log) Toggles a log breakpoint for trace printouts. Assembler instructions
at which log breakpoints have been set are highlighted in red. For
information about log breakpoints, see Log breakpoints dialog box, page
285.

Enable/Disable Breakpoint Enables and Disables a breakpoint.
Set Next Statement Sets program counter to the location of the insertion point.

Copy Window Contents Copies the selected contents of the Disassembly window to the
clipboard.

Toggle Mixed-Mode Toggles between showing only disassembled code or disassembled
code together with the corresponding source code. Source code
requires that the corresponding source file has been compiled with
debug information.

Table 84: Disassembly context menu commands (Continued)

IAR Embedded Workbench® IDE
348 User Guide

Go to location ——

Gotol

MEMORY WINDOW

The Memory window—available from the View menu—gives an up-to-date display of
a specified area of memory and allows you to edit it. You can open several instances of
this window, which is very convenient if you want to keep track of different memory or
register zones, or monitor different parts of the memory.

Memory contents

Available zones

C-SPY® reference __4

Context menu button

DODEffe0 00/0D DO OO OO0 OO OO0 OO0 ‘:4
DODEffe® 00 OD 00 DO OO0 OO OO 0O
Memory addresses— popfeFE0 00 00 00 DO 0O 0D 0O 00 Copy
DODEEEER 00 0D 00 OO0 00 00 00 00 .ovunn.. Paste
Data coverage 00100000 [BOV4E &5 6e 6c 6L 2057 Hello W
information 00100008 6E 72 6c 64 00 DO 00 OO0 orld. Zone »
00100010 00 0D 00 DO OO0 OO 0O 00 ;
00100018 00 OO0 OO0 OO0 OO0 OO0 00 OO w L Units
00100020 00 0D 00 DO OO0 OO 0O 00 2% Units
00100028 00 00 00 00 cd cd cd cd a4 Units
| w Little Endian
Memory contents in ASCII format Big Endian
v Enable
v Show
M Fill..
SRS] Clear

Figure 188: Memory window

Toolbar

Memary Save. ..
Memaory Restare..,

Set Data Breakpoink

At the top of the window you can find a toolbar:

Operation Description

Go to The location you want to view. This can be a memory address, or the
name of a variable, function, or label.

Zone display Lists the available memory zones to display. Read more about Zones in

section Memory addressing, page 143.

Context menu button Displays the context menu, see Memory window context menu, page 350.

Table 85: Memory window operations

Part 7. Reference information 349

C-SPY windows

350

IAR Embedded Workbench® IDE
User Guide

The display area

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and the memory contents in ASCII format. You can edit the
contents of the Memory window, both in the hexadecimal part and the ASCII part of the
window.

Data coverage is displayed with the following colors:

o Yellow indicates data that has been read
o Blue indicates data that has been written

e Green indicates data that has been both read and written.

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY Simulator.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

Memory window context menu

The following context menu is available in the Memory window:

Copy.
Paste

Zong 3

v 1 Units
2x Units
¢ Units

v Little Endian
Big Endian

Data Coverage 3

Memory Fill...
Memary Save. ..
Memoary Restare, .,

Set Data Breakpoink
Figure 189: Memory window context menu

The following commands are available on the menu:

Menu command Description
Copy, Paste Standard editing commands.
Zone Lists the available memory zones to display. Read more about Zones in

Memory addressing, page 143.

Table 86: Commands on the memory window context menu

Menu command

C-SPY® reference __4

Description

x|, x2, x4 Units

Little Endian
Big Endian

Data Coverage
Enable
Show
Clear

Memory Fill

Memory Save

Memory Restore

Set Data Breakpoint

Switches between displaying the memory contents in units of 8, 16, or 32
bits

Switches between displaying the contents in big-endian or little-endian
order.

Enable toggles data coverage on and off.
Show toggles between showing and hiding data coverage.
Clear clears all data coverage information.

Displays the Fill dialog box, where you can fill a specified area with a
value, see Fill dialog box, page 351.

Displays the Memory Save dialog box, where you can save the
contents of a specified memory area to a file, see Memory Save dialog box,
page 352.

Displays the Memory Restore dialog box, where you can load the
contents of a file in Intex-hex or Motorola s-record format to a specified
memory zone, see Memory Restore dialog box, page 353.

Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog
box. The breakpoints you set in this window will be triggered for both
read and write access.

Table 86: Commands on the memory window context menu (Continued)

FILL DIALOG BOX

In the Fill dialog box—available from the context menu in the Memory window—you
can fill a specified area of memory with a value.

Start address: Length: Zone:
101D [0 |Memay x|
Walue: Operation
FF ' Copy AND
" HOR " OR
()3 I Cancel

Figure 190: Fill dialog box

Part 7. Reference information

351

C-SPY windows

Options

Option Description

Start Address Type the start address—in binary, octal, decimal, or hexadecimal
notation.

Length Type the length—in binary, octal, decimal, or hexadecimal notation.

Zone Select memory zone.

Value Type the 8-bit value to be used for filling each memory location.

Table 87: Fill dialog box options

These are the available memory fill operations:

Operation Description
Copy The Value will be copied to the specified memory area.
AND An AND operation will be performed between the Value and the

existing contents of memory before writing the result to memory.

XOR An XOR operation will be performed between the Value and the
existing contents of memory before writing the result to memory.

OR An OR operation will be performed between the Value and the existing
contents of memory before writing the result to memory.

Table 88: Memory fill operations

MEMORY SAVE DIALOG BOX

Use the Memory Save dialog box—available by choosing Debug>Memory>Save or
from the context menu in the Memory window—to save the contents of a specified
memory area to a file.

Memory Save E

Zone:

|memary = I&I
Start address: Stop address: Close |
| oxa0

OxFF

File: Farmat:
Iintel-extended j

Filename:

I Ciiprojectsimemary, hex

Figure 191: Memory Save dialog box

IAR Embedded Workbench® IDE
352 User Guide

C-SPY® reference __4

Zone

The available memory zones.

Start address

The start address of the memory range to be saved.

Stop address

The stop address of the memory range to be saved.

File format

The file format to be used, which is Intel-extended by default.

Filename

The destination file to be used; a browse button is available for your convenience.

Save

Saves the selected range of the memory zone to the specified file.

MEMORY RESTORE DIALOG BOX

Use the Memory Restore dialog box—available by choosing Debug>Memory>Save
or from the context menu in the Memory window—to load the contents of a file in
Intel-extended or Motorola S-record format to a specified memory zone.

Memory Restore E

Zone:

= 5
Close |

Filename:

I Ciiprojectsimemary, hex

Figure 192: Memory Restore dialog box

Zone

The available memory zones.

Filename

The file to be read; a browse button is available for your convenience.

Part 7. Reference information 353

C-SPY windows

354

IAR Embedded Workbench® IDE
User Guide

Restore

Loads the contents of the specified file to the selected memory zone.

SYMBOLIC MEMORY WINDOW

The Symbolic Memory window—available from the View menu when the debugger is
running—displays how variables with static storage duration, typically variables with
file scope but also static variables in functions and classes, are laid out in memory. This
can be useful for spotting alignment holes or for understanding problems caused by
buffers being overwritten.

cato | = [emory =] previous | _nex_|

Location | Data | ‘ariable | Walue | Size | Tvpe | ;I
0x000. . . 0x00000000 4 -
0x001... 0x00000000 call count 0 4 int
0x001... 0x00000001 rootf0] 1 4 unsigned int
0x001... 0x00000001 rootf1] 1 4 unsigned int
0x001... 0x00000002 rootf2] 2] unsigned int
0x001... 0x00000000 rootf3] 0 4 unsigned int
0x001... 0x00000000 rootf4] 0 4 unsigned int
0x001... 0x00000000 rootfs] 0 4 unsigned int
0x001... 0x00000000 rootfE] 0 4 unsigned int
0x001... 0x00000000 root7] 0 4 unsigned int
0x001... 0x00000000 rootf8] 0 4 unsigned int
0x001... 0x00000000 rootf9] 0 4 unsigned int
0x001. .. 0xCDCDCDCD 4
0x001. .. 0xCDCDCDCD 4
0x001. .. 0xCDCDCDCD 4 <

Figure 193: Symbolic Memory window

Toolbar

At the top of the window there is a toolbar:

Operation Description

Go to The memory location or symbol you want to view.

Zone display Lists the available memory zones to display. To read more about zones,

see Memory addressing, page 143.
Previous Jumps to the previous symbol.

Next Jumps to the next symbol.

Table 89: Symbolic Memory window toolbar

C-SPY® reference __4

The display area

The display area displays the memory space, where information is provided in the
following columns:

Column Description
Location The memory address.
Data The memory contents in hexadecimal format. The data is grouped

according to the size of the symbol. This column is editable.

Variable The variable name; requires that the variable has a fixed memory
location. Local variables are not displayed.

Value The value of the variable. This column is editable.

Type The type of the variable.

Table 90: Symbolic memory window columns

There are several different ways to navigate within the memory space:
o Text that is dropped in the window will be interpreted as symbols
o The scroll bar at the right-side of the window

o The toolbar buttons Next and Previous

o The toolbar list box Go to can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

Symbolic Memory window context menu

The following context menu is available in the Symbolic Memory window:

Mext Symbol
Previous Symbaol

1 Units
2x Units
¢ Units

&dd B Watch Windaw

Figure 194: Symbolic Memory window context menu

The following commands are available on the context menu:

Menu command Description
Next Symbol Jumps to the next symbol.
Previous Symbol Jumps to the previous symbol.

Table 91: Commands on the Symbolic Memory window context menu

Part 7. Reference information 355

C-SPY windows

356

IAR Embedded Workbench® IDE
User Guide

Menu command Description

x|, x2, x4 Units Switches between displaying the memory contents in units of 8, 16,
or 32 bits. This applies only to rows which do not contain a variable.

Add to Watch Window Adds the selected symbol to the Watch window.

Table 91: Commands on the Symbolic Memory window context menu (Continued)

REGISTER WINDOW

The Register window—available from the View menu—gives an up-to-date display of
the contents of the processor registers, and allows you to edit them. When a value
changes it becomes highlighted. Some registers are expandable, which means that the
register contains interesting bits or sub-groups of bits.

You can open several instances of this window, which is very convenient if you want to
keep track of different register groups.

Register 5]
UART hd
TUARTRERTHR = 0xD7 [HUARTLCR = 0x03
TARTDLL = 0xD7 [UARTMCR = 000
TARTRER = 0xD7 [HUARTLSR = 0x00
TUARTTHR = 0xD7 [UARTMSR = 0x00
[+] UARTTER = 0x01 TARTSCR = 0x00
TARTDLM = 0x01
UARTFCRITR = (Ox00
TARTFCR = 0x00
[+|UARTIIR = 0x00

Figure 195: Register window

You can select which register group to display in the Register window using the
drop-down list. To define application-specific register groups, see Defining
application-specific groups, page 148.

C-SPY® reference __4

WATCH WINDOW

The Watch window—available from the View menu—allows you to monitor the values
of C-SPY expressions or variables. You can view, add, modify, and remove expressions
in the Watch window. Tree structures of arrays, structs, and unions are expandable,
which means that you can study each item of these.

Expression Walue Location Type

i 5 R4 short
= root <array> 0x100004 unsigned int[10]
— [0 1 0x100004 unsigned int
= [1 0x100008 unsigned int
= [2] 2 Ox10000C unsigned int
= [3] 3 0x100010 unsigned int
— [4] 5 0x100014 unsigned int
— [5] 0 0x100018 unsigned int
— [6] 0 Ox10001C unsigned int
= [7] 0 0x100020 unsigned int
— [8] 0 0x100024 unsigned int
— 9 0 0x100028 unsigned int

Figure 196: Watch window

Every time execution in C-SPY stops, a value that has changed since the last stop is
highlighted. In fact, every time memory changes, the values in the Watch window are
recomputed, including updating the red highlights.

Watch window context menu

The following context menu is available in the Watch window:

Add
Remave

v Default Format
Binary Format
Ockal Farmat
Decimal Format
Hexadecimal Format
Char Farmat

Show As 3

Figure 197: Watch window context menu

Part 7. Reference information 357

C-SPY windows

358

IAR Embedded Workbench® IDE
User Guide

The menu contains the following commands:

Menu command

Description

Add, Remove

Default Format,
Binary Format,

Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Show As

Adds or removes the selected expression.

Changes the display format of expressions. The display format setting
affects different types of expressions in different ways, see Table 93,
Effects of display format setting on different types of expressions. Your
selection of display format is saved between debug sessions.

Provides a submenu with commands for changing the default type
interpretation of variables. The commands on this submenu are mainly
useful for assembler variables—data at assembler labels—as these are by
default displayed as integers. For more information, see Viewing assembler
variables, page 132.

Table 92: Watch window context menu commands

The display format setting affects different types of expressions in different ways:

Type of expressions

Effects of display format setting

Variable

Array element

Structure field

The display setting affects only the selected variable, not other variables.
The display setting affects the complete array, that is, same display format
is used for each array element.

All elements with the same definition—the same field name and C
declaration type—are affected by the display setting.

Table 93: Effects of display format setting on different types of expressions

LOCALS WINDOW

The Locals window—available from the View menu—automatically displays the local
variables and function parameters.

™ Locals

[_ [0 x]

Expression | Yalue

| Location | Type

i 3

7 shart

Figure 198: Locals window

C-SPY® reference __4

Locals window context menu

The context menu available in the Locals window provides commands for changing the
display format of expressions; for information about these commands, see Watch
window context menu, page 357.

AUTO WINDOW

The Auto window—available from the View menu—automatically displays a useful
selection of variables and expressions in, or near, the current statement.

x
Expression Yalue Location Type
i 4 R4 short
rootfi] 0 0x100014 unsigned int
root <array> 0x100004 unsigned int[10]
get_fib 0x00008164 unsigned int_...
4] 3

Figure 199: Auto window

Auto window context menu

The context menu available in the Auto window provides commands for changing the
display format of expressions; for information about these commands, see Watch
window context menu, page 357.

LIVE WATCH WINDOW

The Live Watch window—available from the View menu—repeatedly samples and
displays the value of expressions while your application is executing. Variables in the
expressions must be statically located, such as global variables.

Expression Yalue Location Type

call_count 0 0100000 int

Figure 200: Live Watch window

Typically, this window is useful for hardware target systems supporting this feature.

Part 7. Reference information 359

C-SPY windows

360

IAR Embedded Workbench® IDE
User Guide

Live Watch window context menu

The context menu available in the Live Watch window provides commands for adding
and removing expressions, changing the display format of expressions, as well as
commands for changing the default type interpretation of variables. For information
about these commands, see Watch window context menu, page 357.

In addition, the menu contains the Options command, which opens the Debugger
dialog box where you can set the Update interval option. The default value of this
option is 1000 milliseconds, which means the Live Watch window will be updated once
every second during program execution.

QUICK WATCH WINDOW

In the Quick Watch window—available from the View menu—you can watch the value
of a variable or expression and evaluate expressions.

Quick Watch B
| Expression | Yalue | Location | Type |
WTDstatus() "Watchdog nottriggered” macro string

Figure 201: Quick Watch window

Type the expression you want to examine in the Expressions text box. Click the
Recalculate button to calculate the value of the expression. For examples about how to
use the Quick Watch window, see Using the Quick Watch window, page 131 and
Executing macros using Quick Watch, page 154.

Quick Watch window context menu

The context menu available in the Quick Watch window provides commands for
changing the display format of expressions, as well as commands for changing the
default type interpretation of variables. For information about these commands, see
Watch window context menu, page 357.

In addition, the menu contains the Add to Watch window command, which adds the
selected expression to the Watch window.

C-SPY® reference __4

STATICS WINDOW

The Statics window—available from the View menu—displays the values of variables
with static storage duration, typically that is variables with file scope but also static
variables in functions and classes. Note that volatile declared variables with static
storage duration will not be displayed.

Expression | Walue | Location | Type |
call_count <Tutotcall_count> 0 DATA0x000060 int
=l root <Utilitiesiroot> <array> DATADx000062 unsigned int[10]
— [0 1 DATADx000062 unsigned int
= [1 DATADx000064 unsigned int
= [2] 2 DATADx000066 unsigned int
= [3] 0 DATADx000068 unsigned int
— [4] 0 DATADx00006A unsigned int
— [5] 0 DATADx00006C unsigned int
— [6] 0 DATADx00006E unsigned int
= [7] 0 DATADx000070 unsigned int
— [8] 0 DATADx000072 unsigned int
— 9 0 DATADx000074 unsigned int

Figure 202: Statics window

The display area

The display area shows the values of variables with static storage duration, where
information is provided in the following columns:

Column Description

Expression The name of the variable. The base name of the variable is followed by
the full name, which includes module, class, or function scope. This
column is not editable.

Value The value of the variable. Values that have changed are highlighted in red.
This column is editable.

Location The location in memory where this variable is stored.

Type The data type of the variable.

Table 94: Symbolic memory window columns

Part 7. Reference information 361

C-SPY windows

362

IAR Embedded Workbench® IDE
User Guide

Statics window context menu

The following context menu is available in the Statics window:

v Default Format
Binary Format
Ockal Farmat
Decimal Format
Hexadecimal Format
Char Format

Select Statics. ..

Figure 203: Statics window context menu

The menu contains the following commands:

Menu command Description

Default Format, Changes the display format of expressions. The display format
Binary Format, setting affects different types of expressions in different ways, see
Octal Format, Table 93, Effects of display format setting on different types of
Decimal Format, expressions. Your selection of display format is saved between
Hexadecimal Format, debug sessions.

Char Format

Select Statics Displays a dialog box where you can select a subset of variables to
be displayed in the Statics window, see Select Statics dialog box,
page 363.

Table 95: Statics window context menu commands

C-SPY® reference __4

SELECT STATICS DIALOG BOX
Use the Select Statics dialog box—available from the context menu in the Statics

window—to select which variables should be displayed in the Statics window.

Select Statics [2] =]

* Show all variables with static storage duration
{~ Show selected variables only

Marme | Type
O call_count =Tutoricall_count = ink
oot <Utilitiesiroot > unsigned int[10]

Select &l Deselect &l [8]4 I Cancel

Figure 204: Select Statics dialog box

Show all variables with static storage duration

Use this option to make all variables be displayed in the Statics window, including new
variables that are added to your application between debug sessions.

Show selected variables only

Use this option to select which variables you want to be displayed in the Statics window.
Note that in this case if you add a new variable to your application between two debug
sessions, this variable will not automatically be displayed in the Statics window. If the
checkbox next to a variable is selected, the variable will be displayed.

Part 7. Reference information 363

C-SPY windows

364

IAR Embedded Workbench® IDE
User Guide

CALL STACK WINDOW

The Call stack window—available from the View menu—displays the C function call
stack with the current function at the top. To inspect a function call, double-click it.
C-SPY now focuses on that call frame instead.

Call Stack =]

3 fibonacci:nth(ing ——— Destination for Step
& nth(3) Into

[Pestartup_call_main + 0xd]

Figure 205: Call Stack window
Each entry has the format:
function(values)

where (values) is alist of the current value of the parameters, or empty if the function
does not take any parameters.

If the Step Into command steps into a function call, the name of the function is
displayed in the grey bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

Call Stack window context menu

The context menu available by right-clicking in the Call Stack window provides the
following commands:

G0 to Source

v Show Arguments
Run ko Cursor
Toggle Breakpoint {Code)
Toggle Breakpoint {Log)
Enablefdisable Ereakpaoint

Figure 206: Call Stack window context menu

Commands

Go to Source Displays the selected functions in the Disassembly or editor
windows.

Show Arguments Shows function arguments.

C-SPY® reference __4

Run to Cursor Executes to the function selected in the call stack.
Toggle Breakpoint (Code) Toggles a code breakpoint.
Toggle Breakpoint (Log) Toggles a log breakpoint.

Enable/Disable Breakpoint Enables or disables the selected breakpoint.

TERMINAL 1/O0 WINDOW

In the Terminal I/O window—available from the View menu—you can enter input to
the application, and display output from it. To use this window, you need to build the
application with the Semihosted or the IAR breakpoint option. C-SPY will then direct
stdin, stdout and stderr to this window. If the Terminal I/O window is closed,
C-SPY will open it automatically when input is required, but not for output.

Terminal I;0 B
Output: Loq file: OFff
1 =
1
2
3
5
8
13
21
34
55 -
K| 3
Input: LCtl codes | Input Mode... |
I— Buffer size: 1]

Figure 207: Terminal 1/0 window

Clicking the Ctrl codes button opens a menu with submenus for input of special
characters, such as EOF (end of file) and NUL.

0:x00-0x0f »
O:x10-0:x1F »
ECF

Figure 208: Ctrl codes menu

Part 7. Reference information

365

C-SPY windows

Clicking the Input Mode button opens the Input Mode dialog box where you choose
whether to input data from the keyboard or from a file.

Input Mode [%]

% Buffered

" Direct —IEanc:eI
" File

& Text

| Binary

$PROJ_DIR$AT erml Dlnput tat J

Figure 209: Input Mode dialog box

For reference information about the options available in the dialog box, see Terminal I/O
options, page 333.

CODE COVERAGE WINDOW

The Code Coverage window—available from the View menu—reports the status of the
current code coverage analysis, that is, what parts of the code that have been executed
at least once since the start of the analysis. The compiler generates detailed stepping
information in the form of step points at each statement, as well as at each function call.
The report includes information about all modules and functions. It reports the amount
of all step points, in percentage, that have been executed and lists all step points that have
not been executed up to the point where the application has been stopped. The coverage
will continue until turned off.

Code Coverage B

[0 5] cf g
=% project] 91.18%

&% Tutar 100.00%
¢ do_foreground_process 100.00%
% main 100.00%
@ next_counter 100.00%
Elc Ltilities 86.96%%

&9 get_fib 65.57%
L B 17238 addr(lx] 144)
& init_fib 100.00%
& @ put_fib 84.62%

Figure 210: Code Coverage window

Note: You can enable the Code Coverage plugin module on the Debugger>Plugins
page available in the Options dialog box.

IAR Embedded Workbench® IDE
366 User Guide

25 e

©

C-SPY® reference __4

Code coverage is not supported by all C-SPY drivers. For information about whether the
C-SPY driver you are using supports code coverage, see the driver-specific
documentation in Part 6. C-SPY hardware debugger systems. Code coverage is
supported by the C-SPY Simulator.

Code coverage commands

In addition to the commands available as icon buttons in the toolbar, clicking the right
mouse button in the Code Coverage window displays a context menu that gives you
access to these and some extra commands.

v Activate
Clear
Refresh
Auko-refresh

Save As...

Figure 211: Code coverage context menu

You can find the following commands on the menu:

Activate Switches code coverage on and off during execution.

Clear Clears the code coverage information. All step points are marked as not
executed.

Refresh Updates the code coverage information and refreshes the window. All step

points that has been executed since the last refresh are removed from the
tree.

Auto-refresh Toggles the automatic reload of code coverage information on and off.
When turned on, the code coverage information is reloaded automatically
when C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As Saves the current code coverage information in a text file.

The following icons are used to give you an overview of the current status on all levels:

A red diamond signifies that 0% of the code has been executed
A green diamond signifies that 100% of the code has been executed

°
°
e A red and green diamond signifies that some of the code has been executed
°

A yellow diamond signifies a step point that has not been executed.

For step point lines, the information displayed is the column number range and the row

number of the step point in the source window, followed by the address of the step point.

<column start>-<column end>:<row>.

Part 7. Reference information

367

C-SPY windows

PROFILING WINDOW

The Profiling window—available from the View menu—displays profiling information,
that is, timing information for the functions in an application. Profiling must be turned
on explicitly using a button in the window’s toolbar, and will stay active until it is turned
off.

The profiler measures time at the entry and return of a function. This means that time
consumed in a function is not added until the function returns or another function is
called. You will only notice this if you are stepping into a function.

Profiling
[© /| el ol

Function I Calls I Flat Time (cycles) I Flat Time (%) I Accumulated Tim I Accumulated Tim. I
Outsicle main 0 207 428 207 428

__putchar 24 72 1.49 72 1.49

_exit 0 1] 0.00 1] 0.00
do_foreground_p... 10 280 579 3880 8223

it 1 3 0.06 3 0.06

get_fib 26 390 8.06 390 8.06

init_fila 1 248 512 488 10.08

main 1 159 329 4627 95 6D

next_counter 1n 70 1.45 70 1.45

put_fib 10 3336 68493 3480 7140

putchar 24 72 1.49 144 2.98

Figure 212: Profiling window
Note:

® You can enable the Profiling plugin module on the Debugger>Plugins page
available in the Options dialog box
o When profiling on hardware, there will be no cycle counter statistics available.

Profiling is not supported by all C-SPY drivers. For information about whether the
C-SPY driver you are using supports profiling, see the driver-specific documentation in
Part 6. C-SPY hardware debugger systems. Profiling is supported by the C-SPY
Simulator.

Profiling commands

In addition to the toolbar buttons, the context menu available in the Profiling window
gives you access to these and some extra commands:

v Activate
Mew Measurement
v Graph
Show details
Refresh
Auko refresh

Save As...

Figure 213: Profiling context menu

IAR Embedded Workbench® IDE
368 User Guide

W [e

© 2

C-SPY® reference __4

You can find the following commands on the menu:

Activate Toggles profiling on and off during execution.

New measurement Starts a new measurement. By clicking the button, the values displayed
are reset to zero.

Graph Displays the percentage information for Flat Time and Accumulated
Time as graphs (bar charts) or numbers.

Show details Shows more detailed information about the function selected in the list.
A window is opened showing information about callers and callees for
the selected function.

Refresh Updates the profiling information and refreshes the window.

Auto refresh Toggles the automatic update of profiling information on and off. When
turned on, the profiling information is updated automatically when
C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As Saves the current profiling information in a text file.

Profiling columns

The Profiling window contains the following columns:

Column Description

Function The name of each function.

Calls The number of times each function has been called.

Flat Time The total time spent in each function in cycles or as a percentage of the
total number of cycles, excluding all function calls made from that
function.

Accumulated Time Time spent in each function in cycles or as a percentage of the total

number of cycles, including all function calls made from that function.

Table 96: Profiling window columns

There is always an item in the list called Qutside main. This is time that cannot be
placed in any of the functions in the list. That is, code compiled without debug
information, for instance, all startup and exit code, and C/C++ library code.

STACK WINDOW

The Stack window is a memory window that displays the contents of the stack. In
addition, some integrity checks of the stack can be performed to detect and warn about
problems with stack overflow. For example, the Stack window is useful for determining
the optimal size of the stack.

Part 7. Reference information 369

C-SPY windows

370

IAR Embedded Workbench® IDE
User Guide

Before you can open the Stack window you must make sure it is enabled: choose
Project>Options>Debugger>Plugins and select Stack from the list of plugins. In
C-SPY, you can then open a Stack window by choosing View>Stack. You can open
several Stack windows, each showing a different stack—if several stacks are
available—or the same stack with different display settings.

| Locati0n| Data | Yariable | Yalue | Frame |
IseREE] oxon

+1 Ox08

+2 0x0000 p.mStatus 0 [1] _exit

+4 Ox4A

+5 0Ox67

+6 OxEOD

+7 0Ox04

Figure 214: Stack window

The stack drop-down menu

If the core you are using has multiple stacks, you can use the stack drop-down menu at
the top of the window to select which stack to view.

The graphical stack bar

At the top of the window, a stack bar displays the state of the stack graphically. To view
the stack bar you must make sure it is enabled: choose Tools>Options>Stack and select
the option Enable graphical stack display and stack usage tracking.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. A green line represents the current value of
the stack pointer. The part of the stack memory that has been used during execution is
displayed in a dark gray color, and the unused part in a light gray color. The graphical
stack bar turns red when the stack usage exceeds a threshold that you can specify.

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.
Whenever execution stops, the stack memory is searched from the end of the stack until
a byte with a value different from 0xcD is found, which is assumed to be how far the
stack has been used. Although this is a reasonably reliable way to track stack usage,
there is no guarantee that a stack overflow is detected. For example, a stack can
incorrectly grow outside its bounds, and even modify memory outside the stack range,

C-SPY® reference __4

without actually modifying any of the bytes near the stack range. Likewise, your
application might modify memory within the stack range by mistake. Furthermore, the
Stack window cannot detect a stack overflow when it happens, but can only detect the
signs it leaves behind.

Note: The size and location of the stack is retrieved from the definition of the section
holding the stack, typically CSTACK, made in the linker configuration file. If you, for
some reason, modify the stack initialization made in the system startup code,
cstartup, you should also change the section definition in the linker configuration file
accordingly; otherwise the Stack window cannot track the stack usage. To read more
about this, see the /AR C/C++ Development Guide for ARM®.

When the stack bar is enabled, the functionality needed to detect and warn about stack

overflows is also enabled, see Stack options, page 330.

The Stack window columns

The main part of the window displays the contents of stack memory in the following
columns:

Column Description

Location Displays the location in memory. The addresses are displayed in
increasing order. The address referenced by the stack pointer, in other
words the top of the stack, is highlighted in a green color.

Data Displays the contents of the memory unit at the given location. From the
Stack window context menu, you can select how the data should be
displayed; as a |-, 2-, or 4-byte group of data.

Variable Displays the name of a variable, if there is a local variable at the given

location. Variables are only displayed if they are declared locally in a
function, and located on the stack and not in registers.

Value Displays the value of the variable that is displayed in the Variable
column.
Frame Displays the name of the function the call frame corresponds to.

Table 97: Stack window columns

Part 7. Reference information 371

C-SPY windows

The Stack window context menu

The following context menu is available if you right-click in the Stack window:

v Show Yariables
v Show Offsets
v 1 Units

2x Units

¢ Units

Options. ..

Figure 215: Stack window context menu

The following commands are available in the context window:

Show variables Separate columns named Variables, Value, and Frame are
displayed in the Stack window. Variables located at memory
addresses listed in the Stack window are displayed in these
columns.

Show offsets When this option is selected, locations in the Location column are
displayed as offsets from the stack pointer. When deselected,
locations are displayed as absolute addresses.

Ix Units The data in the Data column is displayed as single bytes.

2x Units The data in the Data column is displayed as 2-byte groups.

4x Units The data in the Data column is displayed as 4-byte groups.
Options Opens the IDE Options dialog box where you can set options

specific to the Stack window, see Stack options, page 330.

Overriding the default stack setup

The Stack window retrieves information about the stack size and placement from the
definition of the sections holding the stacks made in the linker configuration file. The
sections are described in the JAR C/C++ Development Guide for ARM®.

For applications that set up the stacks using other mechanisms, it is possible to override
the default mechanism. Use any of the C-SPY command-line options, see
--proc_stack_stack, page 455.

Syntax

--proc_stack_mode stackstart, stackend

The parameters stackstart and stackend follow the standard C-SPY expression
syntax. White space characters are not allowed in the expression.

IAR Embedded Workbench® IDE
372 User Guide

SYMBOLS WINDOW

The Symbols window—available from the View menu—displays all symbols with a
static location, that is, C/C++ functions, assembler labels, and variables with static

storage duration, including symbols from the runtime library.

Symbal | Location | Full Mame
call_count 0x00102228 call_count
do_foreground_process 0x000003C8 do_foreground_process()
exit 0x000005E4 exit

get_fib 0x0000028C get_fib(int)

init_fibh 0x00000248 init_fib()

main 0x000003E2 mainf)

next_counter 0x000003BC next_counter()
put_fib 0x000002B8 put_fib{unsigned int)
putchar 0x00000464 putchar

root 0x00102200 root

Figure 216: Symbols window

The display area

C-SPY® reference __4

The display area lists the symbols, where information is provided in the following

columns:

Column Description

Symbol The symbol name.

Location The memory address.

Full Name The symbol name; often the same as the contents of the Symbol column

but differs for example for C++ member functions.

Table 98: Symbols window columns

Click on the column headers to sort the list by name, location, or full name.

Symbols window context menu

The following context menu is available in the Symbols window:

Functions
Variables
Labels

Figure 217: Symbols window context menu

Part 7. Reference information 373

C-SPY menus

The following commands are available on the menu:

Menu command

Description

Function
Variables

Labels

Toggles the display of function symbols in the list.

Toggles the display of variables in the list.

Toggles the display of labels in the list.

Table 99: Commands on the Symbols window context menu

C-SPY menus

In addition to the menus available in the development environment, the Debug and
Disassembly menus are available when C-SPY is running.

Additional menus will be available depending on which C-SPY driver you are using. For
information about driver-specific menus, see the chapter Hardware-specific debugging,

page 213.

DEBUG MENU

The Debug menu provides commands for executing and debugging your application.
Most of the commands are also available as toolbar buttons.

Go
Break:
Reset

FS

Stop Debugging Chrl+5Shift+0
Step Cwver Fi0

Step Inko F11

Skep Cut Shift+F11

Mext Statement
Run ko Cursor
Autostep. ..

Set Mext Statement

Memary
Refresh
Macros. ..
Logging

Figure 218: Debug menu

Menu Command

Description

Go

e+
e

F5

Executes from the current statement or instruction until a
breakpoint or program exit is reached.

Table 100: Debug menu commands

IAR Embedded Workbench® IDE
374 User Guide

E x [&

0 & & &

Menu Command

C-SPY® reference __4

Description

Break

Reset

Stop Debugging Ctrl+Shift+D

Step Over F10
Step Into Fl1
Step Out Shift+F1 |

Next Statement

Run to Cursor

Autostep

Set Next Statement

Memory>Save

Memory>Restore

Refresh

Macros

Stops the application execution.

Resets the target processor.

Stops the debugging session and returns you to the project
manager.

Executes the next statement, function call, or instruction,
without entering C or C++ functions or assembler
subroutines.

Executes the next statement or instruction, entering C or C++
functions or assembler subroutines.

Executes from the current statement up to the statement after
the call to the current function.

Executes directly to the next statement without stopping at
individual function calls.

Executes from the current statement or instruction up to a
selected statement or instruction.

Displays the Autostep settings dialog box which lets you
customize and perform autostepping.

Moves the program counter directly to where the cursor is,
without executing any source code. Note, however, that this
creates an anomaly in the program flow and might have
unexpected effects.

Displays the Memory Save dialog box, where you can save
the contents of a specified memory area to a file, see Memory
Save dialog box, page 352.

Displays the Memory Restore dialog box, where you can
load the contents of a file in Intex-extended or Motorola
s-record format to a specified memory zone, see Memory
Restore dialog box, page 353.

Refreshes the contents of all debugger windows. Because
window updates are automatic, this is needed only in unusual
situations, such as when target memory is modified in ways
C-SPY cannot detect. It is also useful if code that is displayed in
the Disassembly window is changed.

Displays the Macro Configuration dialog box to allow you to
list, register, and edit your macro files and functions.

Table 100: Debug menu commands (Continued)

Part 7. Reference information 375

C-SPY menus

376

IAR Embedded Workbench® IDE
User Guide

Menu Command Description

Logging>Set Log file Displays a dialog box to allow you to log input and output from
C-SPY to a file. You can select the type and the location of the
log file. You can choose what you want to log: errors, warnings,
system information, user messages, or all of these.

Logging> Displays a dialog box to allow you to log terminal input and
Set Terminal I/O Log file output from C-SPY to a file. You can select the destination of
the log file.

Table 100: Debug menu commands (Continued)

Autostep settings dialog box

In the Autostep settings dialog box—available from the Debug menu—you can
customize autostepping.

Autostep settings E

I Step Into [Source level] j Start I
Delay [miIIiseconds]:I‘I] Cancel |

Figure 219: Autostep settings dialog box

The drop-down menu lists the available step commands.

The Delay text box lets you specify the delay between each step.

Macro Configuration dialog box

In the Macro Configuration dialog box—available by choosing Debug>Macros—you
can list, register, and edit your macro files and functions.

C-SPY® reference __4

Macro functions that have been registered using the dialog box will be deactivated when
you exit the debug session, and will not automatically be registered at the next debug

session.

Macro Configuration

Loak in: I) tutor

x| « & ek E-

1 Debug
[settings
Setupadvanced. mac

SetupSimple. mac

File name: ISetupSimpIe.mac

Files of type: IMacro Filez [*.mac]

Selected Macro Files:

Add

C:hprojectshtutorS etupSimple. mac

— Registered Macro

(o] User € System

Parameters
_canceldlinterrupts]

__cancellnterupt int]
_clearBreak [id)
__clozeFile [file]
__dizablelnterrupts Il
__driverType [ztring]

- Spstem Macro -
- Spstem Macro -
- Spstem Macro -
- Spstem Macro -
- Spstem Macro -
- Spstem Macro -

Add All |
Remove |
Remave Al |

Fiegister |

Cloze |

Help

Figure 220: Macro Configuration dialog box

Registering macro files

Select the macro files you want to register in the file selection list, and click Add or Add
All to add them to the Selected Macro Files list. Conversely, you can remove files from

the Selected Macro Files list using Remove or Remove All

Once you have selected the macro files you want to use click Register to register them,
replacing any previously defined macro functions or variables. Registered macro
functions are displayed in the scroll window under Registered Macros. Note that
system macros cannot be removed from the list, they are always registered.

Part 7. Reference information 377

C-SPY menus

378

IAR Embedded Workbench® IDE
User Guide

Listing macro functions

Selecting All displays all macro functions, selecting User displays all user-defined
macros, and selecting System displays all system macros.

Clicking on either Name or File under Registered Macros displays the column
contents sorted by macro names or by file. Clicking a second time sorts the contents in
the reverse order.

Modifying macro files

Double-clicking a user-defined macro function in the Name column automatically
opens the file in which the function is defined, allowing you to modity it, if needed.
Log File dialog box

The Log File dialog box—available by choosing Debug>Logging>Set Log File
—allows you to log output from C-SPY to a file.

r Log File
o Include:
¥ Enable log file
¥ Enmors ¥ “wamings
¥ Info IV User
$PROJ_DIR$ LogFile1.log J

()3 I Cancel |

Figure 221: Log File dialog box

Enable or disable logging to the file with the Enable Log file check box.

The information printed in the file is by default the same as the information listed in the
Log window. To change the information logged, use the Include options:

Option Description

Errors C-SPY has failed to perform an operation.

Warnings A suspected error.

Info Progress information about actions C-SPY has performed.
User Printouts from C-SPY macros, that is, your printouts using the

__message statement.

Table 101: Log file options

Click the browse button, to override the default file type and location of the log file.
Click Save to select the specified file—the default filename extension is log.

C-SPY® reference __4

Terminal I/O Log File dialog box

The Terminal I/O Log Files dialog box—available by choosing
Debug>Logging—allows you to select a destination log file, and to log terminal I/O
input and output from C-SPY to this file.

Temminal 10 Log Files [%]

Temminal 10 Log File

" Enable Terminal |0 log file

Ic::\T erml0.log J

Figure 222: Terminal /0 Log File dialog box

Click the browse button to open a standard Save As dialog box. Click Save to select the
specified file—the default filename extension is log.

DISASSEMBLY MENU

The commands on the Disassembly menu allow you to select which disassembly mode
to use.

Disassemble in Thumb mode

Disassemble in ARM mode

Disassemble in Current processor mode
v Disassemble in Auto mode

Figure 223: Disassembly menu

Note: After changing disassembly mode, you must scroll the window contents up and
down a couple of times to refresh the view.

The Disassembly menu contains the following menu commands:

Menu command Description

Disassemble in Thumb mode Select this option to disassemble your application in Thumb
mode.

Disassemble in ARM Mode Select this option to disassemble your application in ARM
mode.

Disassemble in Current processor Select this option to disassemble your application in the
mode current processor mode.

Disassemble in Auto mode Select this option to disassemble your application in
automatic mode. This is the default option.

Table 102: Description of Disassembly menu commands

See also, Disassembly window, page 346.

Part 7. Reference information 379

C-SPY menus

IAR Embedded Workbench® IDE
380 User Guide

General options

This chapter describes the general options in the IAR Embedded
Workbench® IDE.

For information about how options can be set, see Setting options, page 91.

Target

The Target options specify the processor variant, FPU, and byte order for the IAR
C/C++ Compiler and Assembler.

Target

Processar variant

+ Core ARMITOMI-S -
" Device |

Endian mode FPU
" Little Maone A
" Big

-

~

Figure 224: Target options

Note: There are additional target-specific options available on the Code page, see
Optimizations, page 391.
PROCESSOR VARIANT

Choose between the following two options to specify the processor variant:

Core The processor core you are using. For a description of the available
variants, see the IAR C/C++ Development Guide for ARM®.

Device The device your are using. The choice of device will automatically
determine the default C-SPY® device description file. For information
about how to override the default file, see Device description file, page
430.

Part 7. Reference information 379

Target

ENDIAN MODE

Choose between the following two options to select the byte order for your project:

Little The lowest byte is stored at the lowest address in memory. The
highest byte is the most significant; it is stored at the highest address.

Big The lowest address holds the most significant byte, while the highest
address holds the least significant byte.
There are two variants of the big-endian mode. Choose:
BE8 to make data big endian and code little endian
BE32 to make both data and code big endian.

FPU

Use this option to generate code that carries out floating-point operations using a
Vector Floating Point (VFP) coprocessor. By selecting a VFP coprocessor, you will
override the use of the software floating-point library for all supported floating-point
operations.

Select VFPv1 support if you have a vector floating-point unit conforming to
architecture VFPv1, such as the VFP10rev 0. Similarly, select VFPv2 on a system that
implements a VFP unit conforming to architecture VFPv2, such as the VFP10 rev 1.

VFP9-S is an implementation of the VFPv2 architecture that can be used with the
ARMOE family of CPU cores. Selecting the VFP9 - S coprocessor is therefore identical
to selecting the VFPv2 architecture.

By selecting none (default) the software floating-point library is used.

IAR Embedded Workbench® IDE
380 User Guide

General options __¢

Output

With the Output options you can specify the type of output file—Executable or
Library. You can also specify the destination directories for executable files, object
files, and list files.

Clutput |

— Output file
& Executable
 Library

r— Output directarie:
Executables/libraries:
IDebug\E we

Object files:
|DebugiObi

List files:
|DebughList

Figure 225: Output options

OUTPUT FILE

Use these options to choose the type of output file. Choose between:

Executable As a result of the build process, the linker will create an application (an

(default) executable output file). When this option is selected, linker options will be
available in the Options dialog box. Before you create the output you
should set the appropriate linker options.

Library As a result of the build process, the library builder will create a library file.
When this option is selected, library builder options will be available in the
Options dialog box, and Linker will disappear from the list of categories.
Before you create the library you can set the options.

OUTPUT DIRECTORIES

Use these options to specify paths to destination directories. Note that incomplete paths
are relative to your project directory. You can specify the paths to the following
destination directories:

Executables/libraries Use this option to override the default directory for executable or
library files. Type the name of the directory where you want to save
executable files for the project.

Part 7. Reference information 381

Library Configuration

382

Object files Use this option to override the default directory for object files. Type
the name of the directory where you want to save object files for the
project.

List files Use this option to override the default directory for list files. Type the

name of the directory where you want to save list files for the project.

Library Configuration

IAR Embedded Workbench® IDE
User Guide

With the Library Configuration options you can specify which library to use.

Library Configuration

Library: Description:

Mormal j Use the normal configuration of the C/C++
runtime library. Mo locale interface, C locale, no
file descriptor suppart, no multibytes in printf and
scanf, and no hex floats in strtod.

=

Library low-level interface implementation

" Maone
* Semihasted o
" |AR breakpoint -

Figure 226: Library Configuration options

For information about the runtime library, library configurations, the runtime
environment they provide, and the possible customizations, see /AR C/C++
Development Guide for ARM®.

LIBRARY

In the Library drop-down list you choose which runtime library to use. For information
about available libraries, see the [AR C/C++ Development Guide for ARM®.

The names of the library object file and library configuration file that actually will be
used are displayed in the Library file and Configuration file text boxes, respectively.

CONFIGURATION FILE

The Configuration file text box displays the library configuration file that will be used.
A library configuration file is chosen automatically depending on the project settings. If
you have chosen Custom in the Library drop-down list, you must specify your own
library configuration file.

General options __¢

LIBRARY LOW-LEVEL INTERFACE IMPLEMENTATION

Use these options to choose the type of low-level interface for I/O to be included in the
library.

For Cortex-M, choose between:

None No low-level support for I/O available in the libraries. You must provide
your own __write function to use the I/O functions part of the
library.

Semihosted and with Semihosted I/O which uses the BKPT instruction.
stdout/stderr via
semihosting

Semihosted and with Semihosted I/O which uses the BKPT instruction for all functions

stdout/stderr via except for the stdout and stderr output where the SWO

SWO interface—available on some J-Link debug probes—is used. This means
a much faster mechanism where the application does not need to halt
execution to transfer data.

IAR breakpoint Not available.

For other cores, choose between:

None No low-level support for I/O available in the libraries. You must provide
your own __write function to use the I/O functions part of the
library.

Semihosted Semihosted I/O which uses the SVC instruction (earlier SWI).

IAR breakpoint The IAR proprietary variant of semihosting, which does not use the

SVC instruction and thus does not need to set a breakpoint on the
SVC vector. This is an advantage for applications which require the SVC
vector for their own use, for example an RTOS. This method can also
lead to performance improvements. However, note that this method
does not work with applications, libraries, and object files that are built
using tools from other vendors.

Part 7. Reference information 383

Library Options

384

Library Options

IAR Embedded Workbench® IDE
User Guide

With the options on the Library Options page you can choose printf and scanf
formatters.

Library Options
Frintf farmatter
[Ful |
Full formatting.
Scanf formatter
[Ful |

Full formatting.

™ Buffered terminal output

Figure 227: Library Options page

See the /AR C/C++ Development Guide for ARM® for more information about the
formatting capabilities.

PRINTF FORMATTER

The full formatter version is memory-consuming, and provides facilities that are not
required in many embedded applications. To reduce the memory consumption,
alternative versions are also provided:

Printf formatters in the library are: Full, Large, Small, and Tiny.

SCANF FORMATTER

The full formatter version is memory-consuming, and provides facilities that are not
required in many embedded applications. To reduce the memory consumption,
alternative versions are also provided:

Scanf formatters in the library are: Full, Large, and Small.

For more information about using the stacks and heaps, see the /AR C/C++
Development Guide for ARM®.

BUFFERED TERMINAL OUTPUT

Use this option to make output via stdout buffered, to increase performance. Note that
memory consumption is slightly increased.

General options __¢

MISRA C

Use the options on the MISRA C page to control how the IDE checks the source code
for deviations from the MISRA C rules. The settings will be used for both the compiler
and the linker.

For details about specific option, see the IAR Embedded Workbench® MISRA C
Reference Guide available from the Help menu.

Part 7. Reference information

385

MISRA C

IAR Embedded Workbench® IDE
386 User Guide

Compiler options

This chapter describes the compiler options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Multi-file compilation

Before you set specific compiler options, you can decide if you want to use multi-file
compilation, which is an optimization technique. If the compiler is allowed to compile
multiple source files in one invocation, it can in many cases optimize more efficiently.

You can use this option for the entire project or for individual groups of files. All C/C++
source files in such a group will be compiled together using one invocation of the
compiler.

In the Options dialog box, select Multi-file Compilation to enable multi-file
compilation for the group of project files that you have selected in the workspace
window. Use Discard Unused Publics to discard any unused public functions and
variables from the compilation unit.

Factory Settings

Iv Multi-file Compilation
[Discard Unused Publics

Figure 228: Multi-file Compilation

If you use this option, all files included in the selected group will be compiled using the
compiler options which have been set on the group or nearest higher enclosing node
which has any options set. Any overriding compiler options on one or more files are
ignored when building, because a group compilation must use exactly one set of options.

For information about how multi-file compilation is displayed in the workspace
window, see Workspace window, page 266.

For more information about multi-file compilation and discarding unused public
functions, see the /AR C/C++ Development Guide for ARM®.

Part 7. Reference information 387

Language

388

Language

IAR Embedded Workbench® IDE
User Guide

The Language options enable the use of target-dependent extensions to the C or C++
language.

Language|

— Language

@

 Embedded C++
 Extended Embedded C++
' Automatic [extension based)

™ Require pratotypes

r— Language conformance Flain ‘char' iz
& Allow |AR extensions " Signed
" Relaxed IS0/4NS] & Unsigned
£ Shrict 150/8M51

™ Enable multibyte support

Figure 229: Compiler language options

LANGUAGE

With the Language options you can specify the language support you need.

For information about Embedded C++ and Extended Embedded C++, see the JAR
C/C++ Development Guide for ARM®.

C
By default, the IAR C/C++ Compiler runs in ISO/ANSI C mode, in which features
specific to Embedded C++ and Extended Embedded C++ cannot be utilized.

Embedded C++

In Embedded C++ mode, the compiler treats the source code as Embedded C++. This
means that features specific to Embedded C++, such as classes and overloading, can be
utilized.

Extended Embedded C++

In Extended Embedded C++ mode, you can take advantage of features like namespaces
or the standard template library in your source code.

Compiler options _o

Automatic

If you select Automatic, language support will be decided automatically depending on
the filename extension of the file being compiled:
e Files with the filename extension ¢ will be compiled as C source files

e Files with the filename extension cpp will be compiled as Extended Embedded C++
source files.

REQUIRE PROTOTYPES

This option forces the compiler to verify that all functions have proper prototypes. Using
this option means that code containing any of the following will generate an error:

e A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration
e A function definition of a public function with no previous prototype declaration

e An indirect function call through a function pointer with a type that does not include
a prototype.

LANGUAGE CONFORMANCE

Language extensions must be enabled for the compiler to be able to accept
ARM-specific keywords as extensions to the standard C or C++ language. In the IDE,
the option Allow IAR extensions is enabled by default.

The option Relaxed ISO/ANSI disables IAR extensions, but does not adhere to strict
ISO/ANSL

Select the option Strict ISO/ANSI to adhere to the strict ISO/ANSI C standard.
For details about language extensions, see the JAR C/C++ Development Guide for
ARM®.

PLAIN 'CHAR' IS

Normally, the compiler interprets the char type as unsigned char. Use this option to
make the compiler interpret the char type as signed char instead, for example for
compatibility with another compiler.

Note: The runtime library is compiled with unsigned plain characters. If you select the
Signed option, you might get type mismatch warnings from the linker as the library uses
unsigned char.

Part 7. Reference information 389

Code

390

ENABLE MULTIBYTE SUPPORT

By default, multibyte characters cannot be used in C or Embedded C++ source code. If
you use this option, multibyte characters in the source code are interpreted according to
the host computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Code

The Code options determine several target-specific settings for code generation.

Code

W Generate interwark code
Processor mode

" Am
* Thumb

Figure 230: Compiler code options

GENERATE INTERWORK CODE
Use this option, which is selected by default, to be able to mix ARM and Thumb code.

PROCESSOR MODE

Choose between the following two options to select the processor mode for your project:

Arm Generates code that uses the full 32-bit instruction set.

Thumb Generates code that uses the reduced |6-bit instruction set. Thumb
code minimizes memory usage and provides higher performance in
8/16-bit bus environments.

IAR Embedded Workbench® IDE
User Guide

Compiler options °

Optimizations

The Optimizations options determine the type and level of optimization for generation
of object code.

Optimizations
Lewvel Enabled transformations:
" None [Common subesprezzion elimination A
& Low [Loop unralling
 Medium [Function |.nI|n|ng
[Code mation

£ High] Type-bazed alias analyzis

[5tatic clustering

[Instruction zcheduling b

Figure 231: Compiler optimizations options

OPTIMIZATIONS

The compiler supports different levels of optimizations, and for the highest level it is
possible to fine-tune the optimizations explicitly for an optimization goal—size or
speed. Choose between:

None (best debug support)

Low

Medium

High, balanced (balancing between speed and size)

High, speed (favors speed)

High, size (favors size).

By default, a debug project will have a size optimization that is fully debuggable, while
a release project will have a high balanced optimization that generates small code
without sacrificing speed.

For a list of optimizations performed at each optimization level, see the /AR C/C++
Development Guide for ARM®.

Part 7. Reference information 391

Output

Enabled transformations
The following transformations are available on different level of optimizations:

Common subexpression elimination
Loop unrolling

Function inlining

Code motion

Type-based alias analysis

Static variable clustering

Instruction scheduling.

When a transformation is available, you can enable or disable it by selecting its check
box.

In a debug project, the transformations are by default disabled. In a release project, the
transformations are by default enabled.

For a brief description of the transformations that can be individually disabled, see the
IAR C/C++ Development Guide for ARM®.

Output

The Output options determine settings for the generated output.

Clutput |

[V Generate debug information

Code section name:
I.text

Figure 232: Compiler output options

IAR Embedded Workbench® IDE
392 User Guide

Compiler options _o

GENERATE DEBUG INFORMATION

This option causes the compiler to include additional information in the object modules
that is required by C-SPY® and other symbolic debuggers.

The Generate debug information option is selected by default. Deselect this option if
you do not want the compiler to generate debug information.

Note: The included debug information increases the size of the object files.

CODE SECTION NAME

The compiler places functions into named sections which are referred to by the IAR
ILINK Linker. Use the text field to specify a different name than the default name to
place any part of your application source code into separate non-default sections. This
is useful if you want to control placement of your code to different address ranges and
you find the @ notation, alternatively the #pragma location directive, insufficient.

Note: Take care when explicitly placing a function in a predefined section other than
the one used by default. This is useful in some situations, but incorrect placement can
result in anything from error messages during compilation and linking to a
malfunctioning application. Carefully consider the circumstances; there might be strict
requirements on the declaration and use of the function or variable.

Note that any changes to the section names require a corresponding modification in the
linker configuration file.

For detailed information about sections and the different methods for controlling
placement of code, see the /AR C/C++ Development Guide for ARM®.

Part 7. Reference information 393

List

394

List

IAR Embedded Workbench® IDE
User Guide

The List options determine whether a list file is produced, and the information is
included in the list file.

List |

™ Output list file
| fissemblern memarics
™| Diagnostics

™ Output assembler file
| Ihelude source
¥ | Irelude callframe infarmation

Figure 233: Compiler list file options

Normally, the compiler does not generate a list file. Select any of the following options
to generate a list file or an assembler file. The list file will be saved in the Li st directory,
and its filename will consist of the source filename, plus the filename extension 1st.
You can open the output files directly from the Qutput folder which is available in the
Workspace window.

OUTPUT LIST FILE

Select the Output list file option and choose the type of information to include in the
list file:

Assembler mnemonics Includes assembler mnemonics in the list file.

Diagnostics Includes diagnostic information in the list file.

OUTPUT ASSEMBLER FILE

Select the Output assembler file option and choose the type of information to include
in the list file:

Include source Includes source code in the assembler file.

Include call frame information Includes compiler-generated information for runtime
model attributes, call frame information, and frame size
information.

Compiler options _o

Preprocessor

The Preprocessor options allow you to define symbols and include paths for use by the
compiler.

Preprocessor |

™ lgnore standard include directaries $TOOLKIT_DIR$AMNCY

Additional include directories: [one per lineg]

=
=
-

Preinclude file:

Defined symbols: [one per line)

;I ™ Preprocessor output to file
= Freserve commments
= Fererateline ditestives

|

Figure 234: Compiler preprocessor options

IGNORE STANDARD INCLUDE DIRECTORIES

If you select this option, the standard include files will not be used when the project is
built.

ADDITIONAL INCLUDE DIRECTORIES

The Additional include directories option adds a path to the list of #include file
paths. The paths required by the product are specified by default depending on your
choice of runtime library.

Type the full file path of your #include files.

Note: Any additional directories specified using this option will be searched before the
standard include directories.

To make your project more portable, use the argument variable $TOOLKIT_DIRS for the
subdirectories of the active product and $PROJ_DIRS for the directory of the current
project. For an overview of the argument variables, see Argument variables summary,
page 306.

Part 7. Reference information 395

Diagnostics

396

PREINCLUDE FILE

Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

DEFINED SYMBOLS

The Defined symbols option is useful for conveniently specifying a value or choice that
would otherwise be specified in the source file.

Type the symbols that you want to define for the project, for example:
TESTVER=1
Note that there should be no space around the equal sign.

The Defined symbols option has the same effect as a #define statement at the top of
the source file.

For example, you might arrange your source to produce either the test or production
version of your application depending on whether the symbol TESTVER was defined. To
do this you would use include sections such as:

#ifdef TESTVER
; additional code lines for test version only
#endif

You would then define the symbol TESTVER in the Debug target but not in the Release
target.

PREPROCESSOR OUTPUT TO FILE

By default, the compiler does not generate preprocessor output.

Select the Preprocessor output to file option if you want to generate preprocessor
output. You can also choose to preserve comments and/or to generate #1ine directives.

Diagnostics

IAR Embedded Workbench® IDE
User Guide

The Diagnostics options determine how diagnostics are classified and displayed. Use
the diagnostics options to override the default classification of the specified diagnostics.

Compiler options _o

Note: The diagnostics cannot be suppressed for fatal errors, and fatal errors cannot be
reclassified.

Diagnostics |
[T Enable remarks

Suppress theze diagnostics:

Treat these as remarks:

Treat these as warnings:

Treat these as emars:

™ Treat all wamings as emors

Figure 235: Compiler diagnostics options

ENABLE REMARKS

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that might cause strange behavior in the generated code.

By default remarks are not issued. Select the Enable remarks option if you want the
compiler to generate remarks.

SUPPRESS THESE DIAGNOSTICS

This option suppresses the output of diagnostics for the tags that you specify.

For example, to suppress the warnings Pe117 and Pel77, type:

Pell7,pPel77

TREAT THESE AS REMARKS

A remark is the least severe type of diagnostic message. It indicates a source code
construct that might cause strange behavior in the generated code. Use this option to
classify diagnostics as remarks.

For example, to classify the warning Pe177 as a remark, type:

pPel77

Part 7. Reference information 397

MISRA C

398

TREAT THESE AS WARNINGS

A warning indicates an error or omission that is of concern, but which will not cause the
compiler to stop before compilation is completed. Use this option to classify diagnostic
messages as warnings.

For example, to classify the remark Pe826 as a warning, type:

Pe826

TREAT THESE AS ERRORS

An error indicates a violation of the C or C++ language rules, of such severity that object
code will not be generated, and the exit code will be non-zero. Use this option to classify
diagnostic messages as errors.

For example, to classify the warning Pe117 as an error, type:

Pell?7

TREAT ALL WARNINGS AS ERRORS

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, object code is not generated.

MISRA C

IAR Embedded Workbench® IDE
User Guide

Use these options to override the options set on the MISRA C page of the General
Options category.

For details about specific option, see the JAR Embedded Workbench® MISRA C
Reference Guide available from the Help menu.

Compiler options __4

Extra Options

The Extra Options page provides you with a command line interface to the compiler.

r

(Eammatd e apti

Figure 236: Extra Options page for the compiler

USE COMMAND LINE OPTIONS

Additional command line arguments for the compiler (not supported by the GUI) can be
specified here.

Part 7. Reference information 399

Extra Options

IAR Embedded Workbench® IDE
400 User Guide

Assembler options

This chapter describes the assembler options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Language

The Language options control the code generation of the assembler.

Language|
V' User symbols are case sensitive

" Enable multibyte suppart

Macro quote characters:

< ~

[Allow altemative register names, mhemonics and operands

Figure 237: Assembler language options

USER SYMBOLS ARE CASE SENSITIVE

By default, case sensitivity is on. This means that, for example, LABEL and l1abel refer
to different symbols. You can deselect User symbols are case sensitive to turn case
sensitivity off, in which case LABEL and label will refer to the same symbol.

ENABLE MULTIBYTE SUPPORT

By default, multibyte characters cannot be used in assembler source code. If you use this
option, multibyte characters in the source code are interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in comments, in string literals, and in character
constants. They are transferred untouched to the generated code.

Part 7. Reference information 401

402

IAR Embedded Workbench® IDE
User Guide

MACRO QUOTE CHARACTERS

The Macro quote characters option sets the characters used for the left and right quotes
of each macro argument.

By default, the characters are < and >. This option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or >.

From the drop-down list, choose one of four types of brackets to be used as macro quote
characters:

tacro quote characters
< 'I

[
[
{

Figure 238: Choosing macro quote characters

ALLOW ALTERNATIVE REGISTER NAMES, MNEMONICS AND
OPERANDS

To enable migration from an existing application to the IAR Assembler for ARM,
alternative register names, mnemonics, and operands can be allowed. This is controlled
by the assembler command line option -5. Use this option for assembler source code
written for the ARM ADS/RVCT assembler. For more information, see the ARM® [I4AR
Assembler Reference Guide.

Assembler options ___¢

Output

The Output options allow you to generate information to be used by a debugger such
as the IAR C-SPY® Debugger.

Clutput |

[V Generate debug information

Figure 239: Assembler output options

GENERATE DEBUG INFORMATION

The Generate debug information option must be selected if you want to use a
debugger with your application. By default, this option is selected in a Debug project,
but not in a Release project.

Part 7. Reference information 403

List
The List options are used for making the assembler generate a list file, for selecting the
list file contents, and generating other listing-type output.

List |
I™ Olutput fist fle
¥ | Irelude header | melude cross reference
¥ | Include listing I~ | #defines
I~ | Hincluded text I~ Internial symbiols
™| Macro defiritions I~ Dual line spacing

— .
¥ tacio ERpAnEOns r Lines/page: ISD—

™| acre execution itfa

Tat ing: IB
™| Assembled lines anly A
| Fultiine code

Figure 240: Assembler list file options

By default, the assembler does not generate a list file. Selecting Output list file causes
the assembler to generate a listing and send it to the file sourcename.1st.

Note: If you want to save the list file in another directory than the default directory for
list files, use the Output Directories option in the General Options category; see
Output, page 381, for additional information.

INCLUDE HEADER

The header of the assembler list file contains information about the product version, date
and time of assembly, and the command line equivalents of the assembler options that
were used. Use this option to include the list file header in the list file.

INCLUDE LISTING

Use the suboptions under Include listing to specify which type of information to
include in the list file:

Option Description

#included text Includes #include files in the list file.

Macro definitions Includes macro definitions in the list file.

Macro expansions Includes macro expansions in the list file.

Macro execution info Prints macro execution information on every call of a macro.

Table 103: Assembler list file options

IAR Embedded Workbench® IDE
404 User Guide

Assembler options ___¢

Option Description
Assembled lines only Excludes lines in false conditional assembler sections from the list file.
Multiline code Lists the code generated by directives on several lines if necessary.

Table 103: Assembler list file options (Continued)

INCLUDE CROSS-REFERENCE

The Include cross reference option causes the assembler to generate a cross-reference
table at the end of the list file. See the ARM® IAR Assembler Reference Guide for
details.

LINES/PAGE

The default number of lines per page is 80 for the assembler list file. Use the Lines/page
option to set the number of lines per page, within the range 10 to 150.

TAB SPACING

By default, the assembler sets eight character positions per tab stop. Use the Tab
spacing option to change the number of character positions per tab stop, within the
range 2 to 9.

Preprocessor

The Preprocessor options allow you to define include paths and symbols in the
assembler.

Preprocessor l

[Ignore standard include directories [$TOOLKIT_DIR$MNCY

Additional include directories: [one per ling]

Defined symbols: [one per line)

Figure 241: Assembler preprocessor options

Part 7. Reference information 405

IGNORE STANDARD INCLUDE DIRECTORIES

If you select this option, the standard include files will not be used when the project is
built.

ADDITIONAL INCLUDE DIRECTORIES

The Additional include directories option adds paths to the list of # include file paths.
The path required by the product is specified by default.

Type the full path of the directories that you want the assembler to search for #include
files.

To make your project more portable, use the argument variable $TOOLKIT_DIR$ for the
subdirectories of the active product and $PROJ_DIRS for the directory of the current
project. For an overview of the argument variables, see Table 68, Argument variables,
page 306.

See the ARM® IAR Assembler Reference Guide for information about the #include
directive.

Note: By default the assembler also searches for #include files in the paths specified
in the TASMARM_INC environment variable. We do not, however, recommend that you
use environment variables in the IDE.

DEFINED SYMBOLS

This option provides a convenient way of specifying a value or choice that you would
otherwise have to specify in the source file.

Type the symbols you want to define, one per line.

e For example, you might arrange your source to produce either the test or production
version of your application depending on whether the symbol TESTVER was
defined. To do this you would use include sections such as:

#ifdef TESTVER
; additional code lines for test version only
#endif

You would then define the symbol TESTVER in the Debug target but not in the
Release target.

e Alternatively, your source might use a variable that you need to change often, for
example FRAMERATE. You would leave the variable undefined in the source and use
this option to specify a value for the project, for example FRAMERATE=3.

To delete a user-defined symbol, select in the Defined symbols list and press the Delete
key.

IAR Embedded Workbench® IDE
406 User Guide

Assembler options ___¢

Diagnostics
Use the Diagneostics options to disable or enable individual warnings or ranges of
warnings.
Diagnostics |
Warning:
' Enable & 4l wamings

" Dizable © Just warning: I
" amings from: l— o l—

™ Maw number of emors: |1DD

Figure 242: Assembler diagnostics options

The assembler displays a warning message when it finds an element of the source code
that is legal, but probably the result of a programming error.

By default, all warnings are enabled. The Diagnostics options allow you to enable only
some warnings, or to disable all or some warnings.

Use the radio buttons and entry fields to specify which warnings you want to enable or
disable.

For additional information about assembler warnings, see the ARM® IAR Assembler
Reference Guide.

MAX NUMBER OF ERRORS

By default, the maximum number of errors reported by the assembler is 100. This option
allows you to decrease or increase this number, for example, to see more errors in a
single assembly.

Part 7. Reference information 407

Extra Options

The Extra Options page provides you with a command line interface to the assembler.

r

(Eammatd e apti

Figure 243: Extra Options page for the assembler

USE COMMAND LINE OPTIONS

Additional command line arguments for the assembler (not supported by the GUI) can
be specified here.

IAR Embedded Workbench® IDE
408 User Guide

Converter options

This chapter describes the options available in the IAR Embedded
Workbench® IDE for converting output files from the ELF format.

For information about how to set options, see Setting options, page 91.

Output

The Output options are used for specifying details about the promable output format
and the level of debugging information included in the output file.

Olutput

™ Generate additional output

| I

Figure 244: Converter output file options

PROMABLE OUTPUT FORMAT

The ILINK linker generates ELF as output, optionally including DWAREF for debug
information. Use the Promable output format drop-down list to convert the ELF
output to a different format, for example, Motorola or Intel-extended. The ielftool
converter is used for converting the file. For more information about the converter, see
the IAR C/C++ Development Guide for ARM®.

OUTPUT FILE

Use Output file to specify the name of the ar converted output file. If a name is not
specified, the linker will use the project name with a filename extension. The filename
extension depends on which output format you choose; for example, either srec or hex.

Part 7. Reference information 409

Output

Override default

Use this option to specify a filename or filename extension other than the default.

IAR Embedded Workbench® IDE
410 User Guide

Custom build options

This chapter describes the Custom Build options available in the IAR
Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Custom Tool Configuration
To set custom build options in the IDE, choose Project>Options to display the Options
dialog box. Then select Custom Build in the Category list to display the Custom Tool
Configuration page:

Custom Tool Configuration |

Filename extensions:

Command line:

Output files [one per line]:

=

Additional input files [one per line]:

L

K1

Figure 245: Custom tool options

In the Filename extensions text box, specify the filename extensions for the types of
files that are to be processed by this custom tool. You can enter several filename
extensions. Use commas, semicolons, or blank spaces as separators. For example:

.htm; .html
In the Command line text box, type the command line for executing the external tool.
In the Output files text box, enter the output files from the external tool.

If there are any additional files that are used by the external tool during the building
process, these files should be added in the Additional input files text box. If these
additional input files, so-called dependency files, are modified, the need for a rebuild is
detected.

For an example, see Extending the tool chain, page 96.

Part 7. Reference information 411

IAR Embedded Workbench® IDE
412 User Guide

Build actions options

This chapter describes the options for pre-build and post-build actions
available in the IAR Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Build Actions Configuration
To set options for pre-build and post-build actions in the IDE, choose Project>Options
to display the Options dialog box. Then select Build Actions in the Category list to
display the Build Actions Configuration page.

These options apply to the whole build configuration, and cannot be set on groups or
files.

Build Actions Configuration

Fre-build command line:

Post-build command line:

Ll

Figure 246: Build actions options

PRE-BUILD COMMAND LINE

Type a command line to be executed directly before a build a browse button for locating
an extended command line file is available for your convenience. The commands will
not be executed if the configuration is already up-to-date.

Part 7. Reference information 413

POST-BUILD COMMAND LINE

Type a command line to be executed directly after each successful build a browse button
is available for your convenience. The commands will not be executed if the
configuration was up-to-date. This is useful for copying or post-processing the output

file.

IAR Embedded Workbench® IDE
414 User Guide

Linker options

This chapter describes the ILINK options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Config

With the Config options you can specify the path and name of the linker configuration
file and define symbols for the configuration file.

Config

Linker configuration file
[~ Overide default

| [-]
B

Configuration file symbal definitions: [one per ling]

Figure 247: Linker configuration options

LINKER CONFIGURATION FILE

A default linker configuration file is selected automatically based on your project
settings. You can override this by selecting the Override default option, and then
specifying an alternative file.

The argument variables $TOOLKIT_DIRS or $PROJ_DIRS can be used here too, to
specify a project-specific or predefined configuration file.

Click Edit to open the Linker configuration file editor dialog box, see Linker
configuration file editor, page 416.

Part 7. Reference information

415

Config

416

IAR Embedded Workbench® IDE
User Guide

CONFIGURATION FILE SYMBOL DEFINITIONS

Use the text box to define constant configuration symbols to be used in the configuration
file. Such symbols have the same effect as symbols defined using the define symbol
directive in the linker configuration file.

LINKER CONFIGURATION FILE EDITOR

The Linker configuration file editor dialog box—available from the linker Config
page—provides a graphical interface for editing the linker configuration file. On the
linker Config page you can see the name of the file you are editing. The first time you
edit the file after creating a project, a copy of the default template file generic.icf
will be created.

Linker configuration file editor.

Miscellaneaus lMemory Regions] StackjHeap Sizes]

.inbvec start | Ox0

Save | Cancel |

Figure 248: Linker configuration file editor

On the pages Miscellaneous, Memory Regions, and Stack/Heap Sizes you can specify
the interrupt vector start address, the start and end addresses for ROM and RAM
memory, and the stack and heap sizes that suit your application.

See the AR C/C++ Development Guide for ARM® for more information about the
linker configuration file.

Linker options °

Library

With the options on the Library Usage page you can make settings for library usage.

Library

Iv Automatic runtime library selection

Additional libraries: [one per line]

™ Overide default program entry
v
i

Figure 249: Library page

See the [AR C/C++ Development Guide for ARM® for more information about
available libraries.

AUTOMATIC RUNTIME LIBRARY SELECTION

Use this option to make ILINK automatically choose the appropriate library based on
your project settings.

ADDITIONAL LIBRARIES

Use the text box to specify additional libraries that you want the linker to include during
the link process. Note that you can only specify one library per line.

OVERRIDE DEFAULT PROGRAM ENTRY

By default, the program entry is the label __iar_program_start. The linker will
make sure that a module containing the program entry label is included, and that the
section containing that label is not discarded.

Use the option Override default program entry to override the default entry label.
Choose between:

Entry symbol Specifies a different entry symbol than used by default. Use the text
field to specify a symbol other than __iar_ program_start to
use for the program entry.

Part 7. Reference information 417

Input

418

Defined by application Disables the use of an entry symbol. The linker will, as always, include

all program modules, and enough library modules to satisfy all symbol
references, keeping all sections that are marked with the root
attribute or that are referenced, directly or indirectly, from such a
section.

Input

IAR Embedded Workbench® IDE
User Guide

The Input options are used for specifying how to handle input to the linker.

Keep symbols: [one per lineg]

Input

Fiaw binary image

File:

Symbol: Section: Align:

=1 |

Figure 250: Linker input file options

KEEP SYMBOLS

Normally, the linker keeps a symbol only if it is needed by your application.

Use the text box to specify a symbol, or several symbols one per line, that you want to
always be included in the final application.

RAW BINARY IMAGE

Use the Raw binary image options to link pure binary files in addition to the ordinary
input files. Use the text boxes to specify the following parameters:

File
Symbol
Section

Align

The pure binary file you want to link.
The symbol defined by the section where the binary data is placed.
The section where the binary data will be placed.

The alignment of the section where the binary data is placed.

Linker options °

The entire contents of the file are placed in the section you specify, which means it can
only contain pure binary data, for example, the raw-binary output format. The section
where the contents of the specified file is placed, is only included if the specified symbol
is required by your application. Use the --keep linker option if you want to force a
reference to the symbol. Read more about single output files and the --keep option in
the IAR C/C++ Development Guide for ARM®.

Output

The Output options are used for specifying details about the output.

Olutput

Clutput file:

project].out

¥ Include debug information in output

Figure 251: Linker output file options

OUTPUT FILE

Use Output file to specify the name of the ILINK output file. If you do not specify a
name, the linker will use the project name with the filename extension out.

INCLUDE DEBUG INFORMATION IN OUTPUT

Use Include debug information in output to make the linker generate an ELF output
file including DWAREF for debug information.

Part 7. Reference information 419

List

420

List

IAR Embedded Workbench® IDE
User Guide

The List options determine the generation of an linker listing.

List |
™ Generate linker map file

[" Generate log
™| Iritialization desisiors
| Medile selections
| Section selections

™| Weneer statistics

Figure 252: Linker diagnostics options

GENERATE LINKER MAP FILE

Use the Generate linker map file option to produce a linker memory map file. The map
file has the filename extension map. For detailed information about the map file and its
contents, see the [AR C/C++ Development Guide for ARM®.

GENERATE LOG

Use the Generate log options to save log information to a file. The log file will be placed
in the 1ist directory and have the filename extension 1og. The log information can be
useful for understanding why an executable image became the way it is. You can
optionally choose to log:

o Initialization decisions

o Module selections

e Section selections
°

Veneer statistics.

Linker options °

#define

You can define symbols with the #define option.

Hdefine |

Defined symbols: [one per line]

Figure 253: Linker defined symbols options

DEFINED SYMBOLS

Use the text box to define absolute symbols at link time. This is especially useful for
configuration purposes.

Type the symbols that you want to define for the project, for example:
TESTVER=1
Note that there should be no space around the equal sign.

Any number of symbols can be defined in a linker configuration file. The symbol(s)
defined in this manner will be located in a special module called ?ABS_ENTRY_MOD,
which is generated by the linker.

The linker will display an error message if you attempt to redefine an existing symbol.

Diagnostics

The Diagnostics options determine how diagnostics are classified and displayed. Use
the diagnostics options to override the default classification of the specified diagnostics.

Part 7. Reference information 421

Diagnostics

422

IAR Embedded Workbench® IDE
User Guide

Note: The diagnostics cannot be suppressed for fatal errors, and fatal errors cannot be
reclassified.

Diagnostics |
[T Enable remarks

Suppress theze diagnostics:

Treat these as remarks:

Treat these as warnings:

Treat these as emars:

™ Treat all wamings as emors

Figure 254: Linker diagnostics options

ENABLE REMARKS

The least severe diagnostic messages are called remarks. A remark indicates a
construction that might cause strange behavior in the generated code.

By default remarks are not issued. Select the Enable remarks option if you want the
linker to generate remarks.

SUPPRESS THESE DIAGNOSTICS

This option suppresses the output of diagnostics for the tags that you specify.

For example, to suppress the warnings Pe117 and Pel77, type:

Pell7,pPel77

TREAT THESE AS REMARKS

A remark is the least severe type of diagnostic message. It indicates a construction that
might cause strange behavior in the generated code or the executable image. Use this
option to classify diagnostics as remarks.

For example, to classify the warning Pe177 as a remark, type:

pPel77

Linker options °

TREAT THESE AS WARNINGS

A warning indicates an error or omission that is of concern, but which will not cause the
linker to stop before linking is completed. Use this option to classify diagnostic
messages as warnings.

For example, to classify the remark Pe826 as a warning, type:

Pe826

TREAT THESE AS ERRORS

An error indicates a violation of the linking rules, of such severity that an executable
image will not be generated, and the exit code will be non-zero. Use this option to
classify diagnostic messages as errors.

For example, to classify the warning Pe117 as an error, type:

Pell?7

TREAT ALL WARNINGS AS ERRORS

Use this option to make the linker treat all warnings as errors. If the linker encounters
an error, an executable image is not generated.

Checksum

With the Checksum options you can specify details about how the code is generated.

Checksum
v Fill urused code mermary
Fill pattern: O=FF
Start address: 0x0 End address:

0x0
¥ Generate checksum
Size: ’m Aligrment: ’17
" Arithmetic sum
+ CRC16 [0x11021)
" CRC32 (0x4C11DEB7)

" Crc polynomial:

Complement: ’h Initial walue:
Bitorder [MSB first | |00

Figure 255: Linker checksum and fill options

For more information about filling and checksumming, see the /AR C/C++
Development Guide for ARM®.

Part 7. Reference information 423

Checksum

424

IAR Embedded Workbench® IDE
User Guide

FILL UNUSED CODE MEMORY

Use Fill unused code memory to fill unused memory in the supplied range.

Fill pattern

Use this option to specify size, in hexadecimal notation, of the filler to be used in gaps
between segment parts.

Start address

Use this option to specify the start address of the range to be filled.

Start address

Use this option to specify the end address of the range to be filled.

Generate checksum

Use Generate checksum to checksum the supplied range.

Size

Size specifies the number of bytes in the checksum, which can be 1, 2, or 4.

Algorithms

One of the following algorithms can be used:

Algorithms Description

Arithmetic sum Simple arithmetic sum

CRCI6 CRCI6, generating polynomial Ox 11021 (default)
CRC32 CRC32, generating polynomial 0x104C11DB7

Crc polynomial CRC with a generating polynomial of the value you enter

Table 104: Linker checksum algorithms

Complement

Use the Complement drop-down list to specify the one’s complement or two’s
complement.

Bit order

By default it is the most significant 1, 2, or 4 bytes (MSB) of the result that will be
output, in the natural byte order for the processor. Choose LSB from the Bit order
drop-down list if you want the least significant bytes to be output.

Linker options °

Alignment

Use this option to specify an optional alignment for the checksum. If you do not specify
an alignment explicitly, an alignment of 2 is used.

Initial value

Use this option to specify the initial value of the checksum.

Extra Options

The Extra Options page provides you with a command line interface to the linker.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Figure 256: Extra Options page for the linker

USE COMMAND LINE OPTIONS

Additional command line arguments for the linker (not supported by the GUI) can be
specified here.

Part 7. Reference information 425

Extra Options

IAR Embedded Workbench® IDE
426 User Guide

Library builder options

This chapter describes the library builder options available in the IAR
Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Output

Options for the library builder are not available by default. Before you can set these
options in the IDE, you must add the library builder tool to the list of categories. Choose
Project>Options to display the Options dialog box, and select the General Options
category. On the Output page, select the Library option.

If you select the Library option, Library Builder appears as a category in the Options
dialog box. As aresult of the build process, the library builder will create a library output
file. Before you create the library you can set output options.

To set options, select Library Builder from the category list to display the options.

Options for node “project1™ E
Category: Factory Settings |

General Options

C/C++ Compiler Output |

Azzembler)

Converter Output file

Custom Build [T Overide default
| Build &ctions IDroieCt‘I.a
¢ Library Builder

()3 I Cancel

Figure 257: Library builder output options

Part 7. Reference information

427

To restore all settings to the default factory settings, click the Factory Settings button.

The Output file option overrides the default name of the output file. Enter a new name
in the Override default text box.

IAR Embedded Workbench® IDE
428 User Guide

Debugger options

This chapter describes the C-SPY® options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 91.

In addition, for information about options specific to the C-SPY hardware
debugger systems, see the chapter Hardware-specific debugging.

Setup

To set C-SPY options in the IDE, choose Project>Options to display the Options
dialog box. Then select Debugger in the Category list. The Setup page contains the
generic C-SPY options.

Setup
Diriver W Runto
J-LinkA)-Trace hd mair
Setup macroz

™ Use macro file(s)

Device description file
[Overide default

| o

Y

Figure 258: Generic C-SPY options

To restore all settings to the default factory settings, click the Factory Settings button.

The Setup options specify the C-SPY driver, the setup macro file, and device
description file to be used, and which default source code location to run to.

DRIVER

Selects the appropriate driver for use with C-SPY, for example a simulator or an
emulator.

Part 7. Reference information

429

Setup

430

IAR Embedded Workbench® IDE
User Guide

The following drivers are currently available:

C-SPY driver Filename

Simulator armsim.dll
Angel armangel.dll
GDB Server armgdbserv.dll
J-Link/}-Trace armjlink.dll
LMI FTDI armlmiftdi.dll
Macraigor armjtag.dll

RDI armrdi.dll
ROM-monitor for serial port armrom.dll
ROM-monitor for USB armromUSB.d11l

Table 105: C-SPY driver options

Contact your distributor or IAR Systems representative, or visit the [AR Systems web
site at www.iar.com for the most recent information about the available C-SPY drivers.
RUN TO

Use this option to specify a location you want C-SPY to run to when you start the
debugger and after a reset.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for example function names.

If the option is deselected, the program counter will contain the regular hardware reset
address at each reset.
SETUP MACROS

To register the contents of a setup macro file in the C-SPY startup sequence, select Use
macro file and enter the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

It is possible to specify up to two different macro files.

DEVICE DESCRIPTION FILE

Use this option to load a device description file that contains device-specific
information.

For details about the device description file, see Device description file, page 118.

Debugger options °

Device description files for each ARM device are provided in the directory
arm\config and have the filename extension ddf.

Download

Options specific to the C-SPY drivers are described in the chapter Hardware-specific
debugging, page 213 in Part 6. C-SPY hardware debugger systems.

Extra Options

The Extra Options page provides you with a command line interface to C-SPY.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Figure 259: Extra Options page for C-SPY

USE COMMAND LINE OPTIONS

Additional command line arguments for C-SPY (not supported by the GUI) can be
specified here.

Part 7. Reference information 431

Plugins

Plugins
On the Plugins page you can specify C-SPY plugin modules to be loaded and made
available during debug sessions. Plugin modules can be provided by IAR Systems, as
well as by third-party suppliers. Contact your software distributor or IAR representative,
or visit the AR Systems web site, for information about available modules.

Flugins

Select pluging to load:

[Ch ~
[Chei TINY+
[[15SEGGER emb05

Description: Power Pac RTOS awareness

Laocatian: C:\Program Filesh\AR Systems\Embedded ‘Workbench 5.0
Originator: I4F Spstems

Wersion: 21030

Figure 260: C-SPY plugin options

By default, Select plugins to load lists the plugin modules delivered with the product
installation.

If you have any C-SPY plugin modules delivered by any third-party vendor, these will
also appear in the list.

Any plugin modules for real-time operating systems will also appear in the list of plugin
modules. Some information about CMX-RTX plugin module can be found in the
document cmx_quickstart.pdf, delivered with this product. The nC/OS-II plugin
module is documented in the nC/OS-1I Kernel Awareness for C-SPY User Guide,
available from Micripm, Inc.

The common\plugins directory is intended for generic plugin modules. The
arm\plugins directory is intended for target-specific plugin modules.

IAR Embedded Workbench® IDE
432 User Guide

The C-SPY Command
Line Utility—cspybat

The IAR C-SPY Debugger can be executed in batch mode by using the C-SPY
Command Line Utility—cspybat.exe—which is described in this chapter.

Using C-SPY in batch mode

C-SPY can be executed in batch mode if you use the command line utility cspybat,
which you can find in the directory common\bin.

INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat processor_ DLL driver_ DLL debug file [cspybat_options]
--backend driver_options

Note: In those cases where a filename is required—including the DLL files—you are
recommended to give a full path to the filename.
Parameters

The parameters are:

Parameter Description

processor_DLL The processor-specific DLL file; available in arm\bin.
driver_DLL The C-SPY driver DLL file; available in arm\bin.

debug_file The object file that you want to debug (filename extension out).

cspybat_options The command line options that you want to pass to cspybat. Note
that these options are optional. For information about each option, see
Descriptions of C-SPY command line options, page 438.

--backend Marks the beginning of the parameters to the C-SPY driver; all options
that follow will be sent to the driver. Note that this option is
mandatory.

driver_options The command line options that you want to pass to the C-SPY driver.
Note that some of these options are mandatory and some are
optional. For information about each option, see Descriptions of C-SPY
command line options, page 438.

Table 106: cspybat parameters

Part 7. Reference information 433

C-SPY command line options

434

Example
The following example starts cspybat using the simulator driver:

c:\installation_dir\common\bin\cspybat
c:\installation_dir\arm\bin\armproc.dll
c:\installation_dir\arm\bin\armsim.dll c:\proj_dir\myproject.out
--plugin c:\installation_dir\arm\bin\armbat.dll --backend -d
arm7tdmi -B --cpu arm -p
c:\installation_dir\arm\bin\config\debugger\Atmel\ioat9lsam7s256.
ddf

OUTPUT
When you run cspybat, the following type of output can be produced:

o Terminal output from cspybat itself
All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

o Terminal output from the application you are debugging
All such terminal output is directed to stdout.

e Error return codes
cspybat return status information to the host operating system that can be tested in

abatch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

USING AN AUTOMATICALLY GENERATED BATCH FILE

When you use C-SPY in the IDE, C-SPY generates a batch file
projectname.cspy.bat every time C-SPY is initialized. You can find the file in the
directory $PROJ_DIR$\settings. This batch file contains the same settings as in the
IDE, and with minimal modifications the file can be used from the command line to start
cspybat. The file also contains information about required modifications.

C-SPY command line options

IAR Embedded Workbench® IDE
User Guide

General cspybat options

--backend Marks the beginning of the parameters to be sent to the
C-SPY driver (mandatory).

--cycles Specifies the maximum number of cycles to run.

--flash_loader

--generate_sim

--macro
--plugin

--silent

The C-SPY Command Line Utility—cspybat ___4

Specifies a flash loader specification xml file.

Generates a simple binary code file which is used by a flash
loader.

Specifies a macro file to be used.
Specifies a plugin file to be used.

Onmits the sign-on message.

Options available for all C-SPY drivers

-B

--BES

--BE32

--cpu

-d
--device

--drv_attach_to_program

--drv_catch_exceptions

--drv_attach_to_program

--drv_communication

--drv_communication_log

Enables batch mode (mandatory).

Uses the big-endian format BE8. For reference
information, see the IAR C/C++ Development Guide for
ARM®.

Uses the big-endian format BE32. For reference
information, see the IAR C/C++ Development Guide for
ARM®.

Specifies a processor variant. For reference information,
see the IAR C/C++ Development Guide for ARM®.

Specifies the C-SPY driver to be used.
Specifies the name of the device.

Attaches the debugger to a running application at its
current location. For reference information, see Attach to
program, page 215.

Makes the application stop for certain exceptions.

Attaches the debugger to a running application at its
current location. For reference information, see Attach to
program, page 215.

Specifies the communication link to be used.

Creates a log file.

--drv_default_breakpoint Sets the type of breakpoint resource to be used when

setting breakpoints.

--drv_reset_to_cpu_start Omits setting the PC when starting or resetting the

debugger.

--drv_restore_breakpoints Restores automatically any breakpoints that were

destroyed during system startup.

Part 7. Reference information

435

C-SPY command line options

--drv_suppress_download Suppresses download of the executable image. For
reference information, see Suppress download, page 215.

--drv_vector_table_base Specifies the location of the Cortex-M reset vector and
the initial stack pointer value.

--drv_verify_download Verifies the target program. For reference information, see
Verify download, page 215.
Available in the drivers for Angel, GDB Server, IAR
ROM-monitor, J-Link/J-Trace, LMI FTDI, Macraigor, and
RDI.

--endian Specifies the byte order of the generated code and data.
For reference information, see the IAR C/C++ Development
Guide for ARM®.

--fpu Selects the type of floating-point unit. For reference
information, see the IAR C/C++ Development Guide for
ARM®.

-p Specifies the device description file to be used.

--proc_stack_stack Provides information to the C-SPY plugin module about
reserved stacks.

--semihosting Enables semihosted I/O.

Options available for the simulator driver

--mapu Activates memory access checking.

Options available for the C-SPY Angel debug monitor driver

--rdi_heartbeat Makes C-SPY poll your target system periodically. For
reference information, see Send heartbeat, page 217.

--rdi_step_max_one Executes one instruction.

Options available for the C-SPY GDB Server driver

--gdbserv_exec_command Sends a command string to the GDB Server.

Options available for the C-SPY IAR ROM-monitor driver

There are no additional options specific to the C-SPY IAR ROM-monitor driver.

IAR Embedded Workbench® IDE
436 User Guide

The C-SPY Command Line Utility—cspybat ___4

Options available for the C-SPY }-Link/)-Trace driver

--jlink_device_select

--jlink_exec_command

--jlink_initial_speed

--jlink_interface

--jlink_ir_ length

--jlink_reset_strategy

--jlink_speed

Selects a specific device in the JTAG scan chain.

Calls the __jlinkExecCommand macro after target
connection has been established.

Sets the initial JTAG communication speed in kHz.

Specifies the communication between the J-Link debug
probe and the target system.

Sets the number of IR bits before the ARM device to be
debugged.

Selects the reset strategy to be used at debugger startup.

Sets the JTAG communication speed in kHz.

Options available for the C-SPY LMI FTDI driver

--1lmiftdi_speed

Sets the JTAG communication speed in kHz.

Options available for the C-SPY Macraigor driver

--mac_handler_address

--mac_interface

--mac_jtag_device

--mac_multiple_targets

--mac_reset_pulls_reset

--mac_set_temp_reg_buffer

--mac_speed

--mac_xscale_ir7

Specifies the location of the debug handler used by Intel
XScale devices.

Specifies the communication between the Macraigor
debug probe and the target system.

Selects the device corresponding to the hardware
interface.

Specifies the device to connect to, if there are more than
one device on the JTAG scan chain.

Makes C-SPY generate an initial hardware reset.

Provides the driver with a physical RAM address for
accessing the coprocessor.

Sets the JTAG speed between the JTAG interface and the
ARM JTAG ICE port.

Specifies that the XScale ir7 architecture is used.

Options available for the C-SPY RDI driver

--rdi_allow_hardware_reset Performs a hardware reset.

Part 7. Reference information

437

Descriptions of C-SPY command line options

--rdi_driver_dll Specifies the path to the RDI driver DLL file.
--rdi_use_etm Enables C-SPY to use and display ETM trace.
--rdi_step_max_one Executes one instruction.

Options available for the third-party drivers

For information about any options specific to the third-party driver you are using, see its
documentation.

Descriptions of C-SPY command line options

This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

-B
Syntax -B
Applicability All C-SPY drivers.
Description Use this option to enable batch mode.
--backend
Syntax --backend {driver options}
Parameters
driver options Any option available to the C-SPY driver you are using.
Applicability Sent to cspybat (mandatory).
Description Use this option to send options to the C-SPY driver. All options that follow --backend

will be passed to the C-SPY driver, and will not be processed by cspybat itself.

IAR Embedded Workbench® IDE
438 User Guide

The C-SPY Command Line Utility—cspybat ___4

--cycles

Syntax --cycles cycles

Parameters
cycles The number of cycles to run.

Applicability Sent to cspybat.

Description Use this option to specify the maximum number of cycles to run. If the target program
executes longer than the number of cycles specified, the target program will be aborted.
Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

-d

Syntax -d {angel|gdbserv|generic|jlink|jtag|lmiftdi|rdi|rom|sim}

Parameters
angel Specifies the Angel debug monitor driver.
gdbserv Specifies the GDB Server driver.
generic Specifies third-party driver.
jlink Specifies the J-Link/J-Trace driver.
jtag Specifies the Macraigor driver.
Imiftdi Specifies the LMI FTDI driver.
rdi Specifies the RDI driver.
rom Specifies the IAR C-SPY ROM-monitor driver.
sim Specifies the simulator driver.

Applicability All C-SPY drivers.

Description Use this option to specify the C-SPY driver to be used.

Part 7. Reference information 439

Descriptions of C-SPY command line options

--device
Syntax --device=device_name
Parameters
device_name The name of the device.
Applicability All C-SPY drivers.
Description Use this option to specify the name of the device, for example, ADuC7030,

AT91SAM7S256, LPC2378, STR912FM44, or TMS470R1B1M.

To set related option, choose:

Project>Options>General Options>Target>Device

--drv_catch_exceptions

Syntax --drv_catch_exceptions=value

Parameters
value A value in the range of 0—-0x1FF. Each bit specifies which exception
to catch:
Bit 0 = Reset
Bit | = Undefined instruction
Bit 2 = SWI
Bit 3 = Not used
Bit 4 = Data abort
Bit 5 = Prefetch abort
Bit 6 = IRQ
Bit 7 = FIQ
Bit 8 = Other errors

Applicability The C-SPY Angel debug monitor driver.
The C-SPY J-Link/J-Trace driver
The C-SPY RDI driver.

Description Use this option to make the application stop when a certain exception occurs.

IAR Embedded Workbench® IDE
440 User Guide

The C-SPY Command Line Utility—cspybat ___4

Catch exceptions, page 235.

For the C-SPY Angel debug monitor driver, use:

Project>Options>Debugger>Extra Options

For the C-SPY J-Link/J-Trace driver, use:

Project>Options>Debugger>J-Link/J-Trace>Catch exceptions

For the C-SPY RDI driver, use:

Project>Options>Debugger>RDI>Catch exceptions

--drv_communication

Syntax --drv_communication=connection

Parameters

Via Ethernet

Via serial port

Where connection is one of these for the C-SPY Angel debug monitor driver:

UDP: ip_address

UDP: ip address,port
UDP: hostname

UDP: hostname,port

port:baud, parity, stop_bit, handshake

port = COM1-COM256 (default COM1)

baud = 9600,19200,38400,57600, 0or 115200 (default
9600 baud)

parity = N (no parity)

stop_bit = 1 (one stop bit)

handshake = NONE or RTSCTS (default NONE for no
handshaking)

For example, COM1:9600,N, 8, 1, NONE.

Where connection is one of these for the C-SPY GDB Server driver:

Via Ethernet

TCPIP:ip address

TCPIP:ip address,port

TCPIP:hostname

TCPIP: hostname,port

Note that if no port is specified, port 3333 is used by default.

Part 7. Reference information

441

Descriptions of C-SPY command line options

442

Applicability

IAR Embedded Workbench® IDE
User Guide

Where connection is one of these for the C-SPY IAR ROM- monitor driver:

Via serial port

port:baud, parity, stop_bit, handshake

port = COM1-COM256 (default COM1)

baud = 9600,19200,38400,57600, 0or 115200 (default
9600 baud)

parity = N (no parity)

stop_bit = 1 (one stop bit)

handshake = NONE or RTSCTS (default NONE for no
handshaking)

For example, COM1:9600,N, 8, 1, NONE.

Where connection is one of these for the C-SPY J-Link/J-Trace driver:

Via USB directly to J-Link USB0O-USB3

Via J-Link server

TCPIP:ip address

TCPIP:ip address,port

TCPIP:hostname

TCPIP: hostname,port

Note that if no port is specified, port 19020 is used by default.

Where connection is one of these for the C-SPY Macraigor driver:

Via the parallel port to
Wiggler, Raven, or
mpDemon

For Wiggler, Raven and
mpDemon

For mpDemon

LPT1-LPT3

port:baud

port = COM1-COM4

baud 9600,19200,38400,57600, or 115200 (default
9600 baud)

TCPIP:ip address

TCPIP:ip address,port

TCPIP:hostname

TCPIP:hostname,port

Note that if no port is specified, port 19020 is used by default.

Via USB to usbDemon and USB ports = USBO-USB3

usb2Demon

The C-SPY Angel debug monitor driver

The C-SPY GDB Server driver

The C-SPY IAR ROM-monitor driver.

The C-SPY Command Line Utility—cspybat ___4

The C-SPY J-Link/J-Trace driver
The C-SPY Macraigor driver.

Description Use this option to choose communication link.

Project>Options>Debugger>Angel>Communication

Project>Options>Debugger>GDB Server>TCP/IP address or hostname [,port]
Project>Options>Debugger>IAR ROM-monitor>Communication
Project>Options>Debugger>J-Link/J-Trace>Connection>Communication

To set related options for the C-SPY Macraigor driver, choose:

Project>Options>Debugger>Macraigor

--drv_communication_log

Syntax --drv_commuication_log=filename
Parameters
filename The name of the log file.
Applicability All C-SPY drivers.
Description Use this option to log the communication between C-SPY and the target system to a file.

To interpret the result, detailed knowledge of the communication protocol is required.

Project>Options>Debugger>Driver>Log communication

--drv_default_breakpoint

Syntax --drv_default_breakpoint={0|1]|2}
Parameters

0 Auto (default)

1 Hardware

2 Software
Applicability The C-SPY GDB Server driver

The C-SPY J-Link/J-Trace driver.

Part 7. Reference information 443

Descriptions of C-SPY command line options

Description

See also

The C-SPY Macraigor driver.

Use this option to select the type of breakpoint resource to be used when setting a
breakpoint.

Default breakpoint type, page 244.

Project>Options>Debugger>Driver>Breakpoints>Default breakpoint type

--drv_reset_to_cpu_start

Syntax

Applicability

Description

--drv_reset_to_cpu_start

The C-SPY Angel debug monitor driver

The C-SPY GDB Server driver

The C-SPY J-Link/J-Trace driver

The C-SPY LMI FTDI driver

The C-SPY Macraigor driver

The C-SPY RDI driver.

Use this option to omit setting the PC when starting or resetting the debugger. Instead pC

will have the original value set by the CPU, which is the address of the application entry
point.

To set this option, use Project>Options>Debugger>Extra Options.

--drv_restore_breakpoints

Syntax

Parameters

Applicability

IAR Embedded Workbench® IDE
444 User Guide

--drv_restore_breakpoints=location

location Address or function name label

The C-SPY GDB Server driver
The C-SPY J-Link/J-Trace driver
The C-SPY Macraigor driver.

Description

See also

The C-SPY Command Line Utility—cspybat ___4

Use this option to restore automatically any breakpoints that were destroyed during
system startup.

Restore software breakpoints at, page 244.

Project>Options>Debugger>Driver>Breakpoints>Restore software breakpoints
at

--drv_vector_table_ base

Syntax

Parameters

Applicability

Description

--flash_loader

Syntax

Parameters

Applicability

--drv_vector_table_base=expression

expression A label or an address

The C-SPY GDB Server driver

The C-SPY J-Link/J-Trace driver

The C-SPY LMI FTDI driver

The C-SPY Macraigor driver

The C-SPY RDI driver

The C-SPY Simulator driver.

Use this option for Cortex-M to specify the location of the reset vector and the initial
stack pointer value. This is useful if you want to override the default __vector_table
label—defined in the system startup code—in the application or if the application lacks

this label, which can be the case if you debug code that is built by tools from another
vendor.

To set this option, use Project>Options>Debugger>Extra Options.

--flash_loader filename

filename The flash loader specification xml file.

Sent to cspybat.

Part 7. Reference information 445

Descriptions of C-SPY command line options

Description

See also

Use this option to specity a flash loader specification xml file which contains all relevant
information about the flash loading. There can be more than one such argument, in
which case each argument will be processed in the specified order, resulting in several
flash programming passes.

The IAR Embedded Workbench flash loader User Guide.

--gdbserv_exec_command

Syntax

Parameters

Applicability

Description

--generate_sim

Syntax
Applicability

Description

--jlink_device_select

Syntax

Parameters

Applicability

IAR Embedded Workbench® IDE
446 User Guide

--gdbserv_exec_command="string"

"string" String or command sent to the GDB Server; see its documentation

for more information.

The C-SPY GDB Server driver.
Use this option to send strings or commands to the GDB Server.

Project>Options>Debugger>Extra Options

--generate_sim
Sent to cspybat.
As part of the flash loading process, a simple code file (filename extension sim) is

required. Use this option to automatically generate such a file from the debug file. If the
debug file is an ELF file, you should use this option.

--jlink_device_select=tap_number

tap_number The TAP position of the device you want to connect to.

The C-SPY J-Link/J-Trace driver.

Description

See also

--jlink_exec_command

Syntax

Parameters

Applicability

Description

See also

--jlink_initial_speed
Syntax

Parameters

Applicability
Description

See also

The C-SPY Command Line Utility—cspybat ___4

If there are more than one device on the JTAG scan chain, use this option to select a
specific device,

JTAG scan chain, page 225.

Project>Options>Debugger>J-Link/J-Trace>Connection>JTAG scan chain>TAP
number

--jlink_exec_commmand=cmdstrl,; cmdstr2; cmdstr3 ...

cmdstrn J-Link/}-Trace command string.

The C-SPY J-Link/J-Trace driver.

Use this option to make the debugger call the __j1linkExecCommand macro with one
or several command strings, after target connection has been established.

__jlinkExecCommand, page 473.

Project>Options>Debugger>Extra Options

--jlink_initial_speed=speed

speed The initial communication speed in kHz. If no speed is specified, 32
kHz will be used as the initial speed.

The C-SPY J-Link/J-Trace driver.
Use this option to set the initial JTAG communication speed in kHz.
JTAG speed, page 223.

Project>Options>Debugger>J-Link/J-Trace>Setup>JTAG speed>Fixed

Part 7. Reference information 447

Descriptions of C-SPY command line options

--jlink_interface

Syntax --jlink_interface={JTAG|SWD}
Parameters
JTAG Uses JTAG communication with the target system (default).
SWD Uses SWD communication with the target system (Cortex-M only);

uses fewer pins than JTAG communication.

Applicability The C-SPY J-Link/J-Trace driver.

Description Use this option to specify the communication between the J-Link debug probe and the
target system.

See also Interface, page 224.

Project>Options>Debugger>J-Link/J-Trace>Connection>Interface

--jlink_ir_length
Syntax --jlink_ir_ length=length
Parameters

length The number of IR bits before the ARM device to be debugged, for
JTAG scan chains that mix ARM devices with other devices.

Applicability The C-SPY J-Link/J-Trace driver.
Description Use this option to set the number of IR bits before the ARM device to debugged.
See also JTAG scan chain, page 225.

Project>Options>Debugger>J-Link/J-Trace>Connection>JTAG scan
chain>Preceding bits

--jlink_reset_strategy

Syntax --jlink_reset_strategy={delay, 0|strategy}

Parameters
delay 0-10000. The delay parameter is only used with strategy 0.

IAR Embedded Workbench® IDE
448 User Guide

The C-SPY Command Line Utility—cspybat ___4

strategy Strategies for ARM 7/9/11:
0 = Hardware, halt after reset (delay is used for this strategy)
1 = Hardware, halt with BP@0
2 = Software, for Analog Devices ADuC7xxx MCUs
4 = Hardware, halt with WP
5 = Hardware, halt with DBGRQ
8 = Software, for Atmel AT91SAM7 MCUs
9 = Hardware, for NXP LPCxxxx MCUs

Strategies for Cortex-M:

0 = Normal reset via reset pin, halt after reset
1 = Reset only core

2 = Reset via reset pin

Applicability The C-SPY J-Link/J-Trace driver.
Description Use this option to select the reset strategy to be used at debugger startup.
See also Reset, page 221.

Project>Options>Debugger>J-Link/J-Trace>Setup>Reset

--jlink_speed

Syntax --jlink_speed={fixed|auto|adaptive}
Parameters
fixed 1-12000
auto The highest possible frequency for reliable operation (default)
adaptive For ARM devices that have the RTCK JTAG signal available
Applicability The C-SPY J-Link/J-Trace driver.
Description Use this option to set the JTAG communication speed in kHz.
See also JTAG speed, page 223.

Project>Options>Debugger>J-Link/J-Trace>Setup>JTAG speed

Part 7. Reference information 449

Descriptions of C-SPY command line options

--Imiftdi_speed

Syntax --1lmiftdi_speed=frequency
Parameters
frequency The frequency in kHz.
Applicability The C-SPY LMI FTDI driver.
Description Use this option to set the JTAG communication speed in kHz.
See also JTAG speed, page 229.

Project>Options>Debugger>LMI FTDI>Setup>JTAG speed

--mac_handler_address

Syntax --mac_handler_address=address
Parameters
address The start address of the memory area for the debug handler.
Applicability The C-SPY Macraigor driver
Description Use this option to specify the location—the memory address—of the debug handler

used by Intel XScale devices.
See also Debug handler address, page 232.

Project>Options>Debugger>Macraigor>Debug handler address

--mac_interface

Syntax --mac_interface={JTAG|SWO}
Parameters
JTAG Uses JTAG communication with the target system (default).
SWD Uses SWD communication with the target system (Cortex-M only);

uses fewer pins than JTAG communication.

IAR Embedded Workbench® IDE
450 User Guide

Applicability

Description

--mac_jtag device

Syntax

Parameters

Applicability
Description

See also

--mac_multiple_targets

Syntax

Parameters

Applicability

Description

Example

The C-SPY Command Line Utility—cspybat ___4

The C-SPY Macraigor driver.

Use this option to specify the communication between the Macraigor debug probe and
the target system.

Project>Options>Debugger>Macraigor>Interface

--mac_jtag_device=device

device The device corresponding to the hardware interface that is used.
Choose between Macraigor Raven, Wiggler, mpDemon,
usbdemon, and usb2demon.

The C-SPY Macraigor driver.
Use this option to select the device corresponding to the hardware interface that is used.
OCD interface device, page 231.

Project>Options>Debugger>Macraigor>OCD interface device

--mac_multiple_targets=<0>@dev0, devl, dev2,dev3, ...

0 The TAP number of the device to connect to, where 0 connects to
the first device, 1 to the second, and so on.

dev0-devn The nearest TDO pin on the Macraigor JTAG interface.

The C-SPY Macraigor driver.

If there are more than one device on the JTAG scan chain, each device must be defined.
Use this option to specify which device you want to connect to.

--mac_multiple_targets=0@ARM7TDMI, ARM7TDMI

Part 7. Reference information 451

Descriptions of C-SPY command line options

452

See also

JTAG scan chain with multiple targets, page 232.

Project>Options>Debugger>Macraigor>JTAG scan chain with multiple targets

--mac_reset_pulls_reset

Syntax

Parameters

Applicability

Description

See also

--mac_reset_pulls_reset=time

time 0-2000 which is the delay in milliseconds after reset.

The C-SPY Macraigor driver.

Use this option to make C-SPY perform an initial hardware reset when the debugger is
started, and to specify the delay for the reset.

Hardware reset, page 232.

Project>Options>Debugger>Macraigor>Hardware reset

--mac_set_temp_reg buffer

Syntax

Parameters

Applicability

Description

IAR Embedded Workbench® IDE
User Guide

--mac_set_temp_reg_buffer=address

address The start address of the RAM area.

Sent to the C-SPY Macraigor driver.

Use this option to specify the start address of the RAM area that is used for controlling
the MMU and caching via the CP15 coprocessor,

To set this option, use Project>Options>Debugger>Extra Options.

The C-SPY Command Line Utility—cspybat ___4

--mac_speed

Syntax --mac_speed={1-8}
Parameters
1-8 The factor by which the JTAG interface clock is divided when
generating the scan clock. The number must be in the range 1-8
where 1 is the fastest.
Applicability The C-SPY Macraigor driver.
Description Use this option to set the JTAG speed between the JTAG interface and the ARM JTAG
ICE port.
See also JTAG speed, page 231.

Project>Options>Debugger>Macraigor>JTAG speed

--mac_xscale_ir7

Syntax --mac_xscale_ir7
Applicability The C-SPY Macraigor driver.
Description Use this option to specify that the XScale ir7 core is used, instead of XScale ir5. Note

that this option is mandatory when using the XScale ir7 core.
These XScale cores are supported by the C-SPY Macraigor driver:

Intel XScale Core 1 (5-bit instruction register)

Intel XScale Core 2 (7-bit instruction register)

To set this option, use Project>Options>Debugger>Extra Options.

--macro
Syntax --macro filename
Parameters
filename The C-SPY macro file to be used (filename extension mac).
Applicability Sent to cspybat.

Part 7. Reference information 453

Descriptions of C-SPY command line options

Description

See also

--mapu
Syntax
Applicability

Description

See also

Syntax

Parameters

Applicability
Description

See also

--plugin
Syntax

Parameters

IAR Embedded Workbench® IDE
454 User Guide

Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

The macro file, page 150

--mapu

Sent to C-SPY simulator driver.

Specify this option to use the section information in the debug file for memory access
checking. During the execution, the simulator will then check for accesses to
unspecified ranges. If any such access is found, a message will be printed on stdout
and the execution will stop.

Memory access checking, page 176.

To set related options, choose:

Simulator>Memory Access Setup

-p=filename

filename The device description file to be used.

All C-SPY drivers.
Use this option to specify the device description file to be used.

Device description file, page 118

--plugin filename

filename The plugin file to be used (filename extension d11).

The C-SPY Command Line Utility—cspybat ___4

Applicability Sent to cspybat.

Description Certain C/C++ standard library functions, for example print£, can be supported by
C-SPY instead of by real hardware devices (for example, the C-SPY Terminal I/O
window). To enable such support in cspybat, a dedicated plugin module called
armbat .d11 located in the arm\bin directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

Note: This option can be used for including also other plugin modules, but in that case
the module must be able to work with cspybat specifically. This means that the C-SPY
plugin modules located in the arm\plugins directory cannot normally be used with

cspybat.
See also The macro file, page 150.
--proc_stack_stack
Syntax --proc_stack_stack=startaddress, endaddress

where stackis one of usr, svc, fiqg, und, or abt for ARM7/9/11 and XScale

and where stack is one of main, or proc for Cortex-M

Parameters
startaddress The start address of the stack, specified either as a value or as an
expression.
endaddress The end address of the stack, specified either as a value or as an
expression.
Applicability All C-SPY drivers. Note that this command line option is only available when using
C-SPY from the IDE; not in batch mode using cspybat.
Description Use this option to provide information about to the C-SPY plugin module about reserved

stacks. By default, C-SPY receives this information from the system startup code, but if
you for some reason want to override the default values this option can be useful.

Stack window, page 3609.

To set this option, use Project>Options>Debugger>Extra Options.

Part 7. Reference information 455

Descriptions of C-SPY command line options

456

--rdi_allow_hardware_reset

--rdi_driver_dll

Syntax
Applicability

Description

See also

Syntax

Parameters

Applicability

Description

--rdi_use_etm

IAR Embedded Workbench® IDE

User Guide

Syntax
Applicability

Description

--rdi_allow_hardware_reset
The C-SPY RDI driver.

Use this option to allow the emulator to perform a hardware reset of the target. Requires
support by the emulator.

Allow hardware reset, page 234.

Project>Options>Debugger>RDI>Allow hardware reset

--rdi_driver_dll filename

filename The file or path to the RDI driver DLL file.

The C-SPY RDI driver.

Use this option to specify the path to the RDI driver DLL file provided with the JTAG
pod.

Manufacturer RDI driver, page 234.

Project>Options>Debugger>RDI>Manufacturer RDI driver

--rdi_use_etm

The C-SPY RDI driver.

Use this option to enable C-SPY to use and display ETM trace.
ETM trace, page 235.

Project>Options>Debugger>RDI>ETM trace

--rdi_step_max_one

Syntax

Applicability

Description

--semihosting

Syntax

Parameters

Applicability

Description

See also

The C-SPY Command Line Utility—cspybat ___4

--rdi_step_max_one

The C-SPY Angel debug monitor driver
The C-SPY RDI driver.

Use this option to execute only one instruction. The debugger will turn off interrupts
while stepping and, if necessary, simulate the instruction instead of executing it.

To set this option, use Project>Options>Debugger>Extra Options.

--semihosting={none|iar_breakpoint}

No parameter Use standard semihosting.
none Does not use semihosted I/O.
iar_breakpoint Uses the IAR proprietary semihosting variant.

All C-SPY drivers.

Use this option to enable semihosted I/O and to choose the kind of semihosting interface
to use. Note that if this option is not used, semihosting will by default be enabled and
C-SPY will try to choose the correct semihosting mode automatically. This means that
normally you do not have to use this option if your application is linked with
semihosting.

To make semihosting work, your application must be linked with a semihosting library.

The IAR C/C++ Development Guide for ARM® for more information about linking
with semihosting.

Project>Options>General Options>Library Configuration

Part 7. Reference information 457

Descriptions of C-SPY command line options

--silent
Syntax --silent
Applicability Sent to cspybat.
Description Use this option to omit the sign-on message.

IAR Embedded Workbench® IDE
458 User Guide

C-SPY® macros reference

This chapter gives reference information about the C-SPY macros. First a
syntax description of the macro language is provided. Then, the available setup
macro functions and the pre-defined system macros are summarized. Finally,
each system macro is described in detail.

The macro language

The syntax of the macro language is very similar to the C language. There are macro
statements, which are similar to C statements. You can define macro functions, with or
without parameters and return value. You can use built-in system macros, similar to C
library functions. Finally, you can define global and local macro variables. You can
collect your macro functions in a macro file (filename extension mac).

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has the following form:

macroName (parameterList)
{
macroBody

}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.
PREDEFINED SYSTEM MACRO FUNCTIONS

The macro language also includes a wide set of predefined system macro functions
(built-in functions), similar to C library functions. For detailed information about each
system macro, see Description of C-SPY system macros, page 467.

Part 7. Reference information 459

The macro language

460

IAR Embedded Workbench® IDE
User Guide

MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application space. It
can then be used in a C-SPY expression. For detailed information about C-SPY
expressions, see the chapter C-SPY expressions, page 127.

The syntax for defining one or more macro variables is:
__var nameList;
where nameList is a list of C-SPY variable names separated by commas.

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

Expression What it means
myvar = 3.5; myvar is now type float, value 3.5.
myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 107: Examples of C-SPY macro variables

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

Macro strings

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello! ", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFind or __subString. The result can be a new macro string. You can
concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example str[3]1. You can get
the length of a string using sizeof (str). Note that a macro string is not
NULL-terminated.

C-SPY® macros reference __o

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char []) to a macro string. For example, assume
the following definition of a C string in your application:

char const *cstr = "Hello";

Then examine the following examples:

__var str; /* A macro variable */

str = cstr /* str is now just a pointer to char */

sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */

str[l] /* 101, the ASCII code for 'e' */

str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 462.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions

expression;

For detailed information about C-SPY expressions, see C-SPY expressions, page 127.

Conditional statements
if (expression)

statement

if (expression)
statement
else
statement

Loop statements

for (init_expression; cond_expression; update_expression)
statement

while (expression)
statement

do
statement

Part 7. Reference information 461

The macro language

462

IAR Embedded Workbench® IDE
User Guide

while (expression);

Return statements
return;
return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks
Statements can be grouped in blocks.

{
statementl
statement2

statementN

FORMATTED OUTPUT

C-SPY provides different methods for producing formatted output:

__message argList; Prints the output to the Debug Log window.
__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.

where argList is a comma-separated list of C-SPY expressions or strings, and fileis
the result of the __openFile system macro, see __openkFile, page 478.

Examples

Use the __message statement, as in the following example:

varl = 42;
var2 = 37;
__message "This line prints the values ", varl, " and ", var2,

in the Log window.";
This should produce the following message in the Log window:

This line prints the values 42 and 37 in the Log window.

C-SPY® macros reference __o

Use __fmessage to write the output to the designated file, for example:
__fmessage myfile, "Result is ", res, "!\n";

Finally, use __smessage to produce strings, for example:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer".

Specifying display format of arguments

It is possible to override the default display format of a scalar argument (number or
pointer) in argList by suffixing it with a : followed by a format specifier. Available
specifiers are $b for binary, %o for octal, $d for decimal, $x for hexadecimal and %c for
character. These match the formats available in the Watch and Locals windows, but
number prefixes and quotes around strings and characters are not printed. Another
example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

This might produce:
The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%C;

would produce:
65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char *, use the $x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.

Part 7. Reference information 463

Setup macro functions summary

464

Setup macro functions summary

The following table summarizes the available setup macro functions:

IAR Embedded Workbench® IDE
User Guide

Macro

Description

execUserPreload

execUserFlashInit

execUserSetup

execUserFlashReset

execUserReset

execUserExit

execUserFlashExit

Called after communication with the target system is established
but before downloading the target application.

Implement this macro to initialize memory locations and/or
registers which are vital for loading data properly.

Called once before the flash loader is downloaded to RAM.
Implement this macro typically for setting up the memory map
required by the flash loader. This macro is only called when you are
programming flash, and it should only be used for flash loader
functionality.

Called once after the target application is downloaded.
Implement this macro to set up the memory map, breakpoints,
interrupts, register macro files, etc.

Called once after the flash loader is downloaded to RAM, but
before execution of the flash loader. This macro is only called when
you are programming flash, and it should only be used for flash
loader functionality.

Called each time the reset command is issued.
Implement this macro to set up and restore data.
Called once when the debug session ends.

Implement this macro to save status data etc.

Called once when the debug session ends.
Implement this macro to save status data etc. This macro is useful
for flash loader functionality.

Table 108: C-SPY setup macros

Note: If you define interrupts or breakpoints in a macro file that is executed at system
start (using execUserSetup) we strongly recommend that you also make sure that they
are removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see Simulating an interrupt, page 59.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

C-SPY® macros reference __o

C-SPY system macros summary

The following table summarizes the pre-defined system macros:

Macro

Description

__cancelAllInterrupts
__cancelInterrupt
__clearBreak
__closeFile
__disableInterrupts
__driverType
__emulatorSpeed

__emulatorStatusCheckOnRead

__enableInterrupts

__evaluate

__gdbserver_exec_command
__hwReset

__hwResetWithStrategy

__jlinkExecCommand

_ _JjtagCommand

__JjtagCPl5IsPresent
__JjtagCPl5ReadReg
__JjtagCPl5WriteReg
__Jjtagbata
__JjtagRawRead
__JjtagRawSync
__JjtagRawWrite

__JjtagResetTRST

__openFile

__orderInterrupt

Cancels all ordered interrupts

Cancels an interrupt

Clears a breakpoint

Closes a file that was opened by __openFile
Disables generation of interrupts

Verifies the driver type

Sets the emulator clock frequency

Enables or disables the verification of the CPSR
register after each read operation

Enables generation of interrupts

Interprets the input string as an expression and
evaluates it.

Send strings or commands to the GDB Server.
Performs a hardware reset and halt of the target CPU

Performs a hardware reset and halt with delay of the
target CPU

Sends a low-level command to the J-Link/J-Trace
driver.

Sends a low-level command to the JTAG instruction
register

Checks if coprocessor CP15 is available

Returns the coprocessor CPI5 register value

Writes to the coprocessor CP15 register

Sends a low-level data value to the JTAG data register
Returns the read data from the JTAG interface
Writes accumulated data to the JTAG interface
Accumulates data to be transferred to the JTAG

Resets the ARM TAP controller via the TRST JTAG
signal

Opens a file for I/O operations

Generates an interrupt

Table 109: Summary of system macros

Part 7. Reference information 465

C-SPY system macros summary

Macro

Description

__popSimulatorInterruptExecu
tingStack

__readFile
__readFileByte

__readMemorys8,
__readMemoryByte

__readMemoryl6
__readMemory32
__registerMacroFile
__resetFile

__restoreSoftwareBreakpoint

__setCodeBreak
__setDataBreak
__setSimBreak

_sleep

__sourcePosition

__strFind

__subString

_ _toLower

__toString

__toUpper
__writeFile
__writeFileByte

_ _writeMemory8§,
__writeMemoryByte,

__writeMemory8§,
__writeMemoryByte

Informs the interrupt simulation system that an
interrupt handler has finished executing

Reads from the specified file
Reads one byte from the specified file

Reads one byte from the specified memory location

Reads two bytes from the specified memory location
Reads four bytes from the specified memory location
Registers macros from the specified file

Rewinds a file opened by __openFile

Restores any breakpoints that were destroyed during
system startup.

Sets a code breakpoint
Sets a data breakpoint
Sets a simulation breakpoint

Causes the debugger to sleep a specified amount of
time.

Returns the file name and source location if the
current execution location corresponds to a source
location

Searches a given string for the occurrence of another
string

Extracts a substring from another string

Returns a copy of the parameter string where all the
characters have been converted to lower case

Prints strings

Returns a copy of the parameter string where all the
characters have been converted to upper case

Writes to the specified file
Writes one byte to the specified file

Werites one byte to the specified memory location

Table 109: Summary of system macros (Continued)

IAR Embedded Workbench® IDE
466 User Guide

C-SPY® macros reference __o

Macro Description

__writeMemoryl6 Writes a two-byte word to the specified memory
location

__writeMemory32 Writes a four-byte word to the specified memory
location

Table 109: Summary of system macros (Continued)

Description of C-SPY system macros

This section gives reference information about each of the C-SPY system macros.

__cancelAlllnterrupts

Syntax __cancelAllInterrupts ()

Return value int 0

Description Cancels all ordered interrupts.

Applicability This system macro is only available in the C-SPY Simulator.
__cancellnterrupt

Syntax __cancelInterrupt (interrupt_id)

Parameter

interrupt_id The value returned by the corresponding
__orderInterrupt macro call (unsigned long)

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 110: __cancellnterrupt return values
Description Cancels the specified interrupt.

Applicability This system macro is only available in the C-SPY Simulator.

Part 7. Reference information 467

Description of C-SPY system macros

__clearBreak
Syntax __clearBreak (break_id)
Parameter
break_id The value returned by any of the set breakpoint macros
Return value int 0
Description Clears a user-defined breakpoint.
See also Defining breakpoints, page 135.
__closeFile
Syntax __closeFile(filehandle)
Parameter
filehandle The macro variable used as filehandle by the __openFile macro
Return value int 0
Description Closes a file previously opened by __openFile.
__disablelnterrupts
Syntax __disableInterrupts()
Return value
Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 111: __disablelnterrupts return values
Description Disables the generation of interrupts.

Applicability This system macro is only available in the C-SPY Simulator.

IAR Embedded Workbench® IDE
468 User Guide

C-SPY® macros reference __o

__driverType
Syntax __driverType (driver_id)

Parameter
driver_id A string corresponding to the driver you want to check for; one of

the following:
"sim" corresponds to the simulator driver
"rom" corresponds to the ROM-monitor driver
"jtag" corresponds to the Macraigor driver
"rdi" corresponds to the RDI driver
"jlink" corresponds to the J-Link/J-Trace driver
"Imiftdi" corresponds to the LMI FTDI driver
"angel" corresponds to the Angel driver
"generic" corresponds to third-party drivers

Return value

Result Value
Successful 1
Unsuccessful 0

Table 112: __driverType return values

Description Checks to see if the current C-SPY driver is identical to the driver type of the
driver_1id parameter.

Example __driverType("sim")

If a simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__emulatorSpeed

Syntax __emulatorSpeed (speed)

Parameter
speed The emulator speed in Hz. Use 0 (zero) to make the speed detected
automatically. Use -1 for adaptive speed (only for emulators
supporting adaptive speed).

Return value
Result Value

Successful The previous speed, or 0 (zero) if unknown

Table 113: __emulatorSpeed return values

Part 7. Reference information 469

Description of C-SPY system macros

470

Description

Example

Applicability

Result Value

Unsuccessful; the speed is not supported by -1
the emulator

Table 113: __emulatorSpeed return values

Sets the emulator clock frequency. For JTAG interfaces, this is the JTAG clock
frequency as seen on the TCK signal.

__emulatorSpeed(0)

Sets the emulator speed to be detected automatically.

This system macro is available for the J-Link/J-Trace JTAG interface.

__emulatorStatusCheckOnRead

Syntax

Parameter

Return value

Description

Example

Applicability

IAR Embedded Workbench® IDE
User Guide

__emulatorStatusCheckOnRead (status)

status Use 0 to enable checks (default). Use 1 to disable checks.
int 0

Enables or disables the driver verification of CPSR (current processor status register)
after each read operation. Typically, this macro can be used for initiating JTAG
connections on some CPUs, like Texas Instruments’ TMS470R1B1M.

Note: Enabling this verification can cause problems with some CPUs, for example if
invalid CPSR values are returned. However, if this verification is disabled
(setCheckModeAfterRead = 0), the success of read operations cannot be verified
and possible data aborts are not detected.

__emulatorStatusCheckOnRead (1)

Disables the checks for data aborts on memory reads.

This system macro is available for the J-Link/J-Trace JTAG interface.

C-SPY® macros reference __o

__enablelnterrupts

Syntax __enableInterrupts()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 114: __enablelnterrupts return values

Description Enables the generation of interrupts.
Applicability This system macro is only available in the C-SPY Simulator.
__evaluate
Syntax __evaluate(string, valuePtr)
Parameter
string Expression string
valuePtr Pointer to a macro variable storing the result

Return value

Result Value
Successful int 0
Unsuccessful int 1

Table 115: __evaluate return values

Description This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valueptr.

Example The following example assumes that the variable i is defined and has the value 5:
__evaluate("i + 3", &myVar)

The macro variable myvar is assigned the value 8.

Part 7. Reference information 471

Description of C-SPY system macros

__gdbserver_exec_command

Syntax __gdbserver_exec_command ("string")

Parameter
"string" String or command sent to the GDB Server; see its documentation
for more information.

Description Use this option to send strings or commands to the GDB Server.
Applicability This system macro is available for the GDB Server interfaces.
__hwReset
Syntax __hwReset (halt_delay)
Parameter
halt_delay The delay, in microseconds, between the end of the reset pulse and

the halt of the CPU. Use 0 (zero) to make the CPU halt immediately
after reset

Return value

Result Value
Successful. The actual delay value implemented by the emulator >=0
Successful. The delay feature is not supported by the emulator -1
Unsuccessful. Hardware reset is not supported by the emulator -2

Table 116: __hwReset return values
Description Performs a hardware reset and halt of the target CPU.

Example __hwReset (0)

Resets the CPU and immediately halts it.

Applicability This system macro is available for all JTAG interfaces.

IAR Embedded Workbench® IDE
472 User Guide

C-SPY® macros reference __o

__hwResetWithStrategy
Syntax __hwResetWithStrategy (halt_delay, strategy)
Parameter
halt_delay The delay, in microseconds, between the end of the reset pulse and
the halt of the CPU. Use 0 (zero) to make the CPU halt immediately
after reset; only when strategy is set to 0.
strategy The reset strategy used for halting the core. Use 0 (zero) to halt

after reset. Use 1 to halt with breakpoint at address 0x0. Use 2 for
software reset (for Analog devices).

Return value

Result Value
Successful. The actual delay value implemented by the emulator >=0
Successful. The delay feature is not supported by the emulator -1
Unsuccessful. Hardware reset is not supported by the emulator -2
Unsuccessful. The reset strategy is not supported by the emulator -3

Table 117: __hwReset return values
Description Performs a hardware reset and a halt with delay of the target CPU.

Example __hwResetWithStrategy (0,1)

Resets the CPU and halts it using a breakpoint at memory address zero.

Applicability This system macro is available for the J-Link/J-Trace JTAG interface.
__jlinkExecCommand

Syntax __jlinkExecCommand (cmdstr)

Parameter
cmdstr J-Link/}-Trace command string

Return value int 0

Description Sends a low-level command to the J-Link/J-Trace driver, see the J-Link / J-Trace User's
Guide.

Applicability This system macro is available for the J-Link/J-Trace JTAG interface.

Part 7. Reference information 473

Description of C-SPY system macros

__jtagCommand
Syntax __JjtagCommand (ir)
Parameter
2 SCAN_N
4 RESTART
12 INTEST
14 IDCODE
15 BYPASS
Return value int 0
Description Sends a low-level command to the JTAG instruction register IR.
Example __jtagCommand (14) ;
Id = __jtagbhata(0,32);
Returns the JTAG ID of the ARM target device.
Applicability This system macro is available for the J-Link/J-Trace JTAG interface.
__jtagCPI5IsPresent
Syntax __jtagCPl15IsPresent ()
Return value 1 if CP15 is available, otherwise 0.
Description Checks if the coprocessor CP15 is available.
Applicability This system macro is available for the J-Link/J-Trace JTAG interface.
__jtagCPI5ReadReg
Syntax __JjtagCPl5ReadReg (CRn, CRm, opl, op2)
Parameter The parameters—registers and operands—of the MRC instruction. For details, see the
ARM Architecture Reference Manual. Note that op1 should always be 0.
Return value The register value.

IAR Embedded Workbench® IDE
474 User Guide

Description

Applicability

__jtagCPI5WriteReg

Syntax

Parameter
Description
Applicability

__jtagData

Syntax

Parameter

Return value
Description

Example

Applicability

C-SPY® macros reference __o

Reads the value of the CP15 register and returns its value.

This system macro is available for the J-Link/J-Trace JTAG interface.

__JjtagCPl5WriteReg (CRn, CRm, opl, op2, value)

The parameters—registers and operands—of the MCR instruction. For details, see the
ARM Architecture Reference Manual. Note that opl should always be 0. valueis the
value to be written.

Writes a value to the CP15 register.

This system macro is available for the J-Link/J-Trace JTAG interface.

__jtagbata(dr, bits)

dr 32-bit data register value

bits Number of valid bits in dz; both for the macro parameter and the
return value; starting with the least significant bit (1. . .32)

Returns the result of the operation; the number of bits in the result is given by the bits
parameter.

Sends a low-level data value to the JTAG data register DR. The bit shifted out of DR is
returned.

__JjtagCommand (14) ;
Id = __jtagbhata(0,32);

Returns the JTAG ID of the ARM target device.

This system macro is available for the J-Link/J-Trace JTAG interface.

Part 7. Reference information 475

Description of C-SPY system macros

476

__jtagRawRead

Syntax

Parameter

Description

Example

Applicability

__jtagRawSync
Syntax

Return value

Description

IAR Embedded Workbench® IDE

User Guide

__JjtagRawRead (bitpos, numbits)

bitpos The start bit position in the returned JTAG bits to return data from

numbits The number of bits to read. The maximum value is 32.

Returns the data read from the JTAG TDO. Only the least significant bits contain data;
the last bit read is from the least significant bit. This function can be called an arbitrary
number of times to get all bits returned by an operation. This function also makes an
implicit synchronization of any accumulated write bits.

The following piece of pseudocode illustrates how the data is written to the JTAG (on
the T™s and TDI pins) and read (from TDO):

__var Id;

__var BitPos;
/**

*

* ReadId()

*/

ReadId() {

__message "Reading JTAG Id\n";

__jtagRawWrite (0, Ox1f, 6); /* Goto IDLE via RESET state */

__JjtagRawWrite (0, 0x1l, 3); /* Enter DR scan chain */

BitPos = __jtagRawWrite (0, 0x80000000, 32); /* Shift 32 bits
into DR. Remember BitPos for Read operation */

__JjtagRawWrite (0, 0xl1l, 2); /* Goto IDLE */

Id = __jtagRawRead(BitPos, 32); /* Read the Id */

__message "JTAG Id: ", Id:%$x, "\n";

}

This system macro is available for the J-Link/J-Trace JTAG interface.

__JjtagRawSync ()
int 0
Sends arbitrary data to the JTAG interface. All accumulated bits using

__jtagRawlirite will be written to the JTAG scan chain. The data is sent
synchronously with TCk and typically sampled by the device on rising edge of TCK.

Example

Applicability

__jtagRawWrite

Syntax

Parameter

Return value

Description

Example

C-SPY® macros reference __o

The following piece of pseudocode illustrates how the data is written to the JTAG (on
the T™S and TDI pins) and read (from TDO):
int i;
U32 tdo;
for (1 = 0; 1 < numBits; i++) {
TDI = tdi & 1; /* Set TDI pin */
T™S = tms & 1; /* Set TMS pin */
TCK = 0;
TCK = 1;
tdo <<= 1;
if (TDO) {
tdo | =1;
}
tdi >>= 1;
tms >>= 1;

This system macro is available for the J-Link/J-Trace JTAG interface.

__JjtagRawWrite (tdi, tms, numbits)

tdi The data output to the TDI pin. This data is sent with the least
significant bit first.

tms The data output to the TMS pin, This data is sent with the least
significant bit first.

numbits The number of bits to transfer. Every bit results in a falling and rising
edge of the JTAG TCK line. The maximum value is 64.

Returns the bit position of the data in the accumulated packet. Typically, this value is
used when reading data from the JTAG.

Accumulates bits to be transferred to the JTAG. If 32 bits are not enough, this function
can be called multiple times. Both data output lines (TMS and TDI) can be controlled
separately.

/* Send five 1 bits on TMS to go to TAP-RESET state */

__jtagRawWrite (0x1F, 0, 5); /* Store bits in buffer */

__JjtagRawSync(); /* Transfer buffer, writing tms, tdi,
reading tdo */

Part 7. Reference information 477

Description of C-SPY system macros

Applicability

__jtagResetTRST

Syntax

Return value

Description

Applicability

__openFile

Syntax

Parameters

Return value

IAR Embedded Workbench® IDE
478 User Guide

Returns the JTAG ID of the ARM target device.

This system macro is available for the J-Link/J-Trace JTAG interface.

__JjtagResetTRST()

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 118: __openFile return values
Resets the ARM TAP controller via the TRST JTAG signal.

This system macro is available for the J-Link/J-Trace JTAG interface.

__openFile(file, access)

file The filename as a string

access The access type (string).
These are mandatory but mutually exclusive:
"a" append, new data will be appended at the end of the open file
"t read
"W write
These are optional and mutually exclusive:

"b" binary, opens the file in binary mode
e ASCII text, opens the file in text mode
This access type is optional:
" together with r, w, or a; r+ or w+ is read and write, while a+ is read
and append
Result Value
Successful The file handle

Table 119: __openFile return values

Description

Example

See also

__orderinterrupt

Syntax

Parameters

Return value

C-SPY® macros reference __o

Result Value

Unsuccessful An invalid file handle, which tests as False

Table 119: __openFile return values

Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (*.pew or *.pr3) is located. The argument to __openFile
can specify a location relative to this directory. In addition, you can use argument
variables such as $PROJ_DIR$ and $TOOLKIT_ DIRS in the path argument.

__var filehandle; /* The macro variable to contain */
/* the file handle */
filehandle = __openFile("Debug\\Exe\\test.tst", "r");
if (filehandle)
{
/* successful opening */
}

Argument variables summary, page 306.

__orderInterrupt (specification, first_activation,
repeat_interval, variance, infinite_hold time,
hold_time, probability)

specification The interrupt (string). The specification can either be the full
specification used in the device description file (ddf) or only the
name. In the latter case the interrupt system will automatically get
the description from the device description file.

first_activation The first activation time in cycles (integer)

repeat_interval The periodicity in cycles (integer)

variance The timing variation range in percent (integer between 0 and 100)
infinite_hold_time | if infinite, otherwise 0.

hold_time The hold time (integer)

probability The probability in percent (integer between 0 and 100)

The macro returns an interrupt identifier (unsigned long).

If the syntax of specificationis incorrect, it returns -1.

Part 7. Reference information 479

Description of C-SPY system macros

480

Description
Applicability

Example

Generates an interrupt.
This system macro is only available in the C-SPY Simulator.

The following example generates a repeating interrupt using an infinite hold time first
activated after 4000 cycles:

__orderInterrupt("IRQ", 4000, 2000, O, 1, 0, 100);

__popSimulatorinterruptExecutingStack

Syntax
Return value

Description

Applicability

__readFile

IAR Embedded Workbench® IDE

User Guide

Syntax

Parameters

Return value

Description

_ _popSimulatorInterruptExecutingStack (void)
This macro has no return value.

Informs the interrupt simulation system that an interrupt handler has finished executing,
as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

This system macro is only available in the C-SPY Simulator.

__readFile(file, valuePtr)

file A file handle
valuePtr A pointer to a variable
Result Value

Successful 0

Unsuccessful Non-zero error number

Table 120: __readFile return values

Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

C-SPY® macros reference __o

Example __var number;
if (__readFile(myFile, &number) == 0)
{
// Do something with number

__readFileByte
Syntax __readFileByte(file)
Parameter
file A file handle
Return value -1 upon error or end-of-file, otherwise a value between 0 and 255.
Description Reads one byte from the file file.
Example __var byte;
while ((byte = __readFileByte (myFile)) != -1)

{
// Do something with byte

__readMemory8, __readMemoryByte

Syntax __readMemory8 (address, zone)
__readMemoryByte (address, zone)

Parameters
address The memory address (integer)
zone The memory zone name (string); for a list of available
zones, see Memory addressing, page 143
Return value The macro returns the value from memory.
Description Reads one byte from a given memory location.
Example _ _readMemory8 (0x0108, "Memory") ;

Part 7. Reference information 481

Description of C-SPY system macros

__readMemoryl 6

Syntax

Parameters

Return value
Description

Example

__readMemory32

Syntax

Parameters

Return value
Description

Example

__registerMacroFile

Syntax

Parameter

Return value

IAR Embedded Workbench® IDE
482 User Guide

__readMemoryl6 (address, zone)

address The memory address (integer)

zone The memory zone name (string); for a list of available
zones, see Memory addressing, page 143

The macro returns the value from memory.
Reads a two-byte word from a given memory location.

__readMemoryl6 (0x0108, "Memory") ;

__readMemory32 (address, zone)

address The memory address (integer)

zone The memory zone name (string); for a list of available
zones, see Memory addressing, page 143

The macro returns the value from memory.
Reads a four-byte word from a given memory location.

__readMemory32 (0x0108, "Memory") ;

__registerMacroFile(filename)

filename A file containing the macros to be registered (string)

int 0

Description

Example

See also

__resetFile

Syntax

Parameter

Return value

Description

C-SPY® macros reference __o

Registers macros from a setup macro file. With this function you can register multiple
macro files during C-SPY startup.

__registerMacroFile("c:\\testdir\\macro.mac") ;

Registering and executing using setup macros and setup files, page 153.

_resetFile(filehandle)

filehandle The macro variable used as filehandle by the __openFile
macro

int 0

Rewinds a file previously opened by __openFile.

__restoreSoftwareBreakpoint

Syntax
Return value

Description

Applicability

__restoreSoftwareBreakpoint ()
int 0

Restores automatically any breakpoints that were destroyed during system startup.

This can be useful if you have an application that is copied to RAM during startup and
is then executing in RAM. This can, for example, be the case if youuse the initialize
by copy directive for code in the linker configuration file or if you have any
__ramfunc declared functions in your application. In this case, any breakpoints will be
destroyed during the RAM copying when the C-SPY debugger starts.

By using the this macro, C-SPY will restore the destroyed breakpoints.

This system macro is available for the J-Link/J-Trace JTAG interface and the Macraigor
interface.

Part 7. Reference information 483

Description of C-SPY system macros

__setCodeBreak

Syntax

Parameters

Return value

Description

Examples

See also

IAR Embedded Workbench® IDE
484 User Guide

__setCodeBreak(location, count, condition, cond_type, action)

location A string with a location description. This can be either:
A source location on the form { filename}.Iline.col (for
example {D:\\src\\prog.c}.12.9)
An absolute location on the form zone: hexaddress or simply
hexaddress (for example Memory : 0x42)
An expression whose value designates a location (for example main)

count The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

condition The breakpoint condition (string)
cond_type The condition type; either “CHANGED” or “TRUE” (string)
action An expression, typically a call to a macro, which is evaluated when

the breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 121: __setCodeBreak return values

Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

__setCodeBreak ("{D:\\src\\prog.c}.12.9", 3, "d>1l6", "TRUE",
"ActionCode() ") ;
The following example sets a code breakpoint on the label main in your source:

__setCodeBreak("main", 0, "1", "TRUE", "");

Defining breakpoints, page 135.

__setDataBreak

Syntax

Parameters

Return value

Description

Applicability

Example

C-SPY® macros reference __o

__setDataBreak(location, count, condition, cond_type, access,

location

count

condition

action)

A string with a location description. This can be either:

A source location on the form { filename}.line.col (for
example {D:\\src\\prog.c}.12.9), although this is not
very useful for data breakpoints

An absolute location on the form zone: hexaddress or simply
hexaddress (for example Memory : 0x42)

An expression whose value designates a location (for example
my_global_variable).

The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

The breakpoint condition (string)

cond_type The condition type; either “CHANGED” or “TRUE” (string)

access The memory access type: "R" for read, "W" for write, or "RW"
for read/write

action An expression, typically a call to a macro, which is evaluated when
the breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value

must be used to clear the breakpoint.
Unsuccessful 0

Table 122: __setDataBreak return values

Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

This system macro is only available in the C-SPY Simulator.

__var brk;

brk = __setDataBreak("Memory:0x4710", 3, "d>6", "TRUE",

W,

"ActionData()") ;

Part 7. Reference information 485

Description of C-SPY system macros

486

See also

__setSimBreak

Syntax

Parameters

Return value

Description

Applicability

IAR Embedded Workbench® IDE
User Guide

__clearBreak (brk) ;

Defining breakpoints, page 135.

__setSimBreak(location, access, action)

location A string with a location description. This can be either:
A source location on the form { filename} .line.col (for
example {D:\\src\\prog.c}.12.9),although this is not
very useful for simulation breakpoints.
An absolute location on the form zone: hexaddress or simply
hexaddress (for example Memory : 0OXE01E).
An expression whose value designates a location (for example
my_global_variable).

access The memory access type: "R" for read or "W" for write

action An expression, typically a call to a macro function, which is
evaluated when the breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 123: __setSimBreak return values

Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

This system macro is only available in the C-SPY Simulator.

__sleep

Syntax

Parameter

Return value
Description

Example

___sourcePosition
Syntax

Parameters

Return value

Description

__strFind

Syntax

Parameters

C-SPY® macros reference __o

__sleep(time)

time The debugger sleep time in microseconds
int 0
Causes the debugger to sleep the specified amount of time.

__sleep(1000000)

Causes the debugger to sleep for 1 second.

__sourcePosition(linePtr, colPtr)

linePtr Pointer to the variable storing the line number
colPtr Pointer to the variable storing the column number
Result Value

Successful Filename string

Unsuccessful Empty (" ") string

Table 124: __sourcePosition return values

If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind(macroString, pattern, position)

macroString The macro string to search in

pattern The string pattern to search for

Part 7. Reference information 487

Description of C-SPY system macros

Return value
Description

Example

See also

__subString

Syntax

Parameters

Return value
Description

Example

See also

__toLower

Syntax
Parameter

Return value

IAR Embedded Workbench® IDE

488 User Guide

position The position where to start the search. The first position is 0

The position where the pattern was found or -1 if the string is not found.
This macro searches a given string for the occurrence of another string.

__strFind("Compiler", "pile", 0) = 3
__strFind("Compiler", "foo", 0) = -1

Macro strings, page 460.

_subString (macroString, position, length)

macroString The macro string from which to extract a substring
position The start position of the substring. The first position is 0.
length The length of the substring

A substring extracted from the given macro string.
This macro extracts a substring from another string.

_subString("Compiler", 0, 2)

The resulting macro string contains Co.
__subString("Compiler", 3, 4)

The resulting macro string contains pile.

Macro strings, page 460.

_ _toLower (macroString)
macroString is any macro string.

The converted macro string.

C-SPY® macros reference __o

Description This macro returns a copy of the parameter string where all the characters have been
converted to lower case.

Example __toLower ("IAR")
The resulting macro string contains iar.
__toLower ("Mix42")

The resulting macro string contains mix42.

See also Macro strings, page 460.
__toString
Syntax __toString(C_string, maxlength)
Parameter
string Any null-terminated C string
maxlength The maximum length of the returned macro string
Return value Macro string.
Description This macro is used for converting C strings (char* or char []) into macro strings.
Example Assuming your application contains the following definition:
char const * hptr = "Hello World!";

the following macro call:
__toString (hptr, 5)

would return the macro string containing Hello.

See also Macro strings, page 460.
__toUpper

Syntax __toUpper (macroString)

Parameter macroString is any macro string.

Return value The converted string.

Part 7. Reference information 489

Description of C-SPY system macros

Description

Example

See also

__writeFile

Syntax

Parameters

Return value

Description

__writeFileByte

Syntax

Parameters

Return value

Description

IAR Embedded Workbench® IDE
490 User Guide

This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.

__toUpper ("string")

The resulting macro string contains STRING.

Macro strings, page 460.

__writeFile(file, value)

file A file handle
value An integer
int 0

Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __ fmessage statement can do the same thing. The __writeFile macrois
provided for symmetry with __readFile.

__writeFileByte(file, value)

file A file handle
value An integer in the range 0-255
int 0

Writes one byte to the file file.

C-SPY® macros reference __o

__writeMemory8, __writeMemoryByte

Syntax __writeMemory8 (value, address, zone)
__writeMemoryByte(value, address, zone)

Parameters
value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string); for a list of available zones,
see Memory addressing, page 143
Return value int 0
Description Writes one byte to a given memory location.
Example __writeMemory8 (0x2F, 0x8020, "Memory");
__writeMemoryl 6
Syntax __writeMemorylé6 (value, address, zone)
Parameters
value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string); for a list of available zones,
see Memory addressing, page 143
Return value int 0
Description Writes two bytes to a given memory location.
Example __writeMemoryl6 (0x2FFF, 0x8020, "Memory");
__writeMemory32
Syntax __writeMemory32(value, address, zone)
Parameters

value The value to be written (integer)

Part 7. Reference information 491

Description of C-SPY system macros

492

Return value

Description

IAR Embedded Workbench® IDE
User Guide

address The memory address (integer)

zone The memory zone name (string); for a list of available zones,
see Memory addressing, page 143

int 0
Writes four bytes to a given memory location.

Example

__writeMemory32 (0x5555FFFF, 0x8020, "Memory");

Index __o

A assembler
command line version 75
Access Type (Breakpoints dialogbox) 247 documentation 25
data breakpoint.oo oo 181 features i 16
immediate breakpoint.o.... 183 assembler comments, text style in editor. 101
access type (in JTAG Watchpoints dialog box). 253 assembler directives
Action (Breakpoints dialog box). 246 textstyleineditor 101
code breakpointooeeee e 284 assembler labels, viewing 132
data breakpoint. 182 assembler list files
immediate breakpoint.o.ieiia... 184 compiler call frame information, including 394
Add existing project to current workspace conditional information, specifying 404
(Startup option).ot 340 cross-references, generating. 405
Additional include directories (assembler option). 406 format ... 54
Additional include directories (compiler option) 395 generating ... 404
Additional libraries (linker option) 417 header, includingo oo 404
address, in JTAG Watchpoints dialog box. 253 lines per page, specifying. 405
Alias (Key bindings option) 316 tab spacing, specifying. 405
Allow alternative register names, mnemonics and operands Assembler mnemonics (compiler option) 394
(assembler option) i, 402 assembler options 401
Allow hardware reset (C-SPY RDI option). 234 Allow alternative register names, mnemonics
Angel driver, features oo, 14 andoperands 402
Angel interface, specifying........................ 216 Diagnostics ... 407
Angel (C-SPY options).covivninnnnen... 216 Language.................. ...l 401
application List. .o 404
built outside the IDEouevteeanenn... 117 Output 403
TeSHNG . .ottt 94,157 Preprocessor. 405
argument variables L i 335 assembler output, including debug information 403
environment variables 307 assembler preprocessor. 405
in #include file paths assembler symbols
assembler 406 defining 406
COMPIler . ..ot 395 using in C-SPY expressions. 128
SUMMATY © ..o ottt e et e e e e 306 assembler variables, viewing. 132
Arguments (External editor option) 321 assert, in built applications 83
ARM code, mixing with Thumb code. 390 assumptions, programming experience. XXXVil
Arm (compiler option) 390 Atmel AT91EBxx flashloader 259
arm (dir€CtOTY) © .o vttt e e e e e 20 Atmel AT9ISAM7AI1-Ek flash loader 259
ar, using for building libraries....................... 69 Atmel AT9ISAM7A2-Ek flash loader 259
asm (filename extension)c..o.u... 22 Attach to program (C-SPY Download option) 215
Auto indent (editor option) 318

493

494

Autowindow 359

COMEEXEMENIU « . e\ vt et ettt et e et eeeen e 359
Automatic runtime library selection (linker option) 417
Automatic (compiler option). 389
Autostep settings dialog box (Debug menu) 375
-B (C-SPY command line option). 438
--backend (C-SPY command line option)......... 438-439
Background color (IDE Tools option). 324
backtrace information

generated by compiler 125

viewing in Call Stack window 363
Base (Register filteroption) 332
bat (filename extension)coiiin.... 22
BatchBuild. i 93
Batch Build Configuration dialog box (Project menu) . . .312
Batch Build dialog box (Project menu). 311
batch files, specifyinginIDE 80, 336
Baud rate (C-SPY Angeloption) 217
Baud rate (C-SPY IAR ROM-monitor option) 220
Baud rate (C-SPY Macraigor option) 232
--BE32 (C-SPY command line option) 435
--BE8 (C-SPY command line option) 435
Big endian (C-SPY targetoption)................... 380
bin, arm (subdirectory) i 20
bin, common (subdirectory) 21
blocks, in C-SPY macroscvvnvnn.. 462
Body (b) (Configure auto indent option). 320
bold style, inthisguide. xlii
bookmarks

adding 105

showingineditor............. oL, 319
break condition (in JTAG Watchpoints dialog box). 254
Break (button). 125, 345
breakpoint condition, example 138
breakpointiconsovitiii i 136
Breakpoint type (Breakpoints dialog box) 246

IAR Embedded Workbench® IDE
User Guide

Breakpoint Usage dialog box (Simulator menu). . . . 184, 250

USING «.oe et e 140
breakpoints 124
code,example 484
conditional, example 64
connectinga C-SPYmacro 155
CONSUIMETS . .. e vttt et e e e e e e e 141
datao 180, 246, 248
example. 485
immediate L 182
example. 65
in Memory window 137
in ramfunc functions L o Ll 251
inthe simulator 179
listingall i, 140
on vectors, using Macraigor. 250
setting
inmemory window 137
USING SYStEM MACTOS « .« o v o v e e e eeeeeaen 138
using the dialogbox 137
SEHNES. « ¢ vt et e e 308
single-stepping if not available. 115
system, descriptionof 135
toggling 136
VIBWING © .ottt 139
Breakpoints dialog box
Code oo 245, 283
Data.ovuine 180, 246
Datalogcoii 248
Immediate i 183
Log o 285
Breakpoints options (C-SPY options). 243
Breakpoints window (Viewmenu) 282
Breakpoints (J-Link/J-Trace option) 244
Broadcast all branch addresses (Trace Setup option)239
Buffered terminal output (general option). 384
-build (iarbuild command line option) 95
Build Actions 94

Build Actions Configuration (Build Actions options). . ..413

build configuration

CIEALINE .« o v vt ottt ettt e 84
definitionof 82
Build window contextmenu 288
Build window (Viewmenu) 288
building
commandsfor i 93
from the commandline 95
OPLIONS .« o vttt ettt e e 326
pre and post actions 94
the Process . .« oo vt 91
byte order, specifying 380
C comments, text styleineditor 101
C compiler. See compiler
C function information, in C-SPY................... 125
C keywords, text styleineditor. 101
C symbols, using in C-SPY expressions 127
C variables, using in C-SPY expressions 127
¢ (filename extension).c.urirenenrnn.. 22
call chain, displaying in C-SPY 125
Call stack information.c.o.... 125
Call Stack windowc.oviinnenenen... 363
CONEEXEMENU .+ . v\ vt vt et et e ee e eeennes 363
eXAMPIE . .o 63
for backtrace information. 125
__cancelAllInterrupts (C-SPY system macro) 467
__cancellnterrupt (C-SPY system macro). 467
Catch exceptions (C-SPY RDI option) 235
category, in Options dialogbox. 92,309
cfg (filename extension)coveuenenn.. 22
characters, in assembler macro quotes 402
Check In Files dialogbox, .. 272
Check Out Files dialogbox. 273
Checksum (linker options) 423
checksum, generating uiin... 424
chm (filename extension)c.cvvunn.. 22

Index °

-clean (iarbuild command line option) 95
__clearBreak (C-SPY systemmacro) 468
Close Workspace (Filemenu). 292
__closeFile (C-SPY systemmacro) 468
code coverage

commandsl 366

CONEXEMENU . . .ottt et e e s 366

USING «.ov et e 160

VIBWING .ottt 161
Code Coverage windowcocuvnen... 365
code generation

assembler. L Ll 401

compiler, features. oo 14
COde INLEEIILY . o v vt ettt 88
code memory, fillingunused. 424
Code page (compiler options). 390
Code section name (compiler option) 393
code templates, usingineditor 103
code, testingot 94
command line options

specifyinginIDE. 80, 336

typographic convention xlii
command prompt icon, in this guide. xlii
Command (External editor option) 321
Common Fonts (IDE Options dialog box) 314
common (directory)ouiiiniininananann. 21
communication problem, J-Link. 223
Communication (Angel C-SPY option) 217
Communication (C-SPY J-Link option) 224

Communication (OKI ROM-monitor C-SPY option)220
compiler

command line version 4,75
documentationt 15,25
features 14

compiler call frame information

including in assembler listfile 394
compiler diagnostics. i 394
SUPPIESSING . . oottt e 397

495

496

compiler list files
assembler mnemonics, including
example
GENETALING .« .t ottt et
source code, including,

compiler OptioNSo vt
setting in Embedded Workbench, example
Code .o
Diagnosticso
Generate interworkcode

OULPUL .« o oot e

Preprocessor.

Processormode L.,
compiler output, including debug information
COMPIlEr PreProCesSOr. « . v v v v v et e e e e eaenen
compiler symbols, defining.
computer style, typographic convention
conditional breakpoints, example
conditional statements, in C-SPY macros.............
Conditions (Breakpoints dialog box)

code breakpoint i

data breakpoint. L L
Conditions (Breakpoints dialog)
Config (linker options)c.ouvuinenen...
Configuration file symbol definitions (linker option)
Configuration file (general option)
Configurations for project dialog box (Project menu). . . .
Configure Auto Indent (IDE Options dialog box).
Configure Tools (Toolsmenu)
Configure Viewers dialog box (Tools menu)...........
config, arm (subdirectory).,
config, common (subdirectory).
$CONFIG_NAMES$ (argument variable)
context menu, in windows.
conventions, used inthisguide

IAR Embedded Workbench® IDE
User Guide

CONVETTET OPHONS. « . ¢ vttt e e e eeeee 409

Outputfile ... 409
Copy (BULON) . .. v vt 265
copyright. . ..o ii
Core (General Option)o v v et 379
cpp (filename extension).cov ... 22
--cpu (C-SPY command line option). 435
CPU clock (C-SPY J-Link option) 227
CPU mode (in JTAG Watchpoints dialog box) 254
CPU registers, definitions. 115
Create New Project dialog box (Project menu). 308
Create new project in current workspace (Startup option). 340
Cross-reference (assembler option). 405
CSPYbat . .. 433
current position, in C-SPY Disassembly window 347
cursor, in C-SPY Disassembly window. 347
$CUR_DIRS (argument variable) 306
CUR_LINES (argument variable).................. 306
custombuild L L 95

USING .ottt e 96
custom tool configuration. 96
Custom Tool Configuration (Custom Build options). 411
Cycle accurate tracing (Trace Setup option) 239
C++ comments, text styleineditor.................. 101
C++ keywords, text style ineditor 101
C++ terminology. . . . oo xlii
CH+tutorial ... 55
C-SPY

characteristics, additional drivers. 213,255

debugger systems.c.i ... 9

OVEIVIEW . . et ettt et e e e 112

ENVIroNment OVeIViewo.vuvrennenenen.. 113

IDE reference information. 343

OVEIVIEW . ottt ettt et e e ettt et ee e 5

plugin modules, loading. 116

SENG UP « o v ve ettt e e 114

Simulator. 165

starting the debugger 116
C-SPY Bat .. oii i 433

Index °

C-SPY command line option options 438 OCD interface device., 231
C-SPY Download options TCP/IP. . . 231
Attachtoprogram, 215 C-SPY mMacrosc.oouiuininnnnunenen... 149, 459
Flashdownload 216 blocks. 462
Suppressdownload, 215 conditional statements, 461
Verify download. 215 C-SPY eXpressionsoeeeenenenenen.. 461
C-SPY drivers dialogbox 375
Angel. ... 14 USING . oottt 152
J-Link. ..o 10 eXamples 150
LMIFTIDI o 11 checking status of register. 154
Macraigoro. i 12 checking the status of WDT 154
RDI ..o 11 creatingalogmacro 155
ROM-monitorouiiniiineannnann.. 13 execUserPreload(), using 119
SIMUIAtOr . ..ot 165 execUserSetupc.coiuiiinon... 61, 67
C-SPY eXPressionsvvveneneeneeneenenen. 127 remapping memory before download 119
evaluating. 131 EXECULING . o ettt et e 152
inC-SPYmacros.c.coeini... 461 connecting to a breakpoint 155
Quick Watch, using 131 using Quick Watch 154
Tooltip watch, using. 130 using setup macro and setup file. 153
Watch window, using, 130 functions 128, 459
C-SPY GDB Server options loop statementsc...iiiiiiiian.. 461
TCPIP address or hostname 218 MACIO SLAtEMENLS .« « v v v v v e e e e e e e eeeeaenen 461
C-SPY JTAG options setup macro file
Log communication. 218,225,232 definitionof 151
OCD interface device. vinininenenan.. 234 EXECULIMG. « o\ vttt et et 153
C-SPY J-Link options setup macro function
CommUNICAtON . . o\ vttt e e 224 definitionof 151
CPUclock ... oo 227 SUMMATY . ¢ o vttt et ettt et e e e e 464
HW Trace 227 system macros, summary of. 465
Interface. i 224 USING . oot 149
ITM Stimulis Ports., 228 variables. 129, 460
JTAGscanchainc.coiuininnnnn... 225 C-SPY Optionsc..ouiiuiinninnennenann.. 429
JTAGspeed, 223,229 ExtraOptions.ovuiinii i 431
SWOclock. . ..o 227 for the simulator. 165
C-SPY Macraigor options in Options dialog boX., 310
Debug handler address. 232 Plugins. i 431
Hardwarereset.c.coininininnnnnn.. 232 Setup ... 429
JTAG scan chain with multiple targets. 232 C-SPY RDI options
JTAGspeedo it 231 Allow hardwarereset.covuenen... 234

497

498

Catchexceptionsc.cuenininenennn... 235

ETMtracecooiuiin i 234

Log RDI communication 235
C-SPY Third-Party Driver options

IAR debugger driverplugin. 237

Log communication. 237
C-SPY windows

Memory Access Configuration 168

Pipeline Trace, 167
C-SPYLinK.ot 8
C/C++ syntax styles, options 323
-d (C-SPY command line option) 439
dat (filename extension)couuuuroan.. 22
data breakpointsoiu... 180, 246, 248
data coverage, in Memory window 350
data specification (in JTAG Watchpoints dialog box)253
dbgt (filename extension)cvenennn.. 22
ddf (filename extension)ouiuiinrean.. 22

selecting device descriptionfile. 115
Debug handler address (C-SPY Macraigor option). 232
debug information

generating inassembler, .. 403

in compiler, generating 393
Debug Log window context menu 291
Debug Log window (View menu). 290
Debugmenuot 373
Debug without downloading textbox 265
debugger concepts, definitionsof 111
debugger drivers

simulator 165
debugger system OvVerviewc..o..... 112
Debugger (IDE Options dialogbox)................. 328
debugging projects

externally built applications. 117

in disassembly mode, example. 46
debugging, RTOS awareness.coovuvn... 9

IAR Embedded Workbench® IDE
User Guide

default installation path. 19
Default integer format (IDE option) 329
#define statement, in compiler 396
#define (linker option) 421
Defined by application (linker option) 418
Defined symbols (assembler option). 406
Defined symbols (compiler option). 396
Defined symbols (linker option) 421
dep (filename extension)., 22
description (interrupt property).c.c.ovuen... 191
development environment, introduction 75
--device (C-SPY command line option) 440
Device description file (C-SPY option). 430
device descriptionfiles, 20, 115
definitionof L L i 118
modifying 118
specifying interruptsc.. 479
device selectionfiles................ 20
Device (Generaloption), 379
diagnostics
compiler
includinginlistfile......................... 394
SUPPIESSING . . o\ v v ettt 397
linker, suppressing i 422
Diagnostics (assembler options) 407
Diagnostics (compiler options) 396
Diagnostics (linker option), 421
directories
AITIL. oottt e e e e e e 20
assembler, ignore standard include. 406
(o0 12 10) 21
compiler, ignore standard include 395
TOOU & vt ettt e e e e e e e e e 19
directory Structure.ouiitnin e 19
Disable language extensions (compiler option). 389
__disableInterrupts (C-SPY system macro) 468
Disassemblymenu 378
disassembly mode debugging, example 46

Disassembly window 346

CONEXEMENU .« o v vt et et et e e e eeeaenn 347
Discard Unused Publics (compiler option) 387
disclaimer.o i e ii
DLIB. ..ot 15

documentation xli, 25
DLIB library functions, reference information 100
dni (filename extension), 22

Do not show Information Center/rat startup (Startup option) .
341

Do not show this window at startup (Startup option)341

do (macro statement)t 461
dockable windows. i 77
document conventions.uvrnreranan... xlii
documentationi.iiii . 19
assembler. 16
compiler. 15
GNU binary utilities. 20
linker o 17
MISRA C. ..o e e 25
online.ot 20, 22
otherguides.......... xli
OVEIVIEW vttt ettt et e e e XXX Viil
Product.ot 24
runtime libraries. 25
thisguide........ ... oo, XXXVii
doc, arm (subdirectory). i 20
doc, common (subdirectory), 22
Download (C-SPY options)c.coon... 215
downloading to flashmemory. 216
drag-and-drop
of files in Workspace window 84
textineditorwindow 101
Driver (C-SPY option)coouinininnon... 429
drivers, arm (subdirectory), 20
__driverType (C-SPY systemmacro) 469

--drv_attach_to_program (C-SPY command line option) . 435
--drv_catch_exceptions (C-SPY command line option) . . 440
--drv_commuication (C-SPY command line option). 441
--drv_commuication_log (C-SPY command line option) . 443

Index °

--drv_default_breakpoint (C-SPY command line option) . 443
--drv_reset_to_cpu_start (C-SPY command line option) . 444
--drv_restore_breakpoints (C-SPY command line option) 444
--drv_suppress_download (C-SPY command line option) 436
--drv_vector_table_base (C-SPY command line option). . 445
--drv_verify_download (C-SPY command line option) ..436

Dynamic Data Exchange (DDE).................... 106
calling external editor 321
Edit Filename Extensions dialog box (Tools menu) 337
Edit Interrupt dialog box (Simulator menu) 190
Edit Memory Access dialogbox.................... 179
Editmenu......... ..o 294
editing source files 99
edition, user guide. ii
editor
codetemplatescouuiirininninnan.. 103
commandst 101
customizing the environment. 105
external 106
features 5
HTMLfilescoiii i 274
indentation.cooiiuinan.. 102
keyboard commands 278
matching parentheses and brackets 103
OPLIONS .« vttt et e et 317
shortcut to functions. 105, 275
splittercontrols, 275
status bar, USINg invuiitnenenenn., 103
USIIE & vttt et ettt e e e e e e 99
Editor Colors and Fonts (IDE Options dialog box). 323
Editor Font (Editor colors and fonts option) 323
Editor Setup Files (IDE Options dialog box) 322
editor setup files, options 322
Editor windowot 274
CONEEXEMENU & . o\ vt v vt ee e e e et e e eeeeneeenn 276
tab, contexXt menu.ooverenennnenan.. 275

499

500

Editor (External editor option) 321

Editor (IDE Options dialog box). 317
EEC++ syntax (compiler option) 388
ELF, converting from 409
Embedded C++ Technical Committee xli
Embedded C++ (compiler option) 388
Embedded C++, enabling syntax in compiler.......... 388
Embedded Workbench
CdItOr . oo vt 99
exiting from........ i 77
layout. . ..ot 77
mainwindow 76, 264
reference information. 263
TUNMINGZ. « o e et ettt e e e e et en 76
Startup dialog box (Helpmenu). 340
version number, displaying 340
EmbeddedICE macrocell 252
emulator (C-SPY version)
third-partyo i 4
__emulatorSpeed (C-SPY system macro)............. 469

__emulatorStatusCheckOnRead (C-SPY system macro) .470
Enable graphical stack display and stack usage

tracking (Stackoption) 330
Enable multibyte support (assembler option) 401
Enable multibyte support (compiler option) 390
Enable remarks (compiler option). 397
Enable remarks (linker option) 422
Enable Virtual Space (editor option). 319
enabled transformations, in compiler 392
__enablelnterrupts (C-SPY system macro)............ 471
End address (linker option). 424
--endian (C-SPY command line option) 436
Endian mode (General option) 380
Enter Location (Breakpoints dialog box) 287
Entry symbol (linker option). 417
environment variables, as argument variables. 307
EOL character (editoroption). 318
EPIJEENIJTAG interface 216
error messages

compiler. 398

IAR Embedded Workbench® IDE
User Guide

linker 423
ETM trace (C-SPY RDIoption) 234
__evaluate (C-SPY system macro) 471
ewd (filename extension) 23
ewp (filename extension) 23
ewplugin (filename extension) 23
eww (filename extension) 23

the workspace file 76
$EW_DIRS (argument variable). 306
Example applications (Startup option) 341
examples

breakpoints i 45

EXECUtING UPLO « v v v vttt e e 46
setting
using dialog box. oL 64
USINE MACTO &« o v ve e et ee e e 67

calling convention, examining 51

compiling. 35

C-SPYmacroscouiuiiiinnnann.. 150

C/C++ and assembler, mixing 52

ddffile,using.co i 63

debuggingaprogram.c.iiuan... 41

disassembly mode debugging. 46

function calls, displayinginC-SPY 63

interrupts

USING MACTO. . o\ vttt e eeen e 67
linking

acompiler program. 38

viewing themapfile 39
macros

checking status of register. 154

checking statusof WDT 154

creatingalogmacro 155

for interrupts and breakpoints 67

using Quick Watch 154

Memory window, usingt 47

MEMOIY, MONItOTING. « « v v v v et ee e e eeeeeennn. 47

mixing C and assembler. 51

performing tasks without stopping execution. 138

project
addingfiles i 31
[(S 1510V 29-30
reaching program exitouuunen.nn 49
registers, monitoring 65
Scan for Changed Files (editor option), using 37
setting project options 32
SEEPPING .« o v vt 42
Terminal I/O, displaying 49
tracing incorrect function arguments 138
using libraries o ... 69
variables
setting awatchpoint................ 44
watchinginC-SPY 44
viewing assembler listfile 54
viewing compiler listfiles 36
workspace, creatinganew 29
examples, arm (subdirectory) 20
execUserExit (C-SPY setup macro) 464
execUserFlashExit (C-SPY setup macro) 464
execUserFlashlnit (C-SPY setup macro).............. 464
execUserFlashReset (C-SPY setup macro) 464
execUserPreload (C-SPY setup macro). 464
execUserReset (C-SPY setupmacro) 464
execUserSetup (C-SPY setup macro) 464
example 61, 67
Executable (output directory) 381
executing a program up to a breakpoint 46
execution history, tracing 132
execution time, reducing. oL 157
$EXE_DIRS (argument variable) 306
Exit(Filemenu) iiiiiean.. 77
exit, of user application. c.... 125
expressions. See C-SPY expressions
External Editor (IDE Options dialog box). 320
external editor, using. 106
external input (in JTAG Watchpoints dialog box) 254
Extra Options
forassembler............. 408

Index °

forcompiler........... i 399
forC-SPY ... 431
forlinker i 425

F

factory settings

linkerot 428
restoring default settings 93
features
assembler. 16
CompPiler.vu i 14
CdItOr . . ot 5
source codecontrolo, 4
file extensions. See filename extensions
Filemenuiuiuiiiininiiiiiinnn., 291
file types
device descriptionouiiiiiiiian... 20
specifying in Embedded Workbench. 115
deviceselectionoviiiininiiian... 20
documentationiiiiiiiiiian... 20
AUIVETS « o v e e 20
flash loader applications 20
header 21
include. 21
Libraryt 21
linker configuration files 20
MACTO . & o vt ettt et ettt e e 115, 430
projecttemplatest 20
readme. 20, 22
syntax coloring configuration. 20
filename eXtensions.c.ooiitiiinan.. 22
cfg, syntax highlighting 324
ddf, selecting device description file 115
eww, the workspacefile................. 76
mac
themacrofile 150
usingmacrofile, 115
other thandefault.............................. 24

501

502

sfr, register definitions for C-SPY 118
Filename Extensions dialog box (Tools menu) 336
Filename Extensions Overrides dialog box (Tools menu) . 337
files

addingtoaprojectoouiiinii... 31

checkinginandout 89

compiling, example il 35

editing .. .o o i 99

navigating among.vit it 85

readmehtm L L oL 24
$FILE_DIRS (argument variable). 306
$FILE_FNAMES (argument variable) 306
$FILE_PATHS (argument variable) 306
Fill dialog box (Memory window) 351
Fill pattern (linker option). 424
Fill unused code memory (linker option) 424
Filter Files (Register filter option). 332
Find dialog box (Editmenu). 297
Find in Files dialog box (Edit menu). 299
Find in Files window

COMEXEMENU . . .ottt e e e e e e 289
Find in Files window (View menu). 288
Find in Trace dialog box. oo in .. 174
Findin Trace window 174
Find Next (button) 265
Find Previous (button) 265
Find (button). i 265
first activation time (interrupt property) 191

definitionof L i 186
Fixed width font IDE option). 314
Flash download (C-SPY Download option) 216
flash loader applications 20
Flash Loader Overview dialogbox.................. 257
flash memory

loading externally built applicationsto 117
--flash_loader (C-SPY command line option). 445
floating windows, 77
fmt (filename extension)o..u... 23

IAR Embedded Workbench® IDE
User Guide

font

Editor. 323

Fixedwidth io.... 314

Proportional width L. 314
for (macrostatement) 461
Forced Interrupt window (Simulator menu) 192
formats

assembler listfile.............................. 54

compiler listfile.......... 36
--fpu (C-SPY command line option). 436
FPU (General option) oovviniin e 380
Freescale MAC71x1 flash loader 259
function calls, displaying in C-SPY 63
function level profiling 157
Function Trace (C-SPY window) 172
function trace, definitionof. 170
functions

C-SPY running to when starting 114, 430

shortcut to in editor windows. 105, 275

G

__gdbserver_exec_command (C-SPY system macro). . . .472
--gdbserv_exec_command (C-SPY command line option) 446

general Optionst 379
(703 (= 379
Device .. oot 379
specifying, example 32
Endianmode, 380
FPU .. 380
Library Configuration 382
Library Options oov vt 384
MISRAC. ..t 385
OUtPUL .« o et e 381
Processorvariant, 379
Target. . oot 379

Generate browse information (IDE Project options). 327

Generate checksum (linker option) 424

Generate debug info (assembler option) 403

Generate debug information (compiler option). 393
Generate interwork code (compiler option). 390
Generate linker map file (linker option) 420
Generate log (linkeroption) 420
--generate_sim (C-SPY command line option) 446
GNU binary utilities, documentation 20
Go to Bookmark (button) 265
Go to function (editor button) 105, 275
GoTo(button)c.ciiiiiiiannann. 265
Go(button)t 345
Go(Debugmenu)...........c.iiiiiiiii .. 123
Group members (Register filter option) 332
Groups (Register filter option) 332
groups, definitionof oL 83
h (filename extension).cuini.... 23
Hardware reset (C-SPY Macraigor option). 232
headerfiles i, 21

qUICK ACCESS 1O . « vttt 105
Helpmenuo, 340
helpfiles (filename extension)....................... 23
highlighting, inC-SPY 124
hold time (interrupt property)c.cvueno... 191

definitionof L i 186
htm (filename extension)c.cuvun.. 23
html (filename extension)cuuon.. 23
HW Trace (C-SPY J-Link option). 227
__hwReset (C-SPY system macro). 472
__hwResetWithStrategy (C-SPY system macro) 473
i(filename extension) 23
IAR Assembler Reference Guide 25
IAR debugger driver plugin (Third-party Driver option). . 237
IAR Development Guide 25
IAR ROM-monitor interface, specifying. 219

IAR ROM-monitor (C-SPY options)
IAR Systems website.c. ..
iarbuild, building from the command line...........
TarldePmeexe.o
icf (filename extension)
icons,inthisguide

if else (macro statement).
if (macro statement)
Ignore standard include directories (assembler option). . .
Ignore standard include directories (compiler option). . . .
ILINK options, typographic convention

ILINK See linker

illegal memory accesses, checking for
immediate breakpoints L.
inc (filename extension)

Include compiler call frame

information (compiler option).
Include debug information in output (linker option) . . .
includefiles. i

assembler, specifyingpath....................

compiler, specifyingpath.
Include header (assembler option)
Include listing (assembler option).
Include source (compiler option)
Incremental Search dialog box (Edit menu)
inc, arm (subdirectory)
Indent Size (editor option)
indentation, ineditor.,
information center.c. .
information, product. L.
inherited settings, overriding.
ini (filename extension)

input

redirecting to Terminal I/O window.
special characters in Terminal I/O window
Input Mode dialogbox
Input (linker option),
insertion point, shortcut key for moving
installation path, default

Index °

503

504

installed files. 19

documentation 20, 22
executable 21
include. ... o 21
lbrary ..ot 21
Integrated Development Environment (IDE). 3-4
Intel-extended, C-SPY input format 113
Interface (C-SPY J-Link option). 224
Internet, IAR Systems web site. 26
Interrupt Log window (Simulator menu). 194
Interrupt Setup dialog box (Simulator menu) 189
interrupt system, using device description file 189
interrupts
adapting C-SPY system for target hardware 189
OPLIONS .« o vttt et e e 191
simulated, definitionof 185
timer,example i i 195
USING SYSLEM MACIOS .« . v vv et eee e e et enennn 192
interwork code, generating 390
ISO/ANSI C, compiler adheringto. 389
italic style, inthisguide xlii
ITM Stimulis Ports (C-SPY J-Link option). 228
179 (filename extension)uuvirenenn.n.. 23
__jlinkExecCommand (C-SPY system macro)......... 473

--jlink_device_select (C-SPY command line option)446
--jlink_exec_commmand (C-SPY command line option) . 447
--jlink_initial_speed (C-SPY command line option). 447

--jlink_interface (C-SPY command line option) 448
--jlink_ir_length (C-SPY command line option). 448
--jlink_reset_strategy (C-SPY command line option) 448
--jlink_speed (C-SPY command line option) 449
JTAG interfaces

EPIJEENI. i 216

J-Link. 221,229
JTAG scanchainwith............ 232
JTAG scan chain (C-SPY J-Link options). 225

IAR Embedded Workbench® IDE
User Guide

JTAG speed (C-SPY J-Link option) 223,229
JTAG speed (C-SPY Macraigor option) 231
JTAG watchpoints. 251
JTAG Watchpoints (dialogbox) 252
__jtagCommand (C-SPY system macro) 474
__jtagCP15IsPresent (C-SPY system macro) 474
__jtagCP15ReadReg (C-SPY system macro) 474
__jtagCP15WriteReg (C-SPY system macro).......... 475
__jtagData (C-SPY system macro) 475
__jtagRawRead (C-SPY system macro) 476
__jtagRawSync (C-SPY system macro) 476
__jtagRawWrite (C-SPY system macro). 471
__jtagResetTRST (C-SPY system macro) 478
J-Link communication problem 223
J-Link driver, features. 10
J-Link JTAG interface. 221, 229
J-Link watchpoints, 252
J-Link/J-Trace Connection (C-SPY options). 224
J-Link/J-Trace Reset (C-SPY option) 221
J-Link/J-Trace Setup (C-SPY options) 218, 221
Keep symbol (linkeroption) 418
Key bindings (IDE Options dialog box) 315
key summary, editor i 278
Label (c) (Configure auto indent option). 320
labels (assembler), viewing. 132
Language conformance (compiler option) 389
language extensions
disablingincompiler.......... 389
language facilities, incompiler. 15
Language (assembler options). 401
Language (compiler options) 388
Language (IDE Options dialogbox)................. 316
Language (Language option) 316

layout, of Embedded Workbench 77
library

creating aprojectfor L. 70

TUNLIME.ottt e 15
library builder options

OULPUL .« o oot e 427
Library Configuration (general options) 382
library files 21
library functions

configurable. i 21

reference information. 100
Library low-level interface
implementation (general option). 383
library modules

example 69

USINE .ottt 69
Library Options (general options). 384
Library (general option)c.von... 382
Library (linker options). oo, 417
lib, arm (subdirectory), 21
lightbulb icon, in this guide. xlii
#line directives, generating

incompiler. i 396
Lines/page (assembler option) 405
linker

command line version 75

documentation, 25

OVEIVIEWttt 16
Linker configuration file editor (dialog box)........... 416
Linker configuration file (linker option) 415
linker configuration files. 20
linker diagnostics, suppressing 422
linker options 415

factory settings.t 428

OULPUL .« o oo e 409
linker symbols, defining 421
linking,example i 38
list files

assembler. L L i 54

compiler runtime information, including. 394

Index °

conditional information, specifying 404
cross-references, generating 405
header, including. 404
lines per page, specifying 405
tab spacing, specifying 405
compiler
assembler mnemonics, including 394
example. 36
GENETAtiNG . . . o\ vttt 394
source code, including 394
option for specifying destination 382
List (assembler options) 404
List (compiler options)t 394
List (linker option)o, 420
$LIST_DIRS (argument variable). 306
Little endian (General option). 380
Live Watchwindow 359
CONEEXEMENU &« o v ve v e ettt e e e e e eeeeaenen 360
Live watch (IDE option), 329
LMI FTDI driver, featurescco.... 11
LMI FTDI Setup (C-SPY options) 229
--Imiftdi_speed (C-SPY command line option). 450
Localswindow oo, 358
CONEXEMENU .« o v vt vttt e et e e eeeeeaeen 359
-log (iarbuild command line option) 95
Log communication (Angel C-SPY option) 217

Log communication (C-SPY JTAG option) .. .218, 225, 232
Log communication (C-SPY Third-Party Driver option) . 237

Log communication (LMI FTDI C-SPY option). 229
Log communication (OKI ROM-monitor C-SPY option) . 220
Log File dialog box (Debugmenu).................. 377
log file, generate from linker. 420
Log RDI communication (C-SPY RDI option)......... 235
log (filename exXtension)vvuenenenannn. 23
loop statements, in C-SPY macros 461
Ist (filename extension).cvuuuron... 23

505

506

M

mac (filename extension)c.cuvnn.. 23
themacrofile.......... 150
usingamacrofile., 115

Macraigor driver, features. 12

Macraigor (C-SPY options)coovun... 230

--macro (C-SPY command line option) 453-454

Macro Configuration dialog box (Debug menu). 375

macro files, specifying 115,430

Macro quote characters (assembler option). 402

MACTO StAtEMENLS . . .« .v vttt ettt e e 461

macros
CXECULING v vt ettt e ettt et e 152
R 2 1<) 11 459
USING © vttt ettt 149

--mac_handler_address (C-SPY command line option) . .450

--mac_interface (C-SPY command line option) 450

--mac_jtag_device (C-SPY command line option) 451

--mac_multiple_targets (C-SPY command line option) . .451
--mac_reset_pulls_reset (C-SPY command line option) . . 452
--mac_set_temp_reg_buffer

(C-SPY command line option) 452
--mac_speed (C-SPY command line option). 453
--mac_xscale_ir7 (C-SPY command line option) 453
main function, C-SPY running to when starting 114, 430
main.s (assembler tutorial file) 69
-make (iarbuild command line option) 95
Make before debugging (IDE Project options) 326
MANAZING PrOJECES. « o v vt e v ettt e e e e ee 4
map files

example 39

VIEWING .« oot e 39
map file, generate from linker. 420
--mapu (C-SPY command line option) 454
mask (in JTAG Watchpoints dialog box). 253
Max number of errors (assembler option). 407
Max.s (assembler tutorial file) 69

IAR Embedded Workbench® IDE
User Guide

memory
fillingunused. i 424
1001071 1170) 01114 N 145
example. 47
remapping inC-SPY 119
memory access checking. 176, 178
Memory Access Configuration window (Simulator menu) 168
Memory Access Setup dialog box (Simulator menu) 176
memory accesses, illegal. 176
MEMOTY MAP .« -« e v ove et et et e et eeenennn 168, 176
Memory Restore dialogbox 353
Memory Save dialog box 352
Memory window.iiii i 348
CONEXEMENU . . .ottt et e e e 350
USING « . ov et e 145
MEMOTY ZONES. « & ¢ ettt et et te e e e eeeenne 143
menubar.......... ... 264
C-SPY-specific.cocuiiii i 344
menu (filename extension) 23
Menu (Key bindings option) 315
TNEIUS .« . o vttt e e e e e e e e 291
specificto C-SPY.o 373
Messages window, amount of output 324
Messages (IDE Options dialogbox) 324
migration, from earlier [AR compilers xli
Min.s (assembler tutorial file)....................... 69
MISRA C
compiler options 398
documentation i 25
general Options. 385
Motorola, C-SPY input format 113
Multi-file compilation (compiler option) 387
Naming CONVENtiONSvu v v e vnnenenen... xliii
Navigate Backward (button) 265
NDEBUG, preprocessor symbol. 83
New Configuration dialog box (Project menu) 308

New Document (button) 265
New Group (Register filter option) 332
Next Statement (button) 345
Nohau LPC2800 flash loader 259
NXPLPC flashloader 260
NXP LPC2888 flashloader. 259
o (filename extension).citirini.... 23
object files, specifying output directory 382
$OBJ_DIRS (argument variable) 306
OCD interface device (C-SPY JTAG option) 234
OCD interface device (C-SPY Macraigor option). 231
Olimex LPCH 288x flash loader. 260
online documentation
available fromHelpmenu 340
common, in direCtory.ovuvrvninnnnnn. 22
target-specific, in directory 20
onlinehelp i 25
Open existing workspace (Startup option) 340
Open Workspace (Filemenu) 292
__openFile (C-SPY systemmacro). 478
Opening Brace (a) (Configure auto indent option) 320
optimizationlevels 391
Optimizations page (compiler options). 391
Optimizations (compiler option). 391
optimizations, effects on variables 129
options
assembler. ... 401
COMPIler. ..o oot 387
COMVETLET . o\ttt et ettt e e e ee e 409
CustomBuild. 413
custombuild 411
C-SPY et 429
C-SPY command lineoption. 438
editor 317
general. 379
general, specifying., 32

Index °

hardware debugger systems 213
library builder 427
linker 415
setup files foreditor. L 322
Options dialog box (Projectmenu) 309
USING .ottt 92
__orderInterrupt (C-SPY system macro). 479
out (filename extension) 22
output
assembler
including debug information.................. 403
compiler
including debug information. 393
preprocessor, generating 396
converter
specifying filename. 409
converting fromELF 409
from C-SPY, redirectingtoafile 117
linker, specifying filename. 419
specitying filename for linker output. 419
Output assembler file (compiler option) 394
Output file (converteroption) 409
Output file (linker option). 419
Output list file (compiler option) 394
Output (assembler option).o .. 403
Output (compiler options).coveuvenon... 392
Output (general options)o ... 381
Output (library builder options) 427
Output (linker options) 409, 419
Override default program entry (linker option). 417
-p (C-SPY command line option) 454
parameters, typographic convention xlii
parentheses and brackets, matching (in editor) 103
part number, of user guide, .. ii
Paste (button)ottt 265

507

508

paths

assembler include files. 406
compiler include files. 395
relative, in Embedded Workbench 85, 278
sourcefiles. L L. 278
pbd (filename extension). 23
pbi (filename extension), 23
peripheral units, definitions. 115
pew (filename extension) 23
Phytec LPC3180 flash loader 260
Pipeline Trace window (Simulator menu)............. 167
Plain ‘char’ is (compiler option) 389
Play a sound after build operations (IDE Project options). 327
plugin modules (C-SPY). it 8
loading.t 116
Plugins (C-SPY options). 431
plugins, arm (subdirectory). 21
plugins, common (subdirectory) 22
__popSimulatorInterruptExecutingStack (C-SPY
SYSIEIM MACTO). + ¢ v v eoe et e e et e e e eeeen s 480
Port (Angel C-SPY option).o on... 217
Port (C-SPY Macraigoroption) 231
Port (OKI ROM-monitor C-SPY option) 220
powerpac, arm (subdirectory) 21
Preinclude file (compiler option) 396
preprocessor directives, text style ineditor............ 101
Preprocessor output to file (compiler option) 396
Preprocessor (assembler option) 405
preprocessor (compiler options) 395
prerequisites, programming experience. XXXVii
Press shortcut key (Key bindings option) 315
Primary (Key bindings option) 315
Printf formatter (general option) 384
prj (filename extension)c.c.ouina.... 23
probability (interrupt property).c.c.o.o... 191
definitionof L. 186
Processor mode (compiler option) 390
Processor variant (General option) 379
-proc_stack_xxx (C-SPY command line option). 455

IAR Embedded Workbench® IDE
User Guide

product overview

assembler. L Ll 16
compiler. 14
C-SPY Debugger.coo it 5
directory structureciiiininen... 19
documentation........... 24
filetypes . ..ov 22
IAR Embedded WorkbenchIDE 3
linker 16
profiling information. 157
Profiling window 367
USING «.ov et e 158
program execution, inC-SPY 121
programming eXperience.o.euaian. XXXVil
Project Make, options.c. i 326
Projectmenu. 304
projectmodel 81
Project page (IDE Options dialog box). 326
projects
addingfilesto i, 84, 304
example. 31
build configuration, creating 84
building 93
inbatches 93
compiling, example 35
CIEALING . .ottt ettt e 30, 84
example. 70
definitionof i 81
excluding groups and files 84
files
checkinginandout.......................... 89
MOVINE « ottt e et e e 84
for debugging externally built applications 117
rOUPS, CIEAtING . . o vt vttt et e e ee e een e 84
MANAZING . . . ottt 4, 81
OFANMIZALION . « . vt e et ettt et e 81
TEMOVING ItEMS .« . .ottt ettt e 84
Seting Optionst 91
source code control, 88

EESHINE oo ettt e e 94
version control systems 88
workspace, creatingol 84
$PROJ_DIRS (argument variable) 307
$PROJ_FNAMES$ (argument variable) 307
$PROJ_PATHS (argument variable) 307
Promable output format (linker option). 409
Proportional width font (IDE option) 314
PUBLIC (assembler directive) 69
Quick Searchtextbox., 265
Quick Watchwindow 360
executing C-SPY macros.o, 154
USING &« vttt ettt 131
Raw binary image (linker option) 418
RDI driver, features.co i, 11
RDI (C-SPY options)oovinininin ... 233
--rdi_allow_hardware_reset
(C-SPY command line option) 456
--rdi_driver_dll (C-SPY command line option). 456
--rdi_heartbeat (C-SPY command line option) 436
--rdi_step_max_one (C-SPY command line option). 457
--rdi_use_etm (C-SPY command line option).......... 456
__readFile (C-SPY systemmacro) 480
__readFileByte (C-SPY system macro) 481
reading guidelines. XXXVii
readmefiles. 20, 22
readmehtm oL i 24
__readMemoryByte (C-SPY system macro)........... 481
__readMemory16 (C-SPY system macro) 482
__readMemory32 (C-SPY system macro) 482
__readMemory8 (C-SPY system macro) 481
Recent workspace (Startup option) 341
Redo(button)co i, 265

Index °

Reed-Solomon 260
reference information, typographic convention. xlii
Register Filter (IDE Options dialogbox) 332
TEISET GTOUPS « . v v et e e e e e e e e et 147
application-specific, defining. 148
predefined, enabling. 147
Registerwindow, 356
USING «.ov et e 147
registered trademarks ii
__registerMacroFile (C-SPY system macro). 482
registers, in device descriptionfile 118
relative paths. o i 85, 278
Relaxed ISO/ANSI (compiler option). 389
release Notes 22
Reload last workspace at startup (IDE Project options) . .327
TEMAapPPINg MEMOTY . « . ¢\ e vt eee et eeeeeenn 119
remarks
compiler diagnostics 397
linker diagnostics. i 422
Remove trailing blanks (editor option) 319
repeat interval (interrupt property) 191
definitionof 186
Replace dialog box (Editmenu) 298
Replace (button)t 265
Require prototypes (compiler option) 389
Reset All (Key bindings option) 316
Reset(button) it 345
Reset (Debug menu), example 49
Reset (J-Link/J-Trace option)c.oovuvnven... 221
__resetFile (C-SPY system macro). 483
Restore software breakpoints at (J-Link/J-Trace
OPLION) .ttt e 244
__restoreSoftwareBreakpoint (C-SPY system macro) . ..483
restoring default factory settings. 93
return (macro statement)., 462
ROM-monitor driver, features. 13
ROM-monitor protocols, 219
Angel. ... 216
ROM-monitor, definitionof 113
TOOt dITECIOTY . v vttt et e e e e 19

509

510

RTOS awareness debugging 9

RTOS awareness (C-SPY plugin module). 116
RTOS pluginso oot 432
Runto Cursor (button) 345
Run to Cursor, description 124
Runto (C-SPYoption), 114, 430
runtime libraries L L 15
documentation 25
s (filename eXtension).ovtir e enennan.n. 23
Save All (button).t 265
Save All (Filemenu). 293
Save As(Filemenu) 293
Save editor windows before building (IDE Project
OPLIONS) . vttt et e e e e e e 326
Save workspace and projects before building (IDE
Project options). 326
Save Workspace (Filemenu). 292
Save (button).t 265
Save (Filemenu)................, 293
Scan for Changed Files (editor option) 319
USING « vt ettt et e 37
Scanf formatter (general option). 384
SCC. See source code control systems
scrolling, shortcutkey for......................... 101
searching in editor windows 105
Select SCC Provider dialog box (Project menu). 271
Select Statics dialog box (Statics window) 362
selecting text, shortcutkey for 101
Semihosted, SWI (option). 364
USING « ot v ettt 126
--semihosting (C-SPY command line option) 457
Send heartbeat (Angel C-SPY option) 217
Serial port settings (Angel C-SPY option) 217
Serial port settings (OKI ROM-monitor C-SPY option) . . 220
Service (External editor option) 321
Set Log file dialog box (Debug menu) 375

IAR Embedded Workbench® IDE
User Guide

__setCodeBreak (C-SPY system macro). 484
__setDataBreak (C-SPY systemmacro) 485
__setSimBreak (C-SPY system macro) 486
settings (directory)oovn it 24
Setup macros (C-SPY option). 430
setup macros, in C-SPY. See C-SPY macros
Setup (C-SPY options)ovvvinnnnnan... 429
SFR,inheaderfiles. 21
shortcut keys.o 101
Show Bookmarks (editor option) 319
Show Line Number (editor option) 318
Show right margin (editor option). 318
Show timestamp (Trace Setup option) 239
--silent (C-SPY command line option) 458
simulating interrupts, enabling/disabling 189
Simulatormenu.u it 166
simulator, features. 10
Size OptimizZation.c.o.vuitit i 391
Size (Breakpoints dialog) 181, 248-249, 284
SIZEOT . oo 128
__sleep (C-SPY syStem macro) 487
Source Browser window 280
CONEXEMENU &« o o v vt e e et et ee e eeeee e 281
USIIE &« ottt et et e e e e e 87
source code
including in compiler listfile.................... 394
templates 103
Source code color in Disassembly window (IDE option) . 329
Source Code Control context menu. 269
source code control SyStems 88
Source Code Control (IDE Options dialog box) 327
source code control, features. 4
source filepaths 85, 278
source files
addingtoaprojectt 31
editing 99
managing in projectseveuenenen .. 83
__sourcePosition (C-SPY system macro) 487

special function registers (SFR)

descriptionfiles 118
headerfiles. 21
using as assembler symbols, 128
speed optimizationc.c. ... 391
src, arm (subdirectory) 21
Stackwindow il 368
USINE .ottt e e 145
Stack (IDE Options dialog box) 330
Stack.mac 149
Stall processor on FIFO full (Trace Setup option). 239
Start address (linker option) 424
Statics window L 360
COMEXEMENU . . .ot vi et e et e e e e e e 361
status bar. 266
stdin and stdout
redirecting to C-SPY window 126
redirectingtofile 126
StepInto. ... 345
exampleof L i 43,122
Step into functions (IDE option). 329
StepOut . ..ot 345
exampleof L 123
Step OVer . .ottt 345
exampleof L 123
SEEPPING .« o v vt ettt e 122
example 42
STL container expansion (IDE option) 329
Stop build operation on (IDE Project options) 326
Stop Debugging (button)., 345
__strFind (C-SPY systemmacro) 487
Strict ISO/ANSI (compiler option) 389
strings, text style ineditor., 101
__subString (C-SPY system macro) 488
support, technical 26
Suppress download (C-SPY Download option) 215
Suppress download (C-SPY option) 165
Suppress these diagnostics (compiler option) 397
Suppress these diagnostics (linker option) 422

Index °

SWDinterfacecoiiiiiiiii i 224

information in Trace window. 241
SWO clock (C-SPY J-Link option). 227
SWO communication channel

enabling......... i 224
SWO communication, for timestamps in trace 227
Symbolic Memory window. 354

CONEEXEMENU « . o v ve v e ettt e et e e e eeeeaene 355

toolbar 354
symbols

See also user symbols

defining inassembler. 406

defining in compiler. 396

defininginlinker 421

using in C-SPY expressions. 127
Symbols window i, 372

CONEEXEMENU « . o\ ve vt ettt et e e e e eeeeeene 372
syntax coloring

configurationfiles 20

meditor 101
Syntax Coloring (Editor colors and fonts option) 323
Syntax Highlighting (editor option) 318
syntax highlighting, in editor window. 102
SYSIEM MACTOS. « . o v vt vttt e ettt e e e 459
Tab Key Function (editor option) 317
Tab Size (editor option)covuenenvnn.. 317
Tab spacing (assembler option). 405
target options

Bigendian i, 380
target system, definitionof 112
Target (general Options)cvvenenerennn.. 379
$TARGET_BNAMES (argument variable). 307
$TARGET_BPATHS$ (argument variable). 307
$TARGET_DIRS (argument variable) 307
$TARGET_FNAMES$ (argument variable) 307
$TARGET_PATHS (argument variable) 307

512

TCPIP address or hostname (C-SPY GDB Server option) 218

TCP/IP (Angel C-SPY option) 217
TCP/IP (C-SPY Macraigor option). 231
technical support. i 26
Template dialog box (Editmenu) 301
Terminal IO LogFile 126
Terminal I/O Log File dialog box (Debug menu) 378
Terminal /O window 126, 364
exampleofusing i 49
Terminal I/O (IDE Options dialog box) 333
terminal output, buffered. oL 384
terminology. xlii
testing,of code 94
Texas Instruments TMS470 flash loader. 260
Third Party Driver (C-SPY options) 236
Thumb code, mixing with ARMcode. 390
Thumb (compiler option) 390
Toggle Bookmark (button) 265
Toggle Breakpoint (button). 265
toggle breakpoint, example. 45, 65
__toLower (C-SPY system macro) 488
tool chain
extending............. ... 95
specifying 30
Tool Output window 289
COMEXEMENU .« o\ v oe ettt et e e e eeeen 290
toolbar
debug.o 345
IDE .. 265
Trace . ..ovvi 171,242
$TOOLKIT_DIRS (argument variable) 307
tools icon,inthisguide.......... xlii
Toolsmenuuuniinininiinnnon. 313
tools, user-configuredo 334
__toString (C-SPY systemmacro) 489
touch, open-source command line utility 94
__toUpper (C-SPY systemmacro) 489
Trace buffer size (Trace Setup option) 239
Trace Expressions window 173

IAR Embedded Workbench® IDE
User Guide

Trace port mode (Trace Setup option). 238
Trace port width (Trace Setup option). 238
Trace Save dialogbox. 226, 240
Trace Setup dialogbox, 238
Trace toolbar. 242
Trace windowt 170

toolbar 171
Trace (RDIwindow). 240
trace, definitionof. 131
trademarks ii
transformations, enabled in compiler 392
Treat all warnings as errors (compiler option). 398
Treat all warnings as errors (linker option) 423
Treat these as errors (compiler option) 398
Treat these as errors (linker option). 423
Treat these as remarks (compiler option) 397
Treat these as remarks (linker option). 422
Treat these as warnings (compiler option). 398
Treat these as warnings (linker option) 423
tutor, arm (subdirectory). 21
Type (External editor option) 321
type-checkingo i 15
typographic conventionsc.c.euinan.... xlii
Undo (button)ooit it 265
Use Code Templates (editor option) 322
Use Custom Keyword File (editor option) 322
Use External Editor (External editor option). 321
Use register filter (Register filter option) 332
user application, definitionof 112
User symbols are case sensitive (assembler option) 401
variables

effects of optimizations 129

information, limitationon 129

USING iN arguments.ooventnen e 335
using in C-SPY expressions. 127
watching in C-SPY 130
example. 44
variance (interrupt property)ouveeenen .. 191
definitionof i 186
Vector Catch dialog box JTAGmenu) 251
Verify download (C-SPY Download option). 215
version control Systems. 88
version number, of Embedded Workbench 340
VIEW MENU .« .t v ettt e e e e 302
visualSTATE, plugin module for. 8
vsp (filename extension).coiin... 24

W

Warn when exceeding stack threshold (Stack option). . . . 331
Warn when stack pointer is out of bounds (Stack option) . 331

warnings
COMPIlEr. ..ottt 398
linkercoo i 423
warnings icon, in this guide xlii
Watch windowi it 356
CONEEXEMENU .+ . v\ vt vt et et e ee e eeennes 357
USING © vttt ettt 130
watchpoints
JTAG . oo 251
J-Link watchpoints., 252
SCLHIMG .« vttt 44
Watchpoints (J-Link menu). 252
web sites, recommended. L., xli
web site, [AR Systems 26
When source resolves to multiple function instances 328
while (macro statement) 461
Window menu.ouiit i 339
WINAOWS .« .« vttt e e et e e 263
organizingonthescreen 77
specificto C-SPY. 343

Index °

Workspace window. i 266
CONEEXtMENU . . .\t ti et et e e i eeee e 268, 282
drag-and-dropof files 84
example 30

workspaces
CIEALING . vttt et e 29, 84
USING .ottt 83

__writeFile (C-SPY systemmacro) 490

__writeFileByte (C-SPY system macro). 490

__writeMemoryByte (C-SPY system macro) 491

__writeMemory16 (C-SPY system macro)............ 491

__writeMemory32 (C-SPY system macro)............ 491

__writeMemory8 (C-SPY system macro). 491

wsdt (filename extension) 24

WWWIALCOM. . ..ottt 26

xcl (filename extension), 24

zone, inC-SPY 143

Symbols

#define statement, in compiler 396
#define (linker option) 421
#line directives, generating in compiler 396
$CONFIG_NAMES$ (argument variable) 306
CUR_DIRS (argument variable). 306
CUR_LINES (argument variable). 306
$SEW_DIRS (argument variable) 306
EXE_DIRS (argument variable) 306
$FILE_DIRS (argument variable). 306
$FILE_FNAMES$ (argument variable) 306
$FILE_PATHS (argument variable) 306
$LIST_DIRS (argument variable). 306
$OBJ_DIRS (argument variable) 306

513

514

$PROJ_DIRS (argument variable) 307

$PROJ_FNAMES$ (argument variable) 307
$PROJ_PATHS (argument variable) 307
$TARGET_BNAMES$ (argument variable). 307
$TARGET_BPATHS (argument variable). 307
$TARGET_DIRS (argument variable) 307
$TARGET_FNAMES (argument variable) 307
$TARGET_PATHS (argument variable) 307
$TOOLKIT_DIRS (argument variable) 307
% stack usage threshold (Stack option). 330
-B (C-SPY command line option). 438
-d (C-SPY command line option) 439
-p (C-SPY command line option) 454
--backend (C-SPY command line option) 438-439
--BE32 (C-SPY command line option) 435
--BES8 (C-SPY command line option) 435
--cpu (C-SPY command line option). 435
--device (C-SPY command line option) 440

--drv_attach_to_program (C-SPY command line option) . 435
--drv_catch_exceptions (C-SPY command line option) . . 440
--drv_commuication (C-SPY command line option). 441
--drv_commuication_log (C-SPY command line option) . 443
--drv_default_breakpoint (C-SPY command line option) . 443
--drv_reset_to_cpu_start (C-SPY command line option) . 444
--drv_restore_breakpoints (C-SPY command line option) 444
--drv_suppress_download (C-SPY command line option) 436
--drv_vector_table_base (C-SPY command line option). . 445
--drv_verify_download (C-SPY command line option) ..436

--endian (C-SPY command line option) 436
--flash_loader (C-SPY command line option). 445
--fpu (C-SPY command line option). 436

--gdbserv_exec_command (C-SPY command line option) 446
--generate_sim (C-SPY command line option) 446
--jlink_device_select (C-SPY command line option)446
--jlink_exec_commmand (C-SPY command line option) . 447
--jlink_initial_speed (C-SPY command line option). 447
--jlink_interface (C-SPY command line option) 448
--jlink_ir_length (C-SPY command line option). 448
--jlink_reset_strategy (C-SPY command line option) 448

IAR Embedded Workbench® IDE
User Guide

--jlink_speed (C-SPY command line option) 449
--Imiftdi_speed (C-SPY command line option). 450
--macro (C-SPY command line option) 453-454
--mac_handler_address (C-SPY command line option) . .450
--mac_interface (C-SPY command line option) 450
--mac_jtag_device (C-SPY command line option) 451

--mac_multiple_targets (C-SPY command line option) . .451
--mac_reset_pulls_reset (C-SPY command line option) . . 452
--mac_set_temp_reg_buffer

(C-SPY command line option) 452
--mac_speed (C-SPY command line option). 453
--mac_xscale_ir7 (C-SPY command line option) 453
--mapu (C-SPY command line option) 454
--proc_stack_xxx (C-SPY command line option) 455
--rdi_allow_hardware_reset

(C-SPY command line option) 456
--rdi_driver_dll (C-SPY command line option). 456
--rdi_heartbeat (C-SPY command line option) 436
--rdi_step_max_one (C-SPY command line option). 457
--rdi_use_etm (C-SPY command line option). 456
--semihosting (C-SPY command line option) 457
--silent (C-SPY command line option) 458
__cancelAlllnterrupts (C-SPY system macro) 467
__cancellnterrupt (C-SPY system macro). 467
__clearBreak (C-SPY systemmacro) 468
__closeFile (C-SPY systemmacro) 468
__disableInterrupts (C-SPY system macro) 468
__driverType (C-SPY systemmacro) 469
__emulatorSpeed (C-SPY system macro). 469
__emulatorStatusCheckOnRead (C-SPY system macro) . 470
__enablelnterrupts (C-SPY system macro)............ 471
__evaluate (C-SPY system macro) 471
__fmessage (C-SPY macro statement) 462
__gdbserver_exec_command (C-SPY system macro). . . .472
__hwReset (C-SPY system macro). 472
__hwResetWithStrategy (C-SPY system macro) 473
__jlinkExecCommand (C-SPY system macro)......... 473
__jtagCommand (C-SPY system macro) 474
__jtagCP15IsPresent (C-SPY system macro) 474

__jtagCP15ReadReg (C-SPY system macro) 474
__jtagCP15WriteReg (C-SPY system macro). 475
__jtagData (C-SPY systemmacro) 475
__jtagRawRead (C-SPY system macro) 476
__jtagRawSync (C-SPY system macro) 476
__jtagRawWrite (C-SPY system macro). 477
__jtagResetTRST (C-SPY system macro) 478
__message (C-SPY macro statement). 462
__openFile (C-SPY system macro). 478
__orderInterrupt (C-SPY system macro). 479
__popSimulatorInterruptExecutingStack (C-SPY

SYSIEIM MACTO). + ¢ v v oe et e e et e e e e e 480
__readFile (C-SPY systemmacro) 480
__readFileByte (C-SPY systemmacro) 481
__readMemoryByte (C-SPY system macro)........... 481
__readMemory8 (C-SPY system macro) 481
__readMemory16 (C-SPY system macro) 482
__readMemory32 (C-SPY system macro) 482
__registerMacroFile (C-SPY system macro). 482
__resetFile (C-SPY system macro). 483
__restoreSoftwareBreakpoint (C-SPY system macro) .. .483
__setCodeBreak (C-SPY system macro). 484
__setDataBreak (C-SPY system macro) 485
__setSimBreak (C-SPY system macro) 486
__sleep (C-SPY system macro) 487
__smessage (C-SPY macro statement) 462
__sourcePosition (C-SPY system macro) 487
__strFind (C-SPY systemmacro) 487
__subString (C-SPY system macro) 488
__toLower (C-SPY systemmacro) 488
__toString (C-SPY systemmacro) 489
__toUpper (C-SPY systemmacro) 489
__writeFile (C-SPY systemmacro) 490
__writeFileByte (C-SPY system macro). 490
__writeMemoryByte (C-SPY system macro) 491
__writeMemory8 (C-SPY system macro)............. 491
__writeMemory16 (C-SPY system macro)............ 491
__writeMemory32 (C-SPY system macro)............ 491

Index °

515

	Brief contents
	Contents
	Tables
	Figures
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Product overview
	Part 2. Tutorials
	Part 3. Project management and building
	Part 4. Debugging
	Part 5. The C-SPY® Simulator
	Part 6. C-SPY hardware debugger systems
	Part 7. Reference information

	Other documentation
	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Product overview
	Product introduction
	The IAR Embedded Workbench IDE
	An extensible and modular environment
	Features
	Project management
	Source code control
	Window management
	The text editor

	Documentation

	IAR C-SPY Debugger
	General C-SPY debugger features
	Source and disassembly level debugging
	Single-stepping on a function call level
	Code and data breakpoints
	Monitoring variables and expressions
	Container awareness
	Call stack information
	Powerful macro system
	Additional general C-SPY debugger features

	C-SPY plugin modules
	RTOS awareness
	Documentation

	IAR C-SPY Debugger systems
	IAR C-SPY Simulator
	Features

	IAR C-SPY J-Link driver
	Features

	IAR C-SPY LMI FTDI driver
	Features

	IAR C-SPY RDI driver
	Features

	IAR C-SPY Macraigor driver
	Features

	IAR C-SPY ROM-monitor driver
	Features for Analog Devices evaluation boards
	Features for IAR Kickstart Card for Philips LPC210x
	Features for OKI evaluation boards

	IAR C-SPY ANGEL debug monitor driver
	Features

	IAR C/C++ Compiler
	Features
	Code generation
	Language facilities
	Type checking

	Runtime environment
	Documentation

	IAR Assembler
	Features
	Documentation

	IAR ILINK Linker and accompanying tools
	Features
	Documentation

	Installed files
	Directory structure
	Root directory
	The ARM directory
	The arm\bin directory
	The arm\config directory
	The arm\doc directory
	The arm\drivers directory
	The arm\examples directory
	The arm\inc directory
	The arm\lib directory
	The arm\plugins directory
	The arm\powerpac directory
	The arm\src directory
	The arm\tutor directory

	The common directory
	The common\bin directory
	The common\config directory
	The common\doc directory
	The common\plugins directory

	File types
	files with non-default filename extensions

	Documentation
	The user and reference guides
	IAR Embedded Workbench® IDE User Guide
	IAR C/C++ Development Guide for ARM®
	ARM® IAR Assembler Reference Guide
	DLIB Library Reference information
	IAR Embedded Workbench® MISRA C Reference Guide

	Online help
	IAR on the web

	Part 2. Tutorials
	Creating an application project
	Setting up a new project
	Creating a Workspace window
	Creating the new project
	Adding files to the project
	Setting project options

	Compiling and linking the application
	Compiling the source files
	Viewing the list file
	Linking the application
	Output format
	Linker configuration file
	Linker map file

	Viewing the map file

	Debugging using the IAR C-SPY® Debugger
	Debugging the application
	Starting the debugger
	Organizing the windows
	Inspecting source statements
	Inspecting variables
	Using the Auto window
	Setting a watchpoint

	Setting and monitoring breakpoints
	Executing up to a breakpoint

	Debugging in disassembly mode
	Monitoring memory
	Viewing terminal I/O
	Reaching program exit

	Mixing C and assembler modules
	Examining the calling convention
	Adding an assembler module to the project
	Setting up the project
	Viewing the assembler list file

	Using C++
	Creating a C++ application
	Compiling and linking the C++ application
	Setting a breakpoint and executing to it
	Looking at the function calls

	Printing the Fibonacci numbers

	Simulating an interrupt
	Adding an interrupt handler
	The application-a brief description
	Writing an interrupt handler
	Setting up the project

	Setting up the simulation environment
	Defining a C-SPY setup macro file
	Setting C-SPY options
	Building the project
	Starting the simulator
	Specifying a simulated interrupt
	Setting an immediate breakpoint

	Simulating the interrupt
	Executing the application

	Using macros for interrupts and breakpoints

	Creating and using libraries
	Using libraries
	The Main.s program
	The library routines
	Creating a new project
	Creating a library project
	Using the library in your application project

	Part 3. Project management and building
	The development environment
	The IAR Embedded Workbench IDE
	The tool chain
	Running the IDE
	Double-clicking the workspace filename

	Exiting

	Customizing the environment
	Organizing the windows on the screen
	Using docked versus floating windows
	Organizing windows

	Customizing the IDE
	Invoking external tools
	Adding command line commands

	Managing projects
	The project model
	How projects are organized
	Projects and workspaces
	Projects and build configurations
	Groups
	Source files

	Creating and managing workspaces
	Drag and drop
	Source file paths
	Starting the IAR C-SPY® Debugger

	Navigating project files
	Viewing the workspace
	Displaying browse information

	Source code control
	Interacting with source code control systems
	Setting up an SCC project in the SCC client application
	Connecting projects in IAR Embedded Workbench
	Viewing the SCC states
	Configuring the source code control system

	Building
	Building your application
	Setting options
	Using the Options dialog box

	Building a project
	Building multiple configurations in a batch
	Using pre- and post-build actions
	Using pre-build actions for time stamping

	Correcting errors found during build
	Building from the command line

	Extending the tool chain
	Tools that can be added to the tool chain
	Adding an external tool

	Editing
	Using the IAR Embedded Workbench editor
	Editing a file
	Accessing reference information for DLIB library functions
	Using and customizing editor commands and shortcut keys
	Splitting the editor window into panes
	Dragging and dropping of text
	Syntax coloring
	Automatic text indentation
	Matching brackets and parentheses
	Displaying status information

	Using and adding code templates
	Enabling code templates
	Inserting a code template in your source code
	Adding your own code templates

	Navigating in and between files
	Searching

	Customizing the editor environment
	Using an external editor

	Part 4. Debugging
	The IAR C-SPY® Debugger
	Debugger concepts
	C-SPY and target systems
	Debugger
	Target system
	User application
	C-SPY Debugger systems
	ROM-monitor program
	Third-party debuggers

	The C-SPY environment
	An integrated environment

	Setting up C-SPY
	Choosing a debug driver
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules
	The C-SPY RTOS awareness plugin modules

	Starting C-SPY
	Executable files built outside of the IDE
	Redirecting debugger output to a file

	Adapting C-SPY to target hardware
	Device description file
	Registers
	Modifying a device description file

	Remapping memory

	Executing your application
	Source and disassembly mode debugging
	Executing
	Step
	Go
	Run to Cursor
	Highlighting
	Using breakpoints to stop
	Using the Break button to stop
	Stop at program exit

	Call stack information
	Terminal input and output
	Directing stdin and stdout to a file

	Working with variables and expressions
	C-SPY expressions
	C symbols
	Using sizeof

	Assembler symbols
	Macro functions
	Macro variables

	Limitations on variable information
	Effects of optimizations

	Viewing variables and expressions
	Working with the windows
	Using the Quick Watch window

	Using the trace system
	The Trace window and its browse mode
	Searching in the trace data

	Viewing assembler variables

	Using breakpoints
	The breakpoint system
	Defining breakpoints
	Toggling a simple code breakpoint
	Breakpoint icons

	Setting a breakpoint in the Memory window
	Defining breakpoints using the dialog box
	Tracing incorrect function arguments
	Performing a task with or without stopping execution

	Defining breakpoints using system macros
	Defining breakpoints at C-SPY startup using a setup macro file

	Viewing all breakpoints
	Using the Breakpoint Usage dialog box
	Breakpoint consumers

	Monitoring memory and registers
	Memory addressing
	Windows for monitoring memory and registers
	Using the Memory window
	Using the Stack window
	Detecting stack overflows
	Viewing the stack contents

	Working with registers
	Register groups
	Enabling predefined register groups
	Defining application-specific groups

	Using the C-SPY® macro system
	The macro system
	The macro language
	Example

	The macro file
	Setup macro file

	Setup macro functions
	Remapping memory

	Using C-SPY macros
	Using the Macro Configuration dialog box
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint

	Analyzing your application
	Function-level profiling
	Using the profiler
	Profiling information is displayed in the window.
	Viewing the figures
	Producing reports

	Code coverage
	Using Code Coverage
	Viewing the figures
	What parts of the code are displayed?
	Producing reports

	Part 5. The C-SPY® Simulator
	Simulator-specific debugging
	The C-SPY Simulator introduction
	Features
	Selecting the simulator driver

	Simulator-specific menus
	Simulator menu
	Pipeline Trace window
	Memory Access Configuration
	Memory access costs dialog box

	Using the trace system in the simulator
	Trace window
	Trace toolbar
	Function Trace window
	Trace Expressions window
	Find In Trace window
	Find in Trace dialog box
	Text search
	Address Range

	Memory access checking
	Memory Access setup dialog box
	Use ranges based on
	Use manual ranges
	Memory access checking
	Buttons

	Edit Memory Access dialog box
	Memory range
	Access type

	Using breakpoints in the simulator
	Data breakpoints
	Data breakpoints dialog box

	Immediate breakpoints
	Immediate breakpoints dialog box

	Breakpoint Usage dialog box

	Simulating interrupts
	The C-SPY interrupt simulation system
	Interrupt characteristics
	Interrupt simulation states

	Using the interrupt simulation system
	Target-adapting the interrupt simulation system
	Interrupt Setup dialog box
	Edit Interrupt dialog box
	Forced interrupt window
	C-SPY system macros for interrupts
	Defining simulated interrupts at C-SPY startup using a setup file
	Interrupt simulation in a multi-task system

	Interrupt Log window

	Simulating a simple interrupt

	Part 6. C-SPY hardware debugger systems
	Introduction to C-SPY® hardware debugger systems
	The IAR C-SPY hardware debugger systems
	Differences between the C-SPY drivers

	Getting started
	The IAR C-SPY Angel debug monitor driver
	The IAR C-SPY GDB Server driver
	Configuring the OpenOCD Server

	The IAR C-SPY ROM-monitor driver
	The IAR C-SPY J-Link/J-Trace drivers
	Installing the J-Link USB driver

	The IAR C-SPY LMI FTDI driver
	Installing the FTDI USB driver

	The IAR C-SPY Macraigor driver
	The IAR C-SPY RDI driver
	An overview of the debugger startup
	Debugging code in flash
	Debugging code in RAM

	Hardware-specific debugging
	C-SPY options for debugging using hardware systems
	Download
	Attach to program
	Verify download
	Suppress download
	Use flash loader(s)

	Debugging using the Angel debug monitor driver
	Angel
	Send heartbeat
	Communication
	TCP/IP
	Serial port settings
	Log communication

	Debugging using the IAR C-SPY GDB Server driver
	GDB Server
	TCP/IP address or hostname
	Log communication

	The GDB Server menu

	Debugging using the IAR C-SPY ROM-monitor driver
	IAR ROM-monitor
	Communication
	Serial port settings
	Log communication

	Debugging using the IAR C-SPY J-Link/J-Trace driver
	Setup
	Reset
	JTAG speed
	Catch exceptions

	Connection
	Communication
	Interface
	JTAG scan chain
	Log communication

	The J-Link menu
	SWO Setup dialog box
	CPU clock
	SWO clock
	HW Trace
	ITM Stimulus Ports

	Live watch and use of DCC
	For Cortex-3
	For ARMxxx-S devices
	For ARM7/ARM9 devices, including ARMxxx-S

	Debugging using the IAR C-SPY LMI FTDI driver
	Setup
	JTAG speed
	Log communication

	The LMI FTDI menu

	Debugging using the IAR C-SPY Macraigor driver
	Macraigor
	OCD interface device
	JTAG speed
	TCP/IP
	Port
	Baud rate
	Hardware reset
	JTAG scan chain with multiple targets
	Debug handler address
	Log communication

	The Macraigor JTAG menu

	Debugging using the RDI driver
	RDI
	Manufacturer RDI driver
	Allow hardware reset
	ETM trace
	Catch exceptions
	Log RDI communication

	RDI menu

	Debugging using third-party drivers
	Third-Party Driver
	IAR debugger driver plugin
	Log communication

	Using the trace system in hardware debugger systems
	Trace Setup dialog box
	Trace port width
	Trace port mode
	Trace buffer size
	Cycle accurate tracing
	Broadcast all branch addresses
	Stall processor on FIFO full
	Show timestamp

	Trace Save dialog box
	Frame Range
	Append to file
	File

	Trace window
	J-Link/J-Trace specials

	Trace toolbar

	Using breakpoints in the hardware debugger systems
	Available number of breakpoints
	Breakpoints options
	Default breakpoint type
	Restore software breakpoints at

	Code breakpoints dialog box
	Break At
	Breakpoint type
	Action
	Conditions

	Data breakpoints dialog box
	Break At
	Access Type
	Extended trigger range

	Data Log breakpoints dialog box
	Extended trigger range

	Breakpoint Usage dialog box
	Breakpoints on vectors
	Setting breakpoints in _ _ramfunc declared functions

	Using JTAG watchpoints
	The Watchpoint mechanism
	JTAG watchpoints dialog box

	Using flash loaders
	The flash loader
	Setting up the flash loader(s)
	Setting up the target system using a C-SPY macro file

	The flash loading mechanism
	Build considerations
	Flash Loader Overview dialog box
	Flash Loader Configuration dialog box
	Memory range
	Relocate
	Override default flash loader path
	Extra parameters

	Part 7. Reference information
	IAR Embedded Workbench® IDE reference
	Windows
	IAR Embedded Workbench IDE window
	Menu bar
	Toolbar
	Status bar

	Workspace window
	Toolbar
	The display area
	Workspace window context menu
	Source Code Control menu
	Source code control states
	Select Source Code Control Provider dialog box
	Check In Files dialog box
	Check Out Files dialog box

	Editor window
	HTML files
	Split commands
	Go to function
	Editor window tab context menu
	Editor window context menu
	Source file paths
	Editor key summary

	Source Browser window
	Source Browser window context menu

	Breakpoints window
	Breakpoints window context menu
	Code breakpoints dialog box
	Log breakpoints dialog box
	Enter Location dialog box

	Build window
	Find in Files window
	Tool Output window
	Debug Log window

	Menus
	File menu
	Edit menu
	Find dialog box
	Replace dialog box
	Find in Files dialog box
	Incremental Search dialog box
	Template dialog box

	View menu
	Project menu
	Argument variables summary
	Configurations for project dialog box
	New Configuration dialog box
	Create New Project dialog box
	Options dialog box
	Batch Build dialog box
	Edit Batch Build dialog box

	Tools menu
	Tools menu commands

	Common fonts options
	Key Bindings options
	Menu
	Command
	Press shortcut key
	Primary
	Alias
	Reset All

	Language options
	Language

	Editor options
	Tab Size
	Indent Size
	Tab Key Function
	EOL character
	Show right margin
	Syntax Highlighting
	Auto Indent
	Show Line Numbers
	Scan for Changed Files
	Show Bookmarks
	Enable Virtual Space
	Remove trailing blanks

	Configure Auto Indent dialog box
	Opening Brace (a)
	Body (b)
	Label (c)
	Sample code

	External Editor options
	Use External Editor
	Type
	Editor
	Arguments
	Service
	Command

	Editor Setup Files options
	Use Custom Keyword File
	Use Code Templates

	Editor Colors and Fonts options
	Editor Font
	Syntax Coloring

	Messages options
	Show build messages
	Log File
	Enable All Dialogs

	Project options
	Source Code Control options
	Keep items checked out when checking in
	Save editor windows before performing source code control commands

	Debugger options
	When source resolves to multiple function instances
	Source code color in Disassembly window
	Step into functions
	STL container expansion
	Live watch
	Default integer format

	Stack options
	Enable graphical stack display and stack usage tracking
	% stack usage threshold
	Warn when exceeding stack threshold
	Warn when stack pointer is out of bounds
	Stack pointer(s) not valid until reaching
	Warnings
	Limit stack display to

	Register Filter options
	Terminal I/O options
	Keyboard
	File
	Input Echoing
	Show target reset in Terminal I/O window

	Configure Tools dialog box
	Specifying command line commands or batch files

	Filename Extensions dialog box
	Filename Extension Overrides dialog box
	Edit Filename Extensions dialog box
	Configure Viewers dialog box
	Edit Viewer Extensions dialog box
	Window menu
	Help menu
	Embedded Workbench Startup dialog box
	Create new project in current workspace
	Add existing project to current workspace
	Open existing workspace
	Example applications
	Recent workspace
	Do not show this window at startup
	Do not show the Information Center at startup

	C-SPY® reference
	C-SPY windows
	Editing in C-SPY windows
	C-SPY Debugger main window
	Menu bar
	Debug toolbar

	Disassembly window
	Toolbar
	The display area
	Disassembly context menu

	Memory window
	Toolbar
	The display area
	Memory window context menu

	Fill dialog box
	Memory Save dialog box
	Zone
	Start address
	Stop address
	File format
	Filename
	Save

	Memory Restore dialog box
	Zone
	Filename
	Restore

	Symbolic Memory window
	Toolbar
	The display area
	There are several different ways to navigate within the memory space:
	Symbolic Memory window context menu

	Register window
	Watch window
	Watch window context menu

	Locals window
	Locals window context menu

	Auto window
	Auto window context menu

	Live Watch window
	Live Watch window context menu

	Quick Watch window
	Quick Watch window context menu

	Statics window
	The display area
	Statics window context menu

	Select Statics dialog box
	Show all variables with static storage duration
	Show selected variables only

	Call Stack window
	Call Stack window context menu

	Terminal I/O window
	Code Coverage window
	Code coverage commands

	Profiling window
	Profiling commands
	Profiling columns

	Stack window
	The stack drop-down menu
	The graphical stack bar
	The Stack window columns
	The Stack window context menu
	Overriding the default stack setup

	Symbols window
	The display area
	Click on the column headers to sort the list by name, location, or full name.
	Symbols window context menu

	C-SPY menus
	Debug menu
	Autostep settings dialog box
	Macro Configuration dialog box
	Log File dialog box
	Terminal I/O Log File dialog box

	Disassembly menu

	General options
	Target
	Processor variant
	Endian mode
	FPU

	Output
	Output file
	Output directories

	Library Configuration
	Library
	Configuration file
	Library low-level interface implementation

	Library Options
	Printf formatter
	Scanf formatter
	Buffered terminal output

	MISRA C

	Compiler options
	Multi-file compilation
	Language
	Language
	C
	Embedded C++
	Extended Embedded C++
	Automatic

	Require prototypes
	Language conformance
	Plain 'char' is
	Enable multibyte support

	Code
	Generate interwork code
	Processor mode

	Optimizations
	Optimizations
	Enabled transformations

	Output
	Generate debug information
	Code section name

	List
	Output list file
	Output assembler file

	Preprocessor
	Ignore standard include directories
	Additional include directories
	Preinclude file
	Defined symbols
	Preprocessor output to file

	Diagnostics
	Enable remarks
	Suppress these diagnostics
	Treat these as remarks
	Treat these as warnings
	Treat these as errors
	Treat all warnings as errors

	MISRA C
	Extra Options
	Use command line options

	Assembler options
	Language
	User symbols are case sensitive
	Enable multibyte support
	Macro quote characters
	Allow alternative register names, mnemonics and operands

	Output
	Generate debug information

	List
	Include header
	Include listing
	Include cross-reference
	Lines/page
	Tab spacing

	Preprocessor
	Ignore standard include directories
	Additional include directories
	Defined symbols

	Diagnostics
	Max number of errors

	Extra Options
	Use command line options

	Converter options
	Output
	Promable output format
	Output file
	Override default

	Custom build options
	Custom Tool Configuration

	Build actions options
	Build Actions Configuration
	Pre-build command line
	Post-build command line

	Linker options
	Config
	Linker configuration file
	Configuration file symbol definitions
	Linker configuration file editor

	Library
	Automatic runtime library selection
	Additional libraries
	Override default program entry

	Input
	Keep symbols
	Raw binary image

	Output
	Output file
	Include debug information in output

	List
	Generate linker map file
	Generate log

	#define
	Defined symbols

	Diagnostics
	Enable remarks
	Suppress these diagnostics
	Treat these as remarks
	Treat these as warnings
	Treat these as errors
	Treat all warnings as errors

	Checksum
	Fill unused code memory
	Fill pattern
	Start address
	Start address
	Generate checksum

	Extra Options
	Use command line options

	Library builder options
	Output

	Debugger options
	Setup
	Driver
	Run to
	Setup macros
	Device description file

	Download
	Extra Options
	Use command line options

	Plugins

	The C-SPY Command Line Utility-cspybat
	Using C-SPY in batch mode
	Invocation syntax
	Parameters
	Example

	Output
	Using an automatically generated batch file

	C-SPY command line options
	General cspybat options
	Options available for all C-SPY drivers
	Options available for the simulator driver
	Options available for the C-SPY Angel debug monitor driver
	Options available for the C-SPY GDB Server driver
	Options available for the C-SPY IAR ROM-monitor driver
	Options available for the C-SPY J-Link/J-Trace driver
	Options available for the C-SPY LMI FTDI driver
	Options available for the C-SPY Macraigor driver
	Options available for the C-SPY RDI driver
	Options available for the third-party drivers

	Descriptions of C-SPY command line options
	-B
	Syntax
	Applicability
	Description

	--backend
	Syntax
	Parameters
	Applicability
	Description

	--cycles
	Syntax
	Parameters
	Applicability
	Description

	-d
	Syntax
	Parameters
	Applicability
	Description

	--device
	Syntax
	Parameters
	Applicability
	Description

	--drv_catch_exceptions
	Syntax
	Parameters
	Applicability
	Description

	--drv_communication
	Syntax
	Parameters
	Applicability
	Description

	--drv_communication_log
	Syntax
	Parameters
	Applicability
	Description

	--drv_default_breakpoint
	Syntax
	Parameters
	Applicability
	Description
	See also

	--drv_reset_to_cpu_start
	Syntax
	Applicability
	Description

	--drv_restore_breakpoints
	Syntax
	Parameters
	Applicability
	Description
	See also

	--drv_vector_table_base
	Syntax
	Parameters
	Applicability
	Description

	--flash_loader
	Syntax
	Parameters
	Applicability
	Description
	See also

	--gdbserv_exec_command
	Syntax
	Parameters
	Applicability
	Description

	--generate_sim
	Syntax
	Applicability
	Description

	--jlink_device_select
	Syntax
	Parameters
	Applicability
	Description
	See also

	--jlink_exec_command
	Syntax
	Parameters
	Applicability
	Description
	See also

	--jlink_initial_speed
	Syntax
	Parameters
	Applicability
	Description
	See also

	--jlink_interface
	Syntax
	Parameters
	Applicability
	Description
	See also

	--jlink_ir_length
	Syntax
	Parameters
	Applicability
	Description
	See also

	--jlink_reset_strategy
	Syntax
	Parameters
	Applicability
	Description
	See also

	--jlink_speed
	Syntax
	Parameters
	Applicability
	Description
	See also

	--lmiftdi_speed
	Syntax
	Parameters
	Applicability
	Description
	See also

	--mac_handler_address
	Syntax
	Parameters
	Applicability
	Description
	See also

	--mac_interface
	Syntax
	Parameters
	Applicability
	Description

	--mac_jtag_device
	Syntax
	Parameters
	Applicability
	Description
	See also

	--mac_multiple_targets
	Syntax
	Parameters
	Applicability
	Description
	Example
	See also

	--mac_reset_pulls_reset
	Syntax
	Parameters
	Applicability
	Description
	See also

	--mac_set_temp_reg_buffer
	Syntax
	Parameters
	Applicability
	Description

	--mac_speed
	Syntax
	Parameters
	Applicability
	Description
	See also

	--mac_xscale_ir7
	Syntax
	Applicability
	Description

	--macro
	Syntax
	Parameters
	Applicability
	Description
	See also

	--mapu
	Syntax
	Applicability
	Description
	See also

	-p
	Syntax
	Parameters
	Applicability
	Description
	See also

	--plugin
	Syntax
	Parameters
	Applicability
	Description
	See also

	--proc_stack_stack
	Syntax
	Parameters
	Applicability
	Description

	--rdi_allow_hardware_reset
	Syntax
	Applicability
	Description
	See also

	--rdi_driver_dll
	Syntax
	Parameters
	Applicability
	Description

	--rdi_use_etm
	Syntax
	Applicability
	Description

	--rdi_step_max_one
	Syntax
	Applicability
	Description

	--semihosting
	Syntax
	Parameters
	Applicability
	Description
	See also

	--silent
	Syntax
	Applicability
	Description

	C-SPY® macros reference
	The macro language
	Macro functions
	Predefined system macro functions
	Macro variables
	Macro strings

	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks

	Formatted output

	Setup macro functions summary
	C-SPY system macros summary
	Description of C-SPY system macros
	_ _cancelAllInterrupts
	Syntax
	Return value
	Description
	Applicability

	_ _cancelInterrupt
	Syntax
	Parameter
	Return value
	Description
	Applicability

	_ _clearBreak
	Syntax
	Parameter
	Return value
	Description
	See also

	_ _closeFile
	Syntax
	Parameter
	Return value
	Description

	_ _disableInterrupts
	Syntax
	Return value
	Description
	Applicability

	_ _driverType
	Syntax
	Parameter
	Return value
	Description
	Example

	_ _emulatorSpeed
	Syntax
	Parameter
	Return value
	Description
	Example
	Applicability

	_ _emulatorStatusCheckOnRead
	Syntax
	Parameter
	Return value
	Description
	Example
	Applicability

	_ _enableInterrupts
	Syntax
	Return value
	Description
	Applicability

	_ _evaluate
	Syntax
	Parameter
	Return value
	Description
	Example

	_ _gdbserver_exec_command
	Syntax
	Parameter
	Description
	Applicability

	_ _hwReset
	Syntax
	Parameter
	Return value
	Description
	Example
	Applicability

	_ _hwResetWithStrategy
	Syntax
	Parameter
	Return value
	Description
	Example
	Applicability

	_ _jlinkExecCommand
	Syntax
	Parameter
	Return value
	Description
	Applicability

	_ _jtagCommand
	Syntax
	Parameter
	Return value
	Description
	Example
	Applicability

	_ _jtagCP15IsPresent
	Syntax
	Return value
	Description
	Applicability

	_ _jtagCP15ReadReg
	Syntax
	Parameter
	Return value
	Description
	Applicability

	_ _jtagCP15WriteReg
	Syntax
	Parameter
	Description
	Applicability

	_ _jtagData
	Syntax
	Parameter
	Return value
	Description
	Example
	Applicability

	_ _jtagRawRead
	Syntax
	Parameter
	Description
	Example
	Applicability

	_ _jtagRawSync
	Syntax
	Return value
	Description
	Example
	Applicability

	_ _jtagRawWrite
	Syntax
	Parameter
	Return value
	Description
	Example
	Applicability

	_ _jtagResetTRST
	Syntax
	Return value
	Description
	Applicability

	_ _openFile
	Syntax
	Parameters
	Return value
	Description
	Example
	See also

	_ _orderInterrupt
	Syntax
	Parameters
	Return value
	Description
	Applicability
	Example

	_ _popSimulatorInterruptExecutingStack
	Syntax
	Return value
	Description
	Applicability

	_ _readFile
	Syntax
	Parameters
	Return value
	Description
	Example

	_ _readFileByte
	Syntax
	Parameter
	Return value
	Description
	Example

	_ _readMemory8, _ _readMemoryByte
	Syntax
	Parameters
	Return value
	Description
	Example

	_ _readMemory16
	Syntax
	Parameters
	Return value
	Description
	Example

	_ _readMemory32
	Syntax
	Parameters
	Return value
	Description
	Example

	_ _registerMacroFile
	Syntax
	Parameter
	Return value
	Description
	Example
	See also

	_ _resetFile
	Syntax
	Parameter
	Return value
	Description

	_ _restoreSoftwareBreakpoint
	Syntax
	Return value
	Description
	Applicability

	_ _setCodeBreak
	Syntax
	Parameters
	Return value
	Description
	Examples
	See also

	_ _setDataBreak
	Syntax
	Parameters
	Return value
	Description
	Applicability
	Example
	See also

	_ _setSimBreak
	Syntax
	Parameters
	Return value
	Description
	Applicability

	_ _sleep
	Syntax
	Parameter
	Return value
	Description
	Example

	_ _sourcePosition
	Syntax
	Parameters
	Return value
	Description

	_ _strFind
	Syntax
	Parameters
	Return value
	Description
	Example
	See also

	_ _subString
	Syntax
	Parameters
	Return value
	Description
	Example
	See also

	_ _toLower
	Syntax
	Parameter
	Return value
	Description
	Example
	See also

	_ _toString
	Syntax
	Parameter
	Return value
	Description
	Example
	See also

	_ _toUpper
	Syntax
	Parameter
	Return value
	Description
	Example
	See also

	_ _writeFile
	Syntax
	Parameters
	Return value
	Description

	_ _writeFileByte
	Syntax
	Parameters
	Return value
	Description

	_ _writeMemory8, _ _writeMemoryByte
	Syntax
	Parameters
	Return value
	Description
	Example

	_ _writeMemory16
	Syntax
	Parameters
	Return value
	Description
	Example

	_ _writeMemory32
	Syntax
	Parameters
	Return value
	Description

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols

