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Maximum and minimum shear stresses in a solid 
 
An general stress state  
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when expressed in the principal directions, becomes diagonalized as 
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The traction on an arbitrary plane with normal nv  is 
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The magnitude of  is therefore t
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The normal stress on the plane is 
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Note that 
222 tns

v
=+σσ , therefore 
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We wish to find the maximum/minimum values of sσ  subject to constraint  

(because  is a unit vector). 
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Introduce Lagrangian multiplier λ , 
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iiS nnF λσ −= 2  

i.e. 
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Letting ( 3,2,10 ==
∂
∂ j
n
F

j

), we have 
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Case 1: , 01 ≠n 02 ≠n ,  03 ≠n

022 =−− λσσσ nII  

022 =−− λσσσ nIIII  

022 =−− λσσσ nIIIIII  

Eliminating nσ  from the above, 
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which is contradictory to our assumption IIIIII σσσ >> . 

 

Case 2: 2 of , ,  are not zero 1n 2n 3n

If , , , 03 =n 01 ≠n 02 ≠n

022 =−− λσσσ nII  

022 =−− λσσσ nIIII  
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Eliminating nσ  from the first two equations results in 

IIIσσλ −= , IIIn σσσ +=2  
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Inserting  (here )1( 2
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second of the above equations will show,  
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The magnitude of this shear stress is 
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Similarly, If , , , 01 =n 02 ≠n 03 ≠n
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If , , , 02 =n 01 ≠n 03 ≠n
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Following the convention IIIIII σσσ >> , we find the maximum shear stress is 
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Case 3: 2 of , ,  are zero 1n 2n 3n

If , 021 == nn 03 ≠n ,  & 13 ±=n 0=sσ  

If , 031 == nn 02 ≠n ,  & 12 ±=n 0=sσ  

If , 032 == nn 01 ≠n ,  & 11 ±=n 0=sσ  

The above analysis thus indicates that ( )
2

max IIII
s

σσσ −
=  and ( ) 0min =sσ . 

Mohr circle (3D) 
 
2D Mohr circle 
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3D Mohr circle 
 

For 0>>> IIIIII σσσ , all accessible stress states lie within the shaded region bounded by 3 

Mohr’s circles. (The stress states within a plane containing two principle directions lie along the 
corresponding circle.) 
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Examples of Mohr circle representations: 
 

Pure shear τσ =I , 0=IIσ , τσ −=III  
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If IIIIII σσσ >>> 0 , there exists a plane with zero normal stress and only shear stress. 
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Chap. 3 Strain in a solid 
 
Engineering concept of strain 
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Elongation: δ  

Percentage of elongation: εδ
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Stretch: ελ +== 1
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Different measures of strain: 
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… 
 
All these measures are equivalent for small elongation and thus equivalent from an engineering 
point of view. 
 
How to generalize these to 3D? 
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xyu vvv −=  (displacement vector) 
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is called the deformation gradient. We wish to find a measure of strain that is independent of rigid 
body rotation. However, information about the deformed position of one vector alone contains 
both strain and rotation. Strain is a relative measure of how material points move with respect to 
each other. We recall that the dot product of two vectors only depends on the magnitudes and the 
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relative angle between the two.  
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This suggests that the dot product of two vectors is independent of rigid body motion and rotation. 
Therefore, we consider dot product of two differential segments in the deformed and undeformed 
configurations: 
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where FFC T=  is called the right Cauchy-Green strain tensor and TFFB =  the left 

Cauchy-Green Strain tensor. 
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