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Linear elasticity solution in polar coordinates

Typical problems: Stress around a circular hole in an elastic solid.
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Boundary conditions:

Tractionfree@ r=a: o€, =0,€ +0,,6,=0,ie. 0,=0, o,,=0

Boundary conditions:

c,=—-p, 0,,=0 @ r=a

6,=0, 0,=0 @ r=b

Governing equation: V?V?¢ =0
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In Cartesian coordinates: _2+8_2 $=0
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Proposition: use (r, @) instead of (X, y), #=g(r,6)

€ =C0sO €, +sinde,

€ =—SinO e +Ccosd e,

08 o o
~-==-sIn0 €, +cosf e, =§,
%—e;::—coseéx—sineéy =—€,
2 2
It follows from above that V? :a—z+li+i2 0 >
or: ror r°oé

Governing equation in polar coordinates: ¢ = ¢(r, 9)

? 16 18 Y
vivzg=| & 429 2 9 )40
’ (ar2 ror r’ 892] /

Stress components in Cartesian coordinates:

_ 9 __ Y _

(o2 , O, —— , O, =
XX 6y2 Xy axay yy aXZ

2
Oxto,=V @
Stress components in polar coordinates:

08 L1810, 10

Too =52 90T 50\ Y a0 Tror r2oe?

Equilibrium equations in polar coordinates:

aGrr lao-re + O —Ow + fr =0
or r 060 r
00, _l 00, N 20,, +f,=0

or r 00 r
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Hooke’s law in polar coordinates:

1
&y = E(Grr VO_HH)
1
Soo E (O-aa VO, )
1+v

Strain-displacement relations in polar coordinates:

ou, _18ug+u

—laur +6U_€ u_‘g

r

—X —__ 0 , gr —
b T f T 0 Ty " roe0 or r

Example 1: Thick-walled pressure vessel

74 Po

Since the problem is axisymmetric,

$=4(r)
i li_li( i)
or?2 ror rdrl dr

Boundary conditions:

104
=———=-p,, 0,,=0 r=a
Grr r6r pl O-H @
10
Grr:?é_fz_pol O'm:O @ r=>b

In mathematical description, the problem becomes an ordinary differential equation
1d dl1d _d
——r———r—¢=0
rdr drrdr dr

with boundary conditions



ENO0175 11/14/706

¢(a) = —ap;
¢'(b): —bp,

The above differential equation can be directly integrated and has the solution
¢=Alnr+Br’Inr+Cr’>+D

The constant term D is nothing but a rigid body motion and can be neglected in stress analysis,
ie. D=0.

. . . 2 4B
The tangental displacement associated with the term Br<Inr comes out to be u, =—ré

plus a rigid body motion, which is not a single-valued function. Actually, the term Briinr
represents a so-called disclination (think of gluing a cut-opened ring back into a circle). For the

present problem, take B = 0. Therefore, the solution to thickwalled cylinder is

¢=Alnr+Cr®
b 10 A e
ror r
o’ A
_9P__ AR ioc
To0 =52 T T2

The constants A, C are determined from the boundary conditions:

A

0rr|r=a =¥+2C =—p;
A
Ol :b_2+2C =—P,

The results are

A a%(p—p)

b? —a?
p.a’ — pb?
="

In the special case of p, =0:

2 2
o, = ap (l—%) (<0, compressive)

b? —a?
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Consider the tensile hoop stress,

2a’p,
@ r=>b, Gag:_bz—az
a’+b?
@ r=a, Ow =7 oZ p; = SCF - p

Maximum stress occurs @ F=a.

a’+b’

SCF :2—

b 5 is called stress concentration factor.
—a

In the case of a pressurized circular hole in an infinite medium, i.e. p,=0 and b=o0:

Example 2: Pressurized underground tunnel
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The solution is discussed in Timoshenko’s book (Timoshenko and Goodier, 1987). The interesting
features are that the maximum stress occurs at two potential sites

. 4a°
@ point P: O-xxzdz—az p;
. d*+a’
@ point Q: O-%:—dz—az P,

For d =+/3a, ol =03
If d< \/§a , maximum stress occurs at ground point P .

If d> \/§a , maximum stress occurs at the hole boundary point Q.

Example 3:

tt1

ttt
-
q

v

This is a special case of example 1. Take p, =0, p,=-0,, b— 0. We find
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2C=0

o0

The stress fields are:

2
a
o,=0,1-—
r
2
a
Oy =Um[1+—2J
r

The maximum stress occursat r=a, o"%,|r7a =20, with astress concentration factor of 2.

The general solution of V2V2¢ =0 in polar coordinates (i.e. for any 2D elasticity problem) can

be expressed as:
2 2 2 ' ai . C1
¢:(aolnr+b0r +C,r Inr)+(d0r 9+a00)+ —résind ——r@cosé
2 2
+ (b1r3 +a,rt+hbrin r)cos:9+ (d1r3 +c,rt+d,rin r)sin 0
+Z(anr” +b r"? +a, r +br']r‘“+2)cosn9+2(cnr” +d " +cr +dr']r‘”+2)sin no
n=2 n=2

The general solution can be conveniently used to solve boundary value problems.

Example 4: Circular hole under uniaxial tension (remote)

‘—
-« — o,
4—
Governing equation: V?V?¢ =0
1
Boundary conditions: o, = —? =—p, 0,,=0 @ r=a
r or

0x=0,, 0,=0, 0,=0@ r=o

First, let us transform the remote stresses into polar coordinates
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o, =8 08 =0, 0’0 =%(1+ c0s26)
O,y =8, 08, =0,SiN*0= 0—2‘*’(1—003 20)
o,, =6, -08, = —0—2"°Sin 20

The above expressions suggest that the Airy stress function should have the form of

#=C.Inr+C,r* + f(r)cosZH. Pick the corresponding expression in the general solution

associated with c0s26, we see f(r)=a,r’ +a,r > +b, (the r*term is discarded since it

generates infinite stress at large ). Applying the boundary conditions allow all the parameters to
be determined. The solution is

2 2 4 2
¢=—0°°a Inr+Z=r2 4+ _r__a_2+a_ o, C0s26
4 4 A4r 2
The associated stress fields are
2 2 2
- =6—2°°(1—?—2j+0—2°°(1—?—2J(1—3riz]c0320
o a’ o 3a’
Oy =—|1+— |-——=| 1+——|c0s 28
” 2 ( rzj 2 ( r4 J
o, (, a 3a’) .
Ur& = —7(1—7](14'[-—2}3"] 20
30,
4—
<+ —> O'OO
‘—

. . T
The maximum tensile stress occursat r =a, 0= E

max __
Oy =30

0

Therefore, the stress concentration factor is 3.

The above problem can also be directly treated without knowing the general solution (next
lecture).
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For an elliptic hole under uniaxial tension (remote),

- 2b — o,
S
2a
max b
Oy :O-“’(:ng

b
The stress concentration factor is (1+ 2—], which depends on the aspect ratio of the elliptic
a

hole.



