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Plastic material behavior 
 

Yield condition: Yσσ =  

Plastic loading: Yσσ = , 0d >σ  
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We will now denote the initial yield stress as 0Yσ  and the current yield stress as 

Yσ ; see above figure. 

 
Decompose strain into elastic & plastic parts 
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In incremental form: 
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=  is the tangent modulus of Pεσ −  curve (which is obtained from experiments or 

fitting an assumed mathematical curve to experimental data). 
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Perfectly plastic: 0=h   
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Linear work hardening:  .const=h

 

Pε
0Yσ 1

h

 

Power law hardening: 
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How to generalize this idea to 3D? 
 
For elastic part,  
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The plastic strain is typically modeled by the Levy-Mises theory, 
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The yield condition:  

Yijije σσσσ == ''

2
3

 (von Mises stress)  

shows that eσ  generalizes the 1D stress to an effective stress in 3D. 

To utilize the measured plastic stress-strain behavior in 1D, we also need an effective measure of 
plastic strain in 3D. To see how this is generalized, consider strain energy, 
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Self consistency requires, 
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Summary: 
 
Generalization from 1D to 3D, 
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1D plastic stress-strain law 
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is generalized to 3D plastic stress-strain law 
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A few remarks: 
 
1) Yield conditions: 

Mises condition: Yijije σσσσ == ''
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Tresca condition: IIIIII σσσ ,, , ( ) YIIIIIIIIIIII σσσσσσσ =−−− ,,Max  

 
Representation of yield conditions in stress space: 
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This is called the yield surface. A perspective view along the ( 1,1,1
3

1 )  direction would show 

the projection of the von Mises yield surface as a circle 
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condition Misesvon 

condition Tresca

Yσ3
2

 
 

The Tresca yield condition corresponds to the inscribed hexagon inside the von Mises circle. The 
two yield conditions are actually quite close to each other. 
 

2) - flow theory 2J

The three invariants of stress ijσ  are sometimes denoted as 
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The three invariants of deviatoric stress  are sometimes denoted as: '
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The Levy-Mises flow rule can be written as 
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where  acts as a potential for plastic deformation. Therefore, this theory is also called the - 

flow theory. 
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