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Summary of elementary strain concepts and their generalizations to 3D tensors:
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For small strain and small rotation, the rigid body rotation part is analyzed as follows:

R=1+® where @ isdefined as the small rotation tensor.
RU=(+o)l+&)=l+s+0=F=1+V0
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QT =—@ (antisymmetric tensor)
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Alternative way of deriving small strain tensor:
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Shear strain:
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Wolume change:
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Therefore:
M=gkk (bulk strain)
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Note that & = %(Q—l_),
1

m~§m=§(/12—1);/1—1 (strainin m direction)

Strain gages aligned along different directions at a solid surface can be used to measure strain in
the plane of the surface. For example, assuming we can measure the normal strain
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along the m,, m,, M, directions as shown above, respectively, the components of surface strain
tensor is simply

m,-em, =g, M, -em, =&,

The shear strain &;, is to be determined from the reading in the M, direction.

Compatibility conditions of strains

3 displacement components —> 6 strain components
1
& = E(Ui,j + “j,i)

Eliminating U from the above —> 3 equations among strain (compatibility conditions)

For example:
ou, 1(ou, oau, ou,
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Chap. 5 Mechanical behavior of solids

In a general boundary value problem in solid mechanics, the number of unknown variables is
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Ui ), &; (6), oy (6)> 15unknown variables
Number of equations:

Equilibrium equations: oy ; + p; = U, (3equations)

1
Strain-displacement equations:  &;; :E(ui’j +uj]i) (6 equations)

Therefore, we are still missing 6 equations to determine the 15 unknowns. The six additional
equations to close the formulations can be generally expressed as:

o=f(e)

This leads to the constitutive model of different material behaviors which can be categorized into
the following types:

Linear elastic material (Hooke’s law)
Elastic-plastic material

Visco-elastic material

Visco-plastic material

Linear elastic material:

We have seen Hooke’s law in 1D:

— e

o=Ee¢
In 3D, one might generalize this in tensor form as

o=Cg¢ or o :Cijklgkl
wWhere C,, is a 4™ order tensor. For the most general case, a 4" order tensor has 3* =81

independent components. However, ¢ and & are both symmetric tensors that only have six

independent components. Therefore, o =Ce& can be rewritten in a matrix form as

On Ch C, Gy Cp Cy Cy)len
O Cu Cp Cp Cp Cyu Cyxl| &
O | _ Cua Cp Gy Gy Gy Cy || &5
Oy Cu Cp Cp Cp Cp Cupl| &
O13 Cu Cp, Gy Cop Gy Cy || &1
O1, Cao Co Co Co Co Coo)len
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Clearly, the number of independent components of C is reduced to 36.

Furthermore, the 6x6 matrix of C is symmetric, which further reduces the number of

independent components to 21 (the reason will be discussed in the next lecture).



