Linear elasticity solution in polar coordinates

Typical problems: Stress around a circular hole in an elastic solid.

Boundary conditions:

Traction free @ $r=a: \ \underline{\sigma}\, \overline{e}_r = \sigma_{rr} \overline{e}_r + \sigma_{r\theta} \overline{e}_\theta = 0$, i.e. $\sigma_{rr} = 0$, $\sigma_{r\theta} = 0$

Boundary conditions:

$$\sigma_{rr} = -p$$
, $\sigma_{r\theta} = 0$ @ $r = a$

$$\sigma_{rr} = 0$$
, $\sigma_{r\theta} = 0$ @ $r = b$

Governing equation: $\nabla^2 \nabla^2 \phi = 0$

In Cartesian coordinates: $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)^2 \phi = 0$

EN0175

Proposition: use (r, θ) instead of (x, y), $\phi = \phi(r, \theta)$

$$\nabla = \vec{e}_x \frac{\partial}{\partial x} + \vec{e}_y \frac{\partial}{\partial y} = \vec{e}_r \frac{\partial}{\partial r} + \vec{e}_\theta \frac{\partial}{r \partial \theta}$$

$$\nabla^2 = \nabla \cdot \nabla = \left(\vec{e}_r \frac{\partial}{\partial r} + \vec{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} \right) \cdot \left(\vec{e}_r \frac{\partial}{\partial r} + \vec{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} \right)$$

$$\vec{e}_r = \cos\theta \ \vec{e}_r + \sin\theta \ \vec{e}_y$$

$$\vec{e}_{\theta} = -\sin\theta \, \vec{e}_{x} + \cos\theta \, \vec{e}_{y}$$

$$\frac{\partial \vec{e}_r}{\partial \theta} = -\sin\theta \, \vec{e}_x + \cos\theta \, \vec{e}_y = \vec{e}_\theta$$

$$\frac{\partial \vec{e}_\theta}{\partial \theta} = -\cos\theta \, \vec{e}_x - \sin\theta \, \vec{e}_y = -\vec{e}_r$$

It follows from above that $\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$

Governing equation in polar coordinates: $\phi = \phi(r, \theta)$

$$\nabla^2 \nabla^2 \phi = \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \right)^2 \phi = 0$$

Stress components in Cartesian coordinates:

$$\sigma_{xx} = \frac{\partial^2 \phi}{\partial y^2}, \quad \sigma_{xy} = -\frac{\partial^2 \phi}{\partial x \partial y}, \quad \sigma_{yy} = \frac{\partial^2 \phi}{\partial x^2}$$
$$\sigma_{xx} + \sigma_{yy} = \nabla^2 \phi$$

Stress components in polar coordinates:

$$\sigma_{\theta\theta} = \frac{\partial^2 \phi}{\partial r^2}, \quad \sigma_{r\theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \phi}{\partial \theta} \right), \quad \sigma_{rr} = \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2}$$

Equilibrium equations in polar coordinates:

$$\begin{split} \frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} + f_r &= 0 \\ \frac{\partial \sigma_{\theta\theta}}{\partial r} - \frac{1}{r} \frac{\partial \sigma_{\theta\theta}}{\partial \theta} + \frac{2\sigma_{r\theta}}{r} + f_{\theta} &= 0 \end{split}$$

Hooke's law in polar coordinates:

$$\varepsilon_{rr} = \frac{1}{E} (\sigma_{rr} - v\sigma_{\theta\theta})$$

$$\varepsilon_{\theta\theta} = \frac{1}{E} (\sigma_{\theta\theta} - v\sigma_{rr})$$

$$\varepsilon_{r\theta} = \frac{1+v}{E} \sigma_{r\theta}$$

Strain-displacement relations in polar coordinates:

$$\varepsilon_{rr} = \frac{\partial u_r}{\partial r}, \quad \varepsilon_{\theta\theta} = \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_r}{r}, \quad 2\varepsilon_{r\theta} = \frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_{\theta}}{\partial r} - \frac{u_{\theta}}{r}$$

Example 1: Thick-walled pressure vessel

Since the problem is axisymmetric,

$$\phi = \phi(r)$$

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} = \frac{1}{r} \frac{d}{dr} \left(r \frac{d}{dr} \right)$$

Boundary conditions:

$$\sigma_{rr} = \frac{1}{r} \frac{\partial \phi}{\partial r} = -p_i, \ \sigma_{r\theta} = 0 \ @ \ r = a$$

$$\sigma_{rr} = \frac{1}{r} \frac{\partial \phi}{\partial r} = -p_0, \ \sigma_{r\theta} = 0 \ @ \ r = b$$

In mathematical description, the problem becomes an ordinary differential equation

$$\frac{1}{r}\frac{d}{dr}r\frac{d}{dr}\frac{1}{r}\frac{d}{dr}r\frac{d}{dr}\phi = 0$$

with boundary conditions

$$\phi'(a) = -ap_i$$

$$\phi'(b) = -bp_0$$

The above differential equation can be directly integrated and has the solution

$$\phi = A \ln r + Br^2 \ln r + Cr^2 + D$$

The constant term D is nothing but a rigid body motion and can be neglected in stress analysis, i.e. D=0.

The tangental displacement associated with the term $Br^2 \ln r$ comes out to be $u_\theta = \frac{4B}{E}r\theta$

plus a rigid body motion, which is not a single-valued function. Actually, the term $Br^2 \ln r$ represents a so-called disclination (think of gluing a cut-opened ring back into a circle). For the present problem, take B=0. Therefore, the solution to thickwalled cylinder is

$$\phi = A \ln r + Cr^2$$

$$\sigma_{rr} = \frac{1}{r} \frac{\partial \phi}{\partial r} = \frac{A}{r^2} + 2C$$

$$\sigma_{\theta\theta} = \frac{\partial^2 \phi}{\partial r^2} = -\frac{A}{r^2} + 2C$$

The constants A, C are determined from the boundary conditions:

$$\sigma_{rr}\big|_{r=a} = \frac{A}{a^2} + 2C = -p_i$$

$$\sigma_{rr}\big|_{r=b} = \frac{A}{h^2} + 2C = -p_0$$

The results are

$$A = \frac{a^2b^2(p_0 - p_i)}{b^2 - a^2}$$

$$2C = \frac{p_i a^2 - p_0 b^2}{b^2 - a^2}$$

In the special case of $p_0 = 0$:

$$\sigma_{rr} = \frac{a^2 p_i}{b^2 - a^2} \left(1 - \frac{b^2}{r^2} \right) \qquad (< 0, \text{ compressive})$$

$$\sigma_{\theta\theta} = \frac{a^2 p_i}{b^2 - a^2} \left(1 + \frac{b^2}{r^2} \right) \quad (>0, \text{ tensile})$$

Consider the tensile hoop stress,

@
$$r = b$$
, $\sigma_{\theta\theta} = \frac{2a^2 p_i}{b^2 - a^2}$

@
$$r = a$$
, $\sigma_{\theta\theta} = \frac{a^2 + b^2}{b^2 - a^2} p_i = SCF \cdot p_i$

Maximum stress occurs @ r = a.

$$SCF = \frac{a^2 + b^2}{b^2 - a^2}$$
 is called stress concentration factor.

In the case of a pressurized circular hole in an infinite medium, i.e. $p_0=0$ and $b=\infty$:

$$\sigma_{rr} = -p_i \frac{a^2}{r^2}, \quad \sigma_{\theta\theta} = p_i \frac{a^2}{r^2}$$

Example 2: Pressurized underground tunnel

The solution is discussed in Timoshenko's book (Timoshenko and Goodier, 1987). The interesting features are that the maximum stress occurs at two potential sites

@ point
$$P: \ \sigma_{xx} = \frac{4a^2}{d^2 - a^2} p_i$$

@ point
$$Q: \ \sigma_{\theta\theta} = \frac{d^2 + a^2}{d^2 - a^2} \, p_i$$

For
$$d = \sqrt{3}a$$
, $\sigma_{xx}^P = \sigma_{\theta\theta}^Q$

If $d < \sqrt{3}a$, maximum stress occurs at ground point P.

If $d > \sqrt{3}a$, maximum stress occurs at the hole boundary point Q.

Example 3:

This is a special case of example 1. Take $~p_i=0$, $~p_0=-\sigma_{_{\infty}}$, $~b\to\infty$. We find

$$A = -a^2 \sigma_{\infty}$$

$$2C = \sigma_{\infty}$$

The stress fields are:

$$\sigma_{rr} = \sigma_{\infty} \left(1 - \frac{a^2}{r^2} \right)$$

$$\sigma_{\theta\theta} = \sigma_{\infty} \left(1 + \frac{a^2}{r^2} \right)$$

The maximum stress occurs at r=a, $\sigma_{\theta\theta}\big|_{r=a}=2\sigma_{\infty}$ with a stress concentration factor of 2.

The general solution of $\nabla^2 \nabla^2 \phi = 0$ in polar coordinates (i.e. for any 2D elasticity problem) can be expressed as:

$$\phi = (a_0 \ln r + b_0 r^2 + c_0 r^2 \ln r) + (d_0 r^2 \theta + a_0' \theta) + (\frac{a_1}{2} r \theta \sin \theta - \frac{c_1}{2} r \theta \cos \theta)$$

$$+ (b_1 r^3 + a_1' r^{-1} + b_1' r \ln r) \cos \theta + (d_1 r^3 + c_1' r^{-1} + d_1' r \ln r) \sin \theta$$

$$+ \sum_{n=2}^{\infty} (a_n r^n + b_n r^{n+2} + a_n' r^{-n} + b_n' r^{-n+2}) \cos n\theta + \sum_{n=2}^{\infty} (c_n r^n + d_n r^{n+2} + c_n' r^{-n} + d_n' r^{-n+2}) \sin n\theta$$

The general solution can be conveniently used to solve boundary value problems.

Example 4: Circular hole under uniaxial tension (remote)

Governing equation: $\nabla^2 \nabla^2 \phi = 0$

Boundary conditions: $\sigma_{rr} = \frac{1}{r} \frac{\partial \phi}{\partial r} = -p_i$, $\sigma_{r\theta} = 0$ @ r = a

$$\sigma_{xx} = \sigma_{\infty}$$
, $\sigma_{yy} = 0$, $\sigma_{xy} = 0$ @ $r = \infty$

First, let us transform the remote stresses into polar coordinates

$$\underline{\sigma} = \sigma_{\infty} \vec{e}_{x} \otimes \vec{e}_{x}$$

$$\sigma_{rr} = \vec{e}_r \cdot \underline{\sigma} \vec{e}_r = \sigma_{\infty} \cos^2 \theta = \frac{\sigma_{\infty}}{2} (1 + \cos 2\theta)$$

$$\sigma_{\theta\theta} = \vec{e}_{\theta} \cdot \underline{\sigma} \vec{e}_{\theta} = \sigma_{\infty} \sin^2 \theta = \frac{\sigma_{\infty}}{2} (1 - \cos 2\theta)$$

$$\sigma_{r\theta} = \vec{e}_r \cdot \underline{\sigma} \vec{e}_{\theta} = -\frac{\sigma_{\infty}}{2} \sin 2\theta$$

The above expressions suggest that the Airy stress function should have the form of $\phi = C_1 \ln r + C_2 r^2 + f(r) \cos 2\theta$. Pick the corresponding expression in the general solution associated with $\cos 2\theta$, we see $f(r) = a_2 r^2 + a_2 r^{-2} + b_2$ (the r^4 term is discarded since it generates infinite stress at large r). Applying the boundary conditions allow all the parameters to be determined. The solution is

$$\phi = -\frac{\sigma_{\infty}a^{2}}{2}\ln r + \frac{\sigma_{\infty}}{4}r^{2} + \left(-\frac{r^{2}}{4} - \frac{a^{4}}{4r^{2}} + \frac{a^{2}}{2}\right)\sigma_{\infty}\cos 2\theta$$

The associated stress fields are

$$\sigma_{rr} = \frac{\sigma_{\infty}}{2} \left(1 - \frac{a^2}{r^2} \right) + \frac{\sigma_{\infty}}{2} \left(1 - \frac{a^2}{r^2} \right) \left(1 - \frac{3a^2}{r^2} \right) \cos 2\theta$$

$$\sigma_{\theta\theta} = \frac{\sigma_{\infty}}{2} \left(1 + \frac{a^2}{r^2} \right) - \frac{\sigma_{\infty}}{2} \left(1 + \frac{3a^4}{r^4} \right) \cos 2\theta$$

$$\sigma_{r\theta} = -\frac{\sigma_{\infty}}{2} \left(1 - \frac{a^2}{r^2} \right) \left(1 + \frac{3a^2}{r^2} \right) \sin 2\theta$$

The maximum tensile stress occurs at r = a, $\theta = \frac{\pi}{2}$

$$\sigma_{\theta\theta}^{\text{max}} = 3\sigma_{\infty}$$

Therefore, the stress concentration factor is 3.

The above problem can also be directly treated without knowing the general solution (next lecture).

For an elliptic hole under uniaxial tension (remote),

$$\sigma_{\theta\theta}^{\max} = \sigma_{\infty} \left(1 + \frac{b}{a} \right)$$

The stress concentration factor is $\left(1+2\frac{b}{a}\right)$, which depends on the aspect ratio of the elliptic hole.