ENO0175 11/16/06

Continue on the problem of circular hole under uniaxial tension (remote).
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Stress concentration occursat r=a, 6= E
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Governing equation is: V°V?¢ =0

The stress components in polar coordinates are:
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Boundary conditions are:

@ r=a, o,=0,,=0

o, =€, 08, =—(1+cos20)
Ty =%(1—cos 20)
o,, =——Sin26

Therefore, the boundary condition at infinity can be decomposed into two parts.

Part I:
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@ r=w, o,=0y= E . For this part, we have previously obtained the solution as

Part I1:

@ r=ow, O'rr=TEC0826’, aggz—TEcosw, ar(,:—TEsinZH

These expressions suggests ¢ = f (I’)COS 20 . Inserting itinto V°V?¢=0 gives

4]f<r>
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Assume: f(r)=r"= A(1-4)1-2)A1+2)=0=>1=0,2,-2,4

Using boundary conditions:

@ r=a, o,=0,,=0

tt1
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@ r=ow, O'rr=TEC0826’, amz—%sinw

We can determine the constant coefficients as

Vo

f(r)=C,r’ +C,r*+C,r? +C,
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C, =—£T , C,=0, C, =—1a4T , C, =la2T
4 4 2
Adding the solution to part I, the complete solutions of stress components are:
T 2 T 2 2
O, =— 1_a_2 +— 1_a_2 1—312 cos 26
2 r 2 r r
T a?) T 3a*
Oy =—|1+— |-—| 1+ —- |cos20
2 2
Gy = —1(1—6‘—2][“ 312jsin 20
2 r r
The hoop stress @ F=a
o, =T(1-2c0s20)
. V4
has the maximum at @ = 5
Oao,
3 3T
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For an elliptic hole,
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2
Radius of curvature at the end of semi-major axis is: p = F We can rewrite this solution as

O max :T[l+ 2\/E)
P

If p=b, o, =3T, the result reduces to the case of circular hole. The above behavior is

fairly typical of stress near a groove or hole. For example, consider the stress concentration at a
slightly wavy surface under tension.
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The surface has a profile of

. 27X
= Asin—
y A

The local curvature at a surface valley is
1

2
= y" = A(Z_ﬂj
P valley A

Recalling the result for the maximum stress at the valley, we can write

O max :T(l+ 47[Aj :T(1+ ZJEJ
A p

This has the same form as that near an elliptical hole. These results suggest that stress
concentration occurs at places with negative curvature (concave spots of a material/structure). For
a general crack/notch under tension,
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the maximum stress occurs at the crack/notch tip can be expressed as

O max :T[1+ a\/E)
Yo,

where p is the radius of curvature at the tip, h is the depth of the notch, and « is a

geometric factor (equal to 2 for an elliptical hole).

Remark:

We note that for crack-like flaws, o, — o when p— 0, which presents a challenge for

failure analysis. Fracture mechanics developed in the mid-20" century shows that elasticity
1
solutions for such flaws generally have the form of & = Kr 20(@).

p~1"1(0)
o~r'e(0)
A= —l for cracks
2

—% <A <0 fornotches

The coefficient K is called the stress intensity factor. For such sharp cracks/notches, stress itself
is no longer a useful criterion, rather the coefficient of the singularity, K, turns out to be the
appropriate quantity for the behavior of cracks/notches.

Failure criterion: K < K., where K. isa material property called fracture toughness.

In contrast, the classical failure criterion based on strength of material has the form o <o,

which is clearly inappropriate as it predicts materials have no resistance to sharp cracks.

Chap. 7 Variational/energy methods in elastic solids
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Principle of virtual work

[ fioudv + | touds = [ swdv
= 5(L wdv - | fudv —Ltiuids): 0=6V =0

Here V = L wdV —L fu.dv —L t.u.dS is the total potential energy of the system. The first

term is the strain energy stored in the elastic body,

1 1
W= EUijgij = ECijklgijgkl

Principle of virtual work shows that V is stationary. In fact, V is minimum with respect to

variational displacement. If U, is the actual displacement field, then u; =u, +JU; would

always increase V .

Proof of the principle of minimum potential energy:
Consider a kinematically admissible displacement field ui* =U, +0ou;, (a field satisfying all

displacement BCs but not necessarily the actual solution).

v(uj)zL%cijklg;g;dv ~ [, furav - [ tu;ds

- L%Cukl (& + 5, New + Sz AV = [, £i(u; + )V = [ (U, +u,)dS
=V/(u)+ [ owdv - | f,oudv + [ touds % [ CyuSe0,0V
:V(ui)+% [ Cpude,55,0V 2V (u,)

(The second term is always positive due to the positive definiteness of elastic modulus).
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Simple 1D analog:

" N

K
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Consider a 1D linear spring under applied force, the potential energy of the system is
1
V(u)=Eku2 ~Fu
Minimum potential energy requires that
oV

—:ku—F:0:>u:E
ou k

Example: Pressurized hole in an infinite elastic body

—>

2a

The pressurized hole should not disturb material at infinity. Take the simplest decay function about
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the displacement,

Based on the assumed displacement field, the strain components are

. ou; 1
&y = :—6‘(—2
or r
o u’ ., 1
00 r r.2
£,=0

Using Hooke’s law, the stresses are

* E «
o, =——

" 1+vr?

* E «
c,,=——

“ 14y r?
0y =0

The strain energy density can thus be calculated as

1( x x *) E af
WZE Ow&rr T O0gp€np :mr_4
The potential energy of the system is
0 27 E aZ 2 (04
V=| dr| rdd——F-| adfdp—
,L -[0 1+v rt o P
E of
=2 ————
(2(1+v) a2 " j
To minimize V (&), we must have
oV E o (1+v)pa’®

Once the parameter « is determined, we can write out the complete solution of the problem:

x (1+v)pa_2
' E r
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«_ou _ (@+v)pa® . _(+v)pa

&
" or E r? E r?

2 2

*

* pa pa
O, =—NVN—F, Oy =P—F
r r2 06 rz

It happens that our simple guess about displacement hits the exact solution of the present problem.



