EN0175

Mechanical Behavior of Solids

Linear Elastic solids

$$\sigma = E\varepsilon$$
 (1D) $\Rightarrow \sigma_{ii} = C_{iikl}\varepsilon_{kl}$ or $\varepsilon_{ii} = S_{iikl}\sigma_{kl}$ (3D)

where \underline{C} is sometimes called the stiffness tensor and \underline{S} is sometimes called the compliance tensor. Both of them are 4^{th} order elastic moduli tensors.

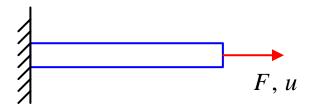
Symmetry of elastic moduli tensors:

$$C_{ijkl} = C_{jikl}$$
, $C_{ijkl} = C_{ijlk}$ (minor symmetry)

The minor symmetries reduce the independent elastic constants from 81 to 36.

There is also a major symmetr in elastic moduli $C_{ijkl} = C_{klij}$, which reduces the number of independent elastic constants from 36 to 21.

We use the concept of energy & work to demonstrate the major symmetry of \underline{C} and \underline{S} :



Assume an increment of displacement at the bar end,

$$u \rightarrow u + \delta u$$

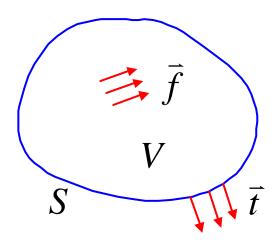
The work done by the applied load should equal to the stored energy in the material,

$$\delta W = F \delta u = \sigma A \delta(l\varepsilon) = Al\sigma \delta \varepsilon = V \sigma \delta \varepsilon$$

 $\delta w = \frac{\delta W}{V} = \sigma \delta \varepsilon$ should be the stored elastic energy per unit volume, which is also called the strain energy density.

$$w = w(\varepsilon), \ \sigma = \frac{\partial w}{\partial \varepsilon}, \ w(\varepsilon) = \int_0^\varepsilon \sigma \, \mathrm{d}\varepsilon$$

Generalize to 3D



$$\delta w = \int_{S} \vec{t} \cdot \delta \vec{u} \, dS + \int_{V} \vec{f} \cdot \delta \vec{u} \, dV$$

$$= \int_{S} t_{i} \delta u_{i} \, dS + \int_{V} f_{i} \delta u_{i} \, dV$$

$$= \int_{S} \sigma_{ij} n_{j} \delta u_{i} \, dS + \int_{V} f_{i} \delta u_{i} \, dV$$

$$= \int_{V} \left(\sigma_{ij} \delta u_{i} \right)_{j} \, dV + \int_{V} f_{i} \delta u_{i} \, dV$$

$$= \int_{V} \left(\sigma_{ij,j} + f_{i} \right) \delta u_{i} dV + \int_{V} \sigma_{ij} \delta u_{i,j} \, dV$$

$$= \int_{V} \sigma_{ij} \delta \varepsilon_{ij} \, dV = \int_{V} \delta w \, dV$$

 $\delta w = \sigma_{ij} \delta \varepsilon_{ij}$ is the strain energy density and

 $w = \int \sigma_{ij} \delta \varepsilon_{ij}$ must be integrable.

Knowing $\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$, we have

$$w = \frac{1}{2} C_{ijkl} \varepsilon_{ij} \varepsilon_{kl}$$
$$C_{ijkl} = \frac{\partial^2 w}{\partial \varepsilon_{ij} \partial \varepsilon_{kl}} = C_{klij}$$

Elastic moduli for isotropic materials:

Isotropic tensor: $\underline{I}\,\overline{a} = \overline{a}\,\,\,\,(\,\delta_{ij}a_j = a_i\,)$

The 4^{th} order isotropic tensors can be generally written as

$$C_{ijkl} = c_1 \delta_{ij} \delta_{kl} + c_2 \delta_{ik} \delta_{jl} + c_3 \delta_{il} \delta_{jk}$$

Imposing the symmetry conditions indicate that the elastic moduli can be expressed in terms of just two constants

$$C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right)$$

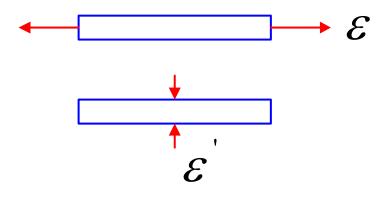
where λ and μ are called Lamé constants.

Similarly, the S_{ijkl} can also be expressed in terms of just two constants as

$$S_{ijkl} = d_1 \delta_{ij} \delta_{kl} + d_2 \left(\delta_{ik} \delta_{il} + \delta_{il} \delta_{jk} \right)$$

The constants $\,\,\lambda$, $\,\mu$, $\,\,d_1$ and $\,\,d_2$ are to be determined experiments.

Since there are only 2 independent elastic constants, it suffices to conduct experiments in 1D:



$$E = \frac{\sigma}{\varepsilon}$$
 (Young's modulus)

$$v = -\frac{\varepsilon'}{\varepsilon}$$
 (Poisson's ratio)

.

We can specify the general stress-strain relation

$$\varepsilon_{ij} = S_{ijkl}\sigma_{kl} = \left(d_1\delta_{ij}\delta_{kl} + d_2\left(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}\right)\right)\sigma_{kl} = d_1\sigma_{kk}\delta_{ij} + 2d_2\sigma_{ij}$$

to 1D loading $\sigma_{11} \neq 0$, $\sigma_{22} = \sigma_{33} = 0$. In this case,

$$\varepsilon_{11} = d_1 \sigma_{11} + 2d_2 \sigma_{11} = (d_1 + 2d_2)\sigma_{11} = \frac{\sigma_{11}}{E}$$

$$\varepsilon_{22} = d_1 \sigma_{11} = -v\varepsilon_{11} = -v\frac{\sigma_{11}}{E}$$

Therefore,

$$d_1 = -\frac{v}{E}$$
$$d_2 = \frac{1+v}{2E}$$

and

$$S_{ijkl} = -\frac{v}{E} \delta_{ij} \delta_{kl} + \frac{1+v}{2E} \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right)$$

We thus obtain the so-called generalized Hooke's law:

$$\varepsilon_{ij} = \frac{1+v}{E}\sigma_{ij} - \frac{v}{E}\sigma_{kk}\delta_{ij}$$

This equation can be inverted as follows.

$$\varepsilon_{qq} = \frac{1+\nu}{E}\sigma_{qq} - \frac{3\nu}{E}\sigma_{kk} = \frac{1-2\nu}{E}\sigma_{qq}$$

The percentage change of volume

$$\frac{\Delta V}{V} = \varepsilon_{kk} = \frac{1 - 2\nu}{E} \sigma_{kk} = \frac{3(1 - 2\nu)}{E} p$$

Defines the so-called bulk modulu $K = \frac{p}{\Delta V/V} = \frac{E}{3(1-2v)}$. (This modulus can also be

calculated using ab initio quantum mechanics techniques.)

Invert the generalized Hooke's law:

$$\frac{1+\nu}{E}\sigma_{ij} = \varepsilon_{ij} + \frac{\nu}{E}\sigma_{kk}\delta_{ij} = \varepsilon_{ij} + \frac{\nu}{E}\frac{E}{1-2\nu}\varepsilon_{kk}\delta_{ij}$$

$$\Rightarrow \sigma_{ij} = \frac{E}{1+\nu}\varepsilon_{ij} + \frac{\nu E}{(1+\nu)(1-2\nu)}\varepsilon_{kk}\delta_{ij}$$

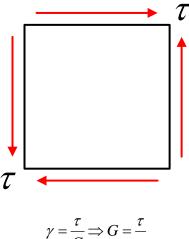
Comparing this to the Lamé form of Hooke's law

$$\sigma_{ij} = C_{ijkl}\varepsilon_{kl} = \left(\lambda\delta_{ij}\delta_{kl} + \mu\left(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}\right)\right)\varepsilon_{kl} = \lambda\delta_{ij}\varepsilon_{kk} + 2\mu\varepsilon_{ij}, \text{ we identify}$$

$$\lambda = \frac{vE}{(1+v)(1-2v)}$$

$$\mu = \frac{E}{2(1+\nu)}$$

For shear deformation:



$$\gamma = \frac{\tau}{G} \Rightarrow G = \frac{\tau}{\gamma}$$

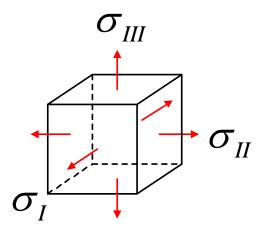
 $\label{eq:left_equation} \text{Let } i = 1 \, , \quad j = 2 \quad \text{in} \quad \sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk} + 2 \mu \varepsilon_{ij} \, ,$

$$\sigma_{12} = \tau = 2\mu\varepsilon_{12} = \mu\gamma$$

Therefore, the second Lamé constant is just the shear modulus:

$$G = \mu = \frac{E}{2(1+\nu)}$$

Alternative derivation of the generalized Hooke's law



Consider a linear superposition of strain in the principal stress directions

$$\varepsilon_{I} = \frac{\sigma_{I}}{E} - v \frac{\sigma_{II}}{E} - v \frac{\sigma_{III}}{E} = \frac{1+v}{E} \sigma_{I} - \frac{v}{E} \left(\sigma_{I} + \sigma_{II} + \sigma_{III}\right)$$

$$\varepsilon_{II} = \frac{\sigma_{II}}{E} - v \frac{\sigma_{I}}{E} - v \frac{\sigma_{III}}{E} = \frac{1+v}{E} \sigma_{II} - \frac{v}{E} \left(\sigma_{I} + \sigma_{II} + \sigma_{III}\right)$$

$$\varepsilon_{III} = \frac{\sigma_{III}}{E} - v \frac{\sigma_{I}}{E} - v \frac{\sigma_{II}}{E} = \frac{1+v}{E} \sigma_{III} - \frac{v}{E} \left(\sigma_{I} + \sigma_{II} + \sigma_{III}\right)$$

i.e.

EN0175

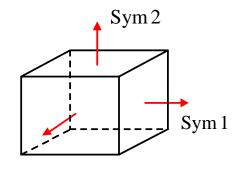
Therefore, we have

$$\underline{\varepsilon} = \frac{1+\nu}{E} \underline{\sigma} - \frac{\nu}{E} \sigma_{kk} \underline{I}$$

Through change of coordinates, this relation remains true for any other coordinate systems.

Orthotropic materials

An orthotropic material (e.g. wood, composites, fiber glass, etc) has three mutually perpendicular symmetry planes.



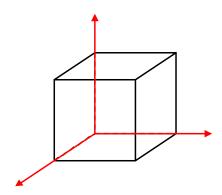
Sym3

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{pmatrix} = \begin{pmatrix} \mathbf{C}_{6 \times 6} \\ \mathbf{C}_{6 \times 6} \\ \mathbf{C}_{6 \times 6} \\ \mathbf{C}_{11} \\ \mathbf{\varepsilon}_{22} \\ \mathbf{\varepsilon}_{33} \\ \mathbf{\varepsilon}_{23} \\ \mathbf{\varepsilon}_{13} \\ \mathbf{\varepsilon}_{12} \end{pmatrix}$$

$$\mathbf{C}:\begin{pmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ & C_{22} & C_{23} & 0 & 0 & 0 \\ & & C_{33} & 0 & 0 & 0 \\ & & & C_{44} & 0 & 0 \\ & & & & C_{55} & 0 \\ & & & & & C_{66} \end{pmatrix} \text{ (9 elastic constants)}$$

Cubic materials

Single crystal metals: FCC (Cu, Al, Ag, etc.); BCC (Fe, etc.)



$$\mathbf{C}:\begin{pmatrix} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ & C_{11} & C_{12} & 0 & 0 & 0 \\ & & C_{11} & 0 & 0 & 0 \\ & & & C_{44} & 0 & 0 \\ & & & & C_{44} & 0 \\ & & & & & C_{44} \end{pmatrix} \tag{3 elastic constants}$$