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Summary of elementary strain concepts and their generalizations to 3D tensors: 
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For small strain: 
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For small strain and small rotation, the rigid body rotation part is analyzed as follows: 

ω+= IR  where ω  is defined as the small rotation tensor. 
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ωω −=T  (antisymmetric tensor) 
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Alternative way of deriving small strain tensor: 
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Normal strain: 
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Shear strain:  
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Volume change: 
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 (strain in mv  direction) 

 
Strain gages aligned along different directions at a solid surface can be used to measure strain in 
the plane of the surface. For example, assuming we can measure the normal strain  
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along the 321 ,, mmm vvv
 directions as shown above, respectively, the components of surface strain 

tensor is simply 

1111 εε =⋅ mm vv , 2222 εε =⋅ mm vv  

The shear strain 12ε  is to be determined from the reading in the 3mv  direction.  

 
Compatibility conditions of strains 
 
3 displacement components  6 strain components  ⇒
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Eliminating  from the above  3 equations among strain (compatibility conditions) u ⇒
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Chap. 5 Mechanical behavior of solids 
 
In a general boundary value problem in solid mechanics, the number of unknown variables is 
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iu  (3), ijε  (6), ijσ  (6)  15 unknown variables 

Number of equations: 

Equilibrium equations: iijij u&&=+ ρσ ,  (3 equations) 

Strain-displacement equations: ( )ijjiij uu ,,2
1

+=ε  (6 equations) 

Therefore, we are still missing 6 equations to determine the 15 unknowns. The six additional 
equations to close the formulations can be generally expressed as: 
 

( )εσ f=  

 
This leads to the constitutive model of different material behaviors which can be categorized into 
the following types: 
 
Linear elastic material (Hooke’s law) 
Elastic-plastic material 
Visco-elastic material 
Visco-plastic material 
… 
 
Linear elastic material: 
 
We have seen Hooke’s law in 1D: 

 
εσ E=  

In 3D, one might generalize this in tensor form as 

εσ C=  or klijklij C εσ =  

wWhere  is a 4ijklC th order tensor. For the most general case, a 4th order tensor has  

independent components. However, 

8134 =

σ  and ε  are both symmetric tensors that only have six 

independent components. Therefore, εσ C=  can be rewritten in a matrix form as 
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Clearly, the number of independent components of C  is reduced to 36. 

Furthermore, the 66×  matrix of C  is symmetric, which further reduces the number of 

independent components to 21 (the reason will be discussed in the next lecture). 
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