EN0175

Review of deformation tensors:

$$F$$
,  $C$ ,  $B$ ,  $U$ ,  $V$ ,  $R$ ,  $E$ ,  $E^*$ 

Given  $\underline{F}$ , one can follow the following standard procedure to determine the other strain measures.

1) Most simply, 
$$\underline{C} = \underline{F}^T \underline{F}$$
,  $\underline{B} = \underline{F}\underline{F}^T$ ,  $\underline{E} = \frac{1}{2}(\underline{C} - \underline{I})$ ,  $\underline{E}^* = \frac{1}{2}(\underline{I} - \underline{B}^{-1})$ 

2) To fine  $\underline{U}$ ,  $\underline{V}$ ,  $\underline{R}$ , we need to perform the eigenvalue analysis of  $\underline{C}$  and  $\underline{B}$  (diagonalization of matrices):

$$\underline{C}\vec{m} = \lambda^2 \vec{m} \quad \Rightarrow \quad \underline{C} = \begin{pmatrix} \lambda_I^2 & 0 & 0 \\ 0 & \lambda_{II}^2 & 0 \\ 0 & 0 & \lambda_{III}^2 \end{pmatrix} = \lambda_I^2 \vec{m}_I \otimes \vec{m}_I + \lambda_{II}^2 \vec{m}_{II} \otimes \vec{m}_{II} + \lambda_{III}^2 \vec{m}_{III} \otimes \vec{m}_{III}$$

$$\underline{B}\,\bar{n} = \lambda^2\bar{n} \quad \Rightarrow \quad \underline{B} = \begin{pmatrix} \lambda_I^2 & 0 & 0 \\ 0 & \lambda_{II}^2 & 0 \\ 0 & 0 & \lambda_{III}^2 \end{pmatrix} = \lambda_I^2\bar{n}_I \otimes \bar{n}_I + \lambda_{II}^2\bar{n}_{II} \otimes \bar{n}_{II} + \lambda_{III}^2\bar{n}_{III} \otimes \bar{n}_{III}$$

3)

$$\underline{U} = \lambda_I \vec{m}_I \otimes \vec{m}_I + \lambda_{II} \vec{m}_{II} \otimes \vec{m}_{II} + \lambda_{III} \vec{m}_{III} \otimes \vec{m}_{III}$$

$$\underline{V} = \lambda_I \vec{n}_I \otimes \vec{n}_I + \lambda_{II} \vec{n}_{II} \otimes \vec{n}_{II} + \lambda_{III} \vec{n}_{III} \otimes \vec{n}_{III}$$

$$U_{ij} = \vec{e}_i \cdot \underline{U} \vec{e}_j, \ V_{ij} = \vec{e}_i \cdot \underline{V} \vec{e}_j \qquad \Longrightarrow \qquad \underline{U} \ \text{and} \ \underline{V}$$

4)

$$F = RU = VR$$

$$\underline{R} = \underline{F}\underline{U}^{-1} = \underline{V}^{-1}\underline{F}$$

## **Generalized Hooke's law**

$$\sigma_{ij} = 2\mu\varepsilon_{ij} + \lambda\varepsilon_{kk}\delta_{ij}$$

$$\varepsilon_{ij} = \frac{1+\nu}{E}\sigma_{ij} - \frac{\nu}{E}\sigma_{kk}\delta_{ij}$$

where

$$\lambda = \frac{vE}{(1+v)(1-2v)}, \quad \mu = \frac{E}{2(1+v)}$$

Alternative forms in terms of deviatoric stresses/strains:

EN0175

$$\begin{split} \sigma_{ij} &= \sigma_{ij}^{'} + \frac{\sigma_{kk}}{3} \delta_{ij} \\ \varepsilon_{ij} &= \varepsilon_{ij}^{'} + \frac{\varepsilon_{kk}}{3} \delta_{ij} \\ \varepsilon_{ij}^{'} + \frac{\varepsilon_{kk}}{3} \delta_{ij}^{'} &= \frac{1+\nu}{E} \left( \sigma_{ij}^{'} + \frac{\sigma_{kk}}{3} \delta_{ij}^{'} \right) - \frac{\nu}{E} \sigma_{kk} \delta_{ij}^{'} = \frac{1+\nu}{E} \sigma_{ij}^{'} + \frac{1-2\nu}{3E} \sigma_{kk} \delta_{ij}^{'} \\ \varepsilon_{kk}^{'} &= \frac{1-2\nu}{E} \sigma_{kk}^{'} = \frac{\sigma_{kk}}{3K} \\ \varepsilon_{ij}^{'} &= \frac{1+\nu}{E} \sigma_{ij}^{'} = \frac{\sigma_{ij}^{'}}{2\mu} \\ &\varepsilon_{ij}^{'} = \varepsilon_{ij}^{'} + \frac{\varepsilon_{kk}}{3} \delta_{ij}^{'} = \frac{\sigma_{ij}^{'}}{2\mu} + \frac{\sigma_{kk}}{9K} \delta_{ij}^{'} \end{split}$$

Strain energy:

$$dw = \sigma_{ii} d\varepsilon_{ii}$$

For linear elastic solids,

$$w = \int \sigma_{ij} d\varepsilon_{ij} = \frac{1}{2} C_{ijkl} \varepsilon_{ij} \varepsilon_{kl} = \frac{1}{2} \sigma_{ij} \varepsilon_{ij}$$
$$= \frac{1}{2} \left( \sigma'_{ij} + \frac{\sigma_{kk}}{3} \delta_{ij} \right) \left( \varepsilon'_{ij} + \frac{\varepsilon_{kk}}{3} \delta_{ij} \right)$$
$$= \frac{1}{2} \sigma'_{ij} \varepsilon'_{ij} + \frac{1}{6} \sigma_{kk} \varepsilon_{kk}$$

$$w = \mu \varepsilon_{ij} \varepsilon_{ij} + \frac{1}{2} K \varepsilon_{kk}^2 \quad \text{or} \quad w = \frac{1}{4\mu} \sigma_{ij} \sigma_{ij} + \frac{1}{18K} \sigma_{kk}^2$$

## Plastic material behavior

EN0175 10 / 24 / 06



Important experimental facts:

- 1) Hydrostatic stress has no effects on plastic deformation;
- 2) Plastic behavior doesn't induce volume change of a material.

In 1930's, Taylor and other scientists discovered that plastic deformation is caused by shearing of atomic planes via propagation of a type of lattice defects called dislocations.



1D models:

Rigid-Perfectly plastic material



Elastic-perfectly plastic material

EN0175 10 / 24 / 06



Linear hardening material



Power law hardening material



Here  $\sigma_Y$  and N can be treated as fitting parameters to experimental data;  $0 \le N < 1$  is called the hardening index.

In incremental form:

$$d\varepsilon_{P} = \begin{cases} \frac{d\sigma}{h}, & \text{plastic loading} \\ 0, & \text{otherwise} \end{cases}$$

EN0175 10 / 24 / 06

Here  $h = \frac{d\sigma}{d\varepsilon_P} = EN \left(1 + \frac{E\varepsilon_P}{\sigma_Y}\right)^{N-1}$  is the tangent modulus of the curve of stress versus plastic

strain.

The total strain increment can be decomposed as an elastic and a plastic part as

$$d\varepsilon = d\varepsilon_E + d\varepsilon_P = \frac{d\sigma}{E} + d\varepsilon_P$$

How to generalize to 3D?

- 1) Yield criterion
- 2) Plastic constitutive law ( $\sigma \varepsilon$  relation)

Yield criterion

For 1D,

$$\sigma = \sigma_{v}$$

For 3D,

Tresca condition: maximum shear stress = critical ⇒ Yield

If 
$$\sigma_I \geq \sigma_{II} \geq \sigma_{III}$$
,

$$\frac{\sigma_I - \sigma_{III}}{2} = C_Y = \frac{\sigma_Y}{2} \Rightarrow \sigma_I - \sigma_{III} = \sigma_Y$$

For general  $\sigma_I, \sigma_{II}, \sigma_{III}$ ,

$$\operatorname{Max}(|\sigma_{I} - \sigma_{II}|, |\sigma_{I} - \sigma_{III}|, |\sigma_{II} - \sigma_{III}|) = \sigma_{Y}$$

Von Mises condition:

$$w = \frac{1}{4\mu}\sigma_{ij}\sigma_{ij} + \frac{1}{18K}\sigma_{kk}^2$$

If we take the distortional part of elastic energy as a criterion for the onset of plastic deformation, we can write the yield condition as

$$\sigma_{ij} = C_{Y}$$

In principal stress orientations,

$$\sigma_{ij} = \sigma_{I}^{2} + \sigma_{II}^{2} + \sigma_{III}^{2}$$

$$\sigma_{I} = \sigma_{I} - \frac{1}{3} (\sigma_{I} + \sigma_{II} + \sigma_{III}) = \frac{1}{3} (2\sigma_{I} - \sigma_{II} - \sigma_{III})$$

Similarly,

EN0175

$$\sigma_{II} = \frac{1}{3} (2\sigma_{II} - \sigma_{I} - \sigma_{III})$$

$$\sigma_{III} = \frac{1}{3} (2\sigma_{III} - \sigma_{I} - \sigma_{II})$$

$$\sigma_{II} = \frac{1}{3} (2\sigma_{II} - \sigma_{I} - \sigma_{II})$$

$$\sigma_{II} = \frac{1}{3} (2\sigma_{II} - \sigma_{I} - \sigma_{I} - \sigma_{II})$$

$$\sigma_{II} = \frac{1}{3} (2\sigma_{II} - \sigma_{I} - \sigma_{II})$$

$$\sigma_{II} = \frac{1}{3} (2\sigma_{II} -$$

Specify to 1D,

$$\frac{2}{3}\sigma^2 = C_Y = \frac{2}{3}\sigma_Y^2 \Rightarrow \sigma_{ij} \sigma_{ij} = \frac{2}{3}\sigma_Y^2$$

i.e.

$$\sigma_e = \sqrt{\frac{3}{2}\sigma_{ij}^{\prime}\sigma_{ij}^{\prime}} = \sigma_Y$$

which is called the von Mises stress.