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Maximum and minimum shear stresses in a solid

An general stress state
Oy Oy Op
O=|0y Oy Oxn|
O3 O3z O3]

when expressed in the principal directions, becomes diagonalized as

o, 0 0
c=0 o, 0
0 0 oy

g |
The traction on an arbitrary plane with normal 0 is
t=on=o0,ng +0,nE,+0,nE
The magnitude of T is therefore
= 2.2 2.2 2 2\/2
|t| = (JI n +o,Nn +O-luna)l/
The normal stress on the plane is
Lo 2 2 2
o,=N-t=n-ocnN=0o,n +o,Nn; +o,N,
2 2 _ 5712
Note that o + o, —|t| , therefore
2 2,2 2.2 2 .2 2 2 2\
o =0N +o,n; +o,,N; _(O'|n1 +o,h +O'|||n3)
We wish to find the maximum/minimum values of o subject to constraint nZ +n; + n§ =1

(because N isa unit vector).

Introduce Lagrangian multiplier A,
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F=ocl-ann,

2
F=on2+o2n +on (o2 + o2 + o2 f = An? +n2 +n2)

Letting E =0 (j =1 2, 3), we have
on,

nl(0'|2 -20,0, —ﬂ,)z 0 (1)
n2(0'|2| -20,0, —ﬂ,): 0 )

n3(0-|2|| -20,,0, _/1):0 (3)

Casel: n,#0, n,=0, n,#0
ol —20,0,-A=0
ot —20,0,-1=0
ol —20,0,-A=0
Eliminating o, from the above,
A=-0,0,=-0,0, =-0,0\, =0, =0, =0y,

which is contradictory to our assumption o, > o, >0, .

Case 2: 20of n, n,, n, arenotzero
If n,=0, n=#0, n,#0,
ol —20,0,-A=0
ot —20,0,-1=0
nf+ns =1
Eliminating o, from the first two equations results in

A=-0,0,, 20,=0,+0,
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Inserting o, = o\N> + 0,5 +o,Nn2 =c,n>+0c,(@-n2) (here n,=0) into the first or

second of the above equations will show,
1 1
n> ==, ,hence Ny =1-n’ ==
2 2

Therefore:
_ 1 1 1 1
n:(iz,_E,OJ, 652=E(G|2+G|2|)—1(G|+6”)2

The magnitude of this shear stress is

If n,=0, n=0, n, =0,

_ 1 1 1
nz(iz,o,izj, o =§(U| _GIII)

1 2
:Z(G| _GII)

Following the convention o, > o, > o, , we find the maximum shear stress is

o,-0
max(o ) = ———1
2
Case3:20f n, n,, n, arezero
If n,=n,=0, n;#0, n,=41 & o,=0
If n,=n,=0, n,#0, n,=%1 & o,=0
If n,=n,=0, n#0, n=21 & o,=0
o, -

The above analysis thus indicates that max(a-S ) =

Mohr circle (3D)

2D Mohr circle

% and min(c,)=0.
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3D Mohr circle

For o, >0, >o,, >0, all accessible stress states lie within the shaded region bounded by 3

Mohr’s circles. (The stress states within a plane containing two principle directions lie along the
corresponding circle.)

> O
On Oy O,
Examples of Mohr circle representations:
Pureshear o, =7, 0, =0, o, =—7
—> T
[ ] = z )
T «—

If o, >0, >0>0,,, there exists a plane with zero normal stress and only shear stress.
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Chap. 3 Strain in a solid

Engineering concept of strain

Elongation: o

. o
Percentage of elongation: I— =&
0

I
Stretch: A =|— =l+¢
0

Different measures of strain:

e, = —t—=
) I T
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I

e, =

0

e =1In ! =In 1+é ;é
IO IO IO

All these measures are equivalent for small elongation and thus equivalent from an engineering
point of view.

How to generalize these to 3D?

U =Yy—X (displacement vector)
(%.t)

Yi :yi(xl'XZ’XS’t)

<l
Il
<<

dy, = ¥, dx; = Fdx;

Loox
where
oy, au,
Fij = — = 5ij +—
OX OX

J ]
is called the deformation gradient. We wish to find a measure of strain that is independent of rigid
body rotation. However, information about the deformed position of one vector alone contains
both strain and rotation. Strain is a relative measure of how material points move with respect to
each other. We recall that the dot product of two vectors only depends on the magnitudes and the
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relative angle between the two.

—

d

2 — .\

b

Q)

l
O

a-b=abcoso

This suggests that the dot product of two vectors is independent of rigid body motion and rotation.
Therefore, we consider dot product of two differential segments in the deformed and undeformed

configurations:

dy, -dy, = Fdx, - Fdx, =dx, - F ' Fdx,

-

o, -dx, = F dy, - E *dy, =dy, - F T Edy, =dy, -(EEJ'dy,

where Q:ETE is called the right Cauchy-Green strain tensor and §=EET the left

Cauchy-Green Strain tensor.



