

EN1740 Computer Aided Visualization and Design

Spring 2012

4/12/2012

Brian C. P. Burke

Last Time:

- Design Analysis
 - Clearance/Interference Checking
 - Sensitivity/Feasibility/Optimization
- Intro to GD&T

Tonight:

- Group Project Overview
- Tolerance Analysis
 - CETOL
- Intro to GD&T

Supporting Reading:

- Second half of Chapt. 4 (pg 96-112)
- Chapt. 6
- Chapt. 8

Group Project Subjects

Need one group for each

- Blades
- Hub
- Gear train
- Base
- Collapsible stand
- Tail (Horizontal Furling)
 - Fluids
 - Structures
- Structure for Batteries, Inverter and Controls
- BBS

Manufacturing Tolerances

Nothing's perfect

Fig. 4-50, B. A. Wilson, GD&T App. And Intr., 2010

BCB – Apr. 12, 2012

Manufacturing Tolerance

Components must specify allowable tolerances

- Tolerances can be specified in a number of ways
 - Dimensional
 - Limits
 - Unilateral
 - Bilateral
 - Geometric
 - Form
 - Orientation
 - Position

BCB – Apr. 12, 2012

Design Tolerance Analysis

- How dimensional variation affects component/product performance
 - Critical to everything manufactured
 - Example Change in part dimensions affect spring pocket height which effects output pressure
- Use CETOL to calculate the variation in spring pocket size
 - As design evolves stackup is updated
 - Easily accounts for advanced dimensioning

- Open relief valve assembly
- Turn on Dimension Tolerances
 - Tools >Environment
 - Check Dimension Tolerances

Environment

BCB – Apr. 12, 2012

EXERCISE - Design Tolerance Analysis

Define part feature tolerances

- Open piston.prt
- Create a symmetric tolerance of .005 on .250 height
 - Edit feature
 - Select dimension
 - RMB > Properties
 - Set Tolerance Mode to Symmetric
 - Set Tolerance to .005

BCB – Apr. 12, 2012

Define part feature tolerances

• Using the steps shown previously, apply a symmetric tolerance of .008 to the thickness of the seal .080

Define part feature tolerances

• Using the steps shown previously, apply a symmetric tolerance of .003 to the height of the seal .375

Define part feature tolerances

• Using the steps shown previously, apply a symmetric tolerance of .006 to the height of the seal .850

Define tolerance study

- Back to the top level assembly
- Analysis > Tolerance Study...

🧾 RELIEF_VALVE (Activ	e) - Pro/ENGINEER Education Edition
<u>File E</u> dit <u>V</u> iew <u>I</u> nsert	Analysis Info Applications Tools Manikin Window Help
0 🗳 🖬 🕹 🤇	Measure Rodel
<u>∠</u> /. ×× ¥* ⊂	Geometry External Analysis
 Axes will not be displaye Dimensions will be displa RELIEF_VALVE has been RELIEF_VALVE has been 	Mecha <u>n</u> ica Analysis <u>U</u> ser-Defined Analysis Motion Analysis Ergonomics Analysis
Bro Contractions ▼ Show ▼ Settings ▼	Sensitivity Analysis Eeasibility/Optimization Multi-Objective Design Study
RELIEF_VALVE.AS	ModelCHECK Compare Assembly by feature
ASM_FRONT →→→→ ASM_DEF_CS' →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→	Mig Saved Analysis With Hide All Delete Delete Delete All

BCB – Apr. 12, 2012

EXERCISE - Design Tolerance Analysis

BCB – Apr. 12, 2012

EXERCISE - Design Tolerance Analysis

Define tolerance study

- *STEP 1:* Define the dimension to analyze
 - Select the bottom of the housing
 - Select the bottom of the piston

Define tolerance study

- *STEP 2:* Specify dimensions that contribute to tolerance
 - As soon as the subject of the analysis is defined the system begins prompting for candidate dimensions
 - Alternate selecting parts and dimensions > Use LMB for both

BCB – Apr. 12, 2012

Define tolerance study

• *STEP 2 (cont.):* Specify dimensions that contribute to tolerance

- Continue selecting until all the dimension we specified tolerances for have been selected
- .850<u>+</u>.006
- .375<u>+</u>.003
- .080<u>+</u>.008
- .250<u>+</u>.005

• MMB done

EXERCISE - Design Tolerance Analysis

Go back to CETOL window

- RMB in Measurement Table > Expand All
- This will show the dimensions included in the stack

Tolerance Analysis	powered by C						
easurement Table							Ð
lame	Nominal	Tolerance	.	Ср		tachment	
CETOL 1	0.145	0.145 ±0.0	010			enter	
- 🥭 HOUSING/HOUS	5ING2				C	enter	
🗉 🗐 HOUSING2							
🥭 Housing2/sea	L				C	enter	
🗈 🔲 SEAL							
- A SEAL/PISTON					C	enter	
					Restart Removi Create	Measure Last Report	
					Expano Collaps		
nension Loop Diagram			_	_	View Oj	tions	e
nension Loop Diagram		145 ±0.01	0	_	View O	0.850 ±0.006	
nension Loop Diagram	●.	145 ±0.01	0		View O	0.850 ±0.006	
nension Loop Diagram	0.	145 ±0.01	0		View O	0.850 ±0.006 0.375 ±0.003	
nension Loop Diagram	0.	145 ±0.01	0		View Oj	0.850 ±0.006 ■ 0.375 ±0.003	
nension Loop Diagram	0.	145 ±0.01	0	_	View Oj	0.850 ±0.006 ■ 0.375 ±0.003	
nension Loop Diagram	0.	145 ±0.01	0		View Oj	0.850 ±0.006 0.375 ±0.003 0.080 ±0.003	
ension Loop Diagram	0.	145 ±0.01	0		View O	0.850 ±0.006 0.375 ±0.003 0.080 ±0.008	
ension Loop Diagram	0.	145 ±0.01	0		View O	0.850 ±0.006 0.375 ±0.003 0.080 ±0.003	
nension Loop Diagram	● 0.	145 ±0.01	0	+0.0	View O	0.850 ±0.006 0.375 ±0.003	
mension Loop Diagram	0.	145 ±0.01	.250	±0.0	View Op	0.850 ±0.006	
nension Loop Diagram	 	145 ±0.01(.250	±0.0	View Or	0.850 ±0.006	
nension Loop Diagram	0.	145 ±0.01	.250	±0.0	View Or	0.850 ±0.006	
nension Loop Diagram	0.	145 ±0.01	.250	±0.0	View Op	0.850 ±0.006	
mension Loop Diagram	0.	145 ±0.01	.250	±0.0	View Op 005	0.850 ±0.006	
nension Loop Diagram	n Loop Diagram	145 ±0.01(.250	±0.0	View Op 005	0.850 ±0.006	

Rename analysis and enter design objective

🐨 Tolerance Analysis powered by CETOL Technology						
Measurement Table						
Name	Nominal	Tolerance	Ср	8 8	Attachment	
spring_height	0.145	0.146 ±0.015)		Center	
HOUSING						
Feature1						
	0.85	0.850 ±0.006	1	1	Center	
Feature						
- A HOUSING/HOUSING2					Center	
🚊 🔲 HOUSING2						
- Feature						
	0.375	0.375 ±0.003	1	-1	Center	
Feature						

- Name the analysis something descriptive
- Note nominal dimension and tolerance set by DESIGN REQUIREMENTS
 - This is not the result of the analysis; this is where the goal is set
 - Set design tolerance to .015

EXERCISE - Design Tolerance Analysis

Define tolerance study

- Click on the Analysis Results tab
- Left pane shows graphically the results
- Right pane shows contributions from individual tolerances

Tolerance Analysis pow	ered by CE	TOL Technolo	gy			_ 0
asurement Table						e
ame	Nominal	Tolerance	Ср	<u>a</u> 8	ttachment	
🙌 spring_height	0.145	0.145 ±0.015		(enter	
- 🗐 HOUSING						
- Feature1						
+→ d2	0.85	0.850 ±0.006	1	1 (enter	
- Feature						
- A HOUSING/HOUSING2				(enter	
HOUSING2						
- Z Feature	0.075	0.075 ±0.000				
	0.375	0.375 ±0.003	1	-1 (enter	
					optor	
				,		
E Eesture						
	0.08	0.080 ±0.008	1	-1 (enter	
Feature	0.00	0.000 20.000		1	circa	
				(enter	
					Sinco.	
D						
igma = 3.8874 .Yield = 99.9698 PMU = 101.57					Name Statistical Contribution SEAL:d0 26.87 % HOUSING:d2 18.66 % HOUSING2:d0 6.72 %	ution 47.76 %
0.123		145	_		0.167 	
0.13 Dimension Loo	n Diagram			0.16	Analysis Results	

EXERCISE - Design Tolerance Analysis

Define tolerance study

BCB – Apr. 12, 2012

EXERCISE - Design Tolerance Analysis

Adjust tolerance objective and update

- Change the tolerance objective to .010
- Observe the change in the output (what happened to DPMU?)

BCB – Apr. 12, 2012

Manufacturing Tolerance

Components must specify allowable tolerances

- Tolerances can be specified in a number of ways
 - Dimensional
 - Limits
 - Unilateral
 - Bilateral
 - Geometric
 - Form
 - Orientation
 - Position

Fig. 8-1, B. A. Wilson, GD&T App. And Intr., 2010

BCB – Apr. 12, 2012

Geometric Dimensioning and Tolerancing (GD&T) *Introduction*

• GD&T Includes 3 types of tolerances: Form, Orientation and Position

Fig. 5-1, B. A. Wilson, GD&T App. And Intr., 2010 Fig. 7-1, B. A. Wilson, GD&T App. And Intr., 2010

Fig. 8-2, B. A. Wilson, GD&T App. And Intr., 2010

BCB – Apr. 12, 2012

Geometric Dimensioning and Tolerancing (GD&T)

Form Tolerances – Straightness and Flatness

Fig. 5-11, B. A. Wilson, GD&T App. And Intr., 2010 Fig. 5-27, B. A. Wilson, GD&T App. And Intr., 2010

BCB – Apr. 12, 2012

Geometric Dimensioning and Tolerancing (GD&T)

Form Tolerances – Circularity and Cylindricity

Fig. 5-33, B. A. Wilson, GD&T App. And Intr., 2010

Fig. 5-34, B. A. Wilson, GD&T App. And Intr., 2010

BCB – Apr. 12, 2012

Geometric Dimensioning and Tolerancing (GD&T)

Datums

• Datum feature references

- Labels (Letters)
- Datum features
 - Part features
- Datum
 - Theoretical (perfect) reference geometry

 Datums are required for orientation and position tol's

Fig. 6-3 & 6-4, B. A. Wilson, GD&T App. And Intr., 2010

Geometric Dimensioning and Tolerancing (GD&T)

Types of datums

• There are various types of physical features that can be used as a datum

Fig. 6-7, B. A. Wilson, GD&T App. And Intr., 2010

Fig. 6-6, B. A. Wilson, GD&T App. And Intr., 2010

BCB – Apr. 12, 2012

Geometric Dimensioning and Tolerancing (GD&T)

Orientation Tolerances – Angularity, Perpendicularity and Parallelism

Fig. 7-30, B. A. Wilson, GD&T App. And Intr., 2010 Fig. 7-13, B. A. Wilson, GD&T App. And Intr., 2010 Fig. 7-7, B. A. Wilson, GD&T App. And Intr., 2010

BCB – Apr. 12, 2012

Geometric Dimensioning and Tolerancing (GD&T)

Position tolerance requires Datums, Basic Dim's and Tolerance

Fig. 8-7 & 8-8, B. A. Wilson, GD&T App. And Intr., 2010

Datums establish how to measure the part, *Basic dimensions* state theoretical location & *Position Tolerances* state allowances

BCB – Apr. 12, 2012